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Abstract. A distance measure between objects is a key requirement for
many data mining tasks like clustering, classification or outlier detec-
tion. However, for objects characterized by categorical attributes, defin-
ing meaningful distance measures is a challenging task since the values
within such attributes have no inherent order, especially without addi-
tional domain knowledge. In this paper, we propose an unsupervised
distance measure for objects with categorical attributes based on the
idea that categorical attribute values are similar if they appear with
similar value distributions on correlated context attributes. Thus, the
distance measure is automatically derived from the given data set. We
compare our new distance measure to existing categorical distance mea-
sures and evaluate on different data sets from the UCI machine-learning
repository. The experiments show that our distance measure is recom-
mendable, since it achieves similar or better results in a more robust way
than previous approaches.

Keywords: Categorical data · Distance measure · Heterogeneous data ·
Unsupervised learning

1 Introduction

Distance calculation between objects is a key requirement for many data mining
tasks like clustering, classification or outlier detection [13]. Objects are described
by a set of attributes. For continuous attributes, the distance calculation is
well understood and mostly the Minkowski distance is used [2]. For categori-
cal attributes, defining meaningful distance measures is more challenging since
the values within such attributes have no inherent order [4]. The absence of
additional domain knowledge further complicates this task.

However, several methods exist to address this issue. Some are based on sim-
ple approaches like checking for equality and inequality of categorical values, or
create a new binary attribute for each categorical value [2]. An obvious draw-
back of these two approaches is that they cannot reflect the degree of similarity
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or dissimilarity between two distinct categorical values. Yet, more sophisticated
methods incorporate statistical information about the data [6–8].

In this paper, we take the latter approach. In contrast to previous work,
we take into account the quality of information that can be extracted from the
data, in form of correlation between attributes. The resulting distance measure is
called ConDist (Context based Categorical Distance Measure): We first derive a
distance measure for each attribute separately. To this end, we take advantage of
the fact that categorical attributes are often correlated, as shown in an empirical
study [8], or by the fact that entire research fields exist which detect and elimi-
nate such correlations, e.g. feature selection or dimensionality reduction. In order
to calculate the distances for the values within a target attribute, we first identify
the correlated context attributes. The distance measure on target attributes is
then based on the idea that attribute values are similar if they appear with simi-
lar value distributions on their corresponding set of correlated context attributes.
Finally, we combine these distance measures on separate attributes to calculate
the distance of objects, again taking into account correlation information. We
argue that incorporating the correlation of context attributes and the target
attribute itself are important in order to maximize the relevant distance infor-
mation extracted from the data and mitigate the possibly incorrect influence of
uncorrelated attributes.

Table 1 shows a sample data set. Let us assume, we want to calculate the
distance between the different values of attribute height, i.e., height is our tar-
get attribute. As mentioned above, our distance measure calculates its distance
based on the value distributions of other attributes. For the attributes weight
and haircolor these distributions (P (X|H = small), P (X|H = medium) and
P (X|H = tall)) are shown in Figure 1. In the case of weight the distributions are
different. Thus, they will add information to our distance calculations. However,
the distributions for haircolor are the same for all values of the target attribute.
Thus, they will not contribute information to our distance measure. At the same
time, we can see that weight is correlated to height, since higher weight implies
greater height with a high probability. For haircolor on the other hand, there
is no correlation, since haircolor does not imply height. Since we also take this
correlation information into account, we exclude uncorrelated attributes from
the distance measure. Therefore, context attribute haircolor will not be taken
into account when calculating distances between the values of height.

Overall, we propose an unsupervised distance measure for objects described
by categorical attributes. Our new distance measure ConDist calculates dis-
tances by identifying and utilizing relevant statistical relationships from the
given data set in form of correlations between attributes. This way, ConDist
tries to compensate for the lack of inherent orders within categorical attribute
domains.

The rest of the paper is organized as follows: Related work on categorical
distance measures is discussed in Section 2. Section 3 describes the proposed
distance measure ConDist in detail. Section 4 gives an experimental evaluation
and the results are discussed in Section 5. The last section summarizes the paper.
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Table 1. Example data set which describes nine people with three categorical
attributes. The attributes height and weight have natural orders. Whereas the attribute
haircolor has no natural order. Height and weight are correlated to each other while
the attribute haircolor is uncorrelated to the other two attributes. ConDist uses such
correlations between attributes to extract relevant information for distance calculation.

# height weight haircolor

1 small low blond
2 small low brown
3 small middle black
4 medium low black
5 medium middle brown
6 medium high blond
7 tall middle blond
8 tall high brown
9 tall high black

Fig. 1. This figure shows the conditional probability distributions (CPDs) of context
attributes weight and haircolor, given the different values of the target attribute height
based on Table 1. W stands for weight, C for haircolor and H for height. ConDist uses
the differences between CPDs of context attributes to calculate the distance of target
attribute values. Thus, weight can be used to calculate a meaningful distance between
the values of height, while haircolor will yield the same distance for all three target
attribute values.

2 Related Work

This section reviews related work on categorical distance measures. Distance
measures can be divided into supervised and unsupervised. In the supervised
setting, the class membership of the objects is provided and this information is
exploited by the distance measures. In the unsupervised setting, distance mea-
sures are based exclusively on assumptions and statistics of the data. Since the
proposed distance measure is unsupervised, the following review considers only
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unsupervised categorical distance measures. We categorize them into distance
calculation (I) without considering context attributes, (II) considering all context
attributes, (III) considering a subset of context attributes and (IV) based on
entire objects instead of individual attributes.

Boriah et al. [4] give a comprehensive overview of distances measures from
category (I). In contrast to ConDist, these distance measures ignore available
information that could be extracted from context attributes. For example, the
distance measure Eskin only uses the cardinality of the target attribute domain
to calculate distances. [4] evaluated these distance measures for outlier detection
and observed that no specific distance measure dominates all others.

Category (II) includes distance measures that employ all context attributes
without distinguishing between correlated and uncorrelated. Li and Ho [8] com-
pute the distance between two categorical values as the sum of dissimilarities
between the context attributes’ conditional probability distribution (CPD) when
the target attribute takes these two values. However, they do not recommend
their distance measure for data sets with highly independent attributes. Similary,
[1] calculates the distance between two values using the co-occurrence probabil-
ities of these two values and the values of the context attributes.

Category (III) selects a subset of context attributes for each target attribute.
DILCA [6] is a representative of this category and uses Symmetric Uncer-
tainty (SU) [15] for selecting context attributes. SU calculates the correlation
between two attributes. In contrast to our work, all selected context attributes
are weighted equally for the distance calculation. Consequently, the potentially
differing suitability of the selected context attributes is not reflected in the dis-
tance calculation process.

Category (IV) aims to compute distances between entire objects instead of
distances between different values within an attribute. Consequently, the dis-
tance between different values within an attribute varies in dependence of the
whole objects. Recently, Jia and Cheung [7] proposed such a distance measure
for cluster analysis. Their basic assumption is that two categorical values with
high frequencies should have a higher distance than two categorical values with
low frequencies. Therefore, they select and weigh a set of correlated context
attributes for each target attribute using the normalized mutual information [3].
Jia and Cheung [7] compared their distance measure with the Hamming Distance
on four data sets. They conclude that their distance measure performs better
than the Hamming Distance on the evaluated data sets.

The proposed distance measure ConDist neither ignores context attributes
(category I) nor simply includes all context attributes (category II). Instead, it
follows the approach of the third category but extends the subset selection with a
weighting scheme for context attributes. Furthermore, the target attribute itself
is included in the distance computation. In contrast to the fourth category, two
particular values within an attribute have always the same distance, independent
of the corresponding objects. This allows ConDist to calculate a distance matrix
for each attribute.
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3 The Distance Measure ConDist

This section introduces ConDist, a new distance measure. Section 3.1 presents
the underlying ideas and the core formula. Since ConDist first calculates
the distance between single attributes before combining them, it requires
adjusted distance functions for each attribute. In Section 3.2, we explain how
these attribute distance functions are derived. When combining attribute-wise
distances, ConDist uses a specific weighting scheme which is explained in
Section 3.3. Both, the attribute distance functions as well as the weighting
scheme use a set of correlated context attributes. Section 3.4 defines how this set
is derived and how an impact factor is calculated which accounts for the vary-
ing amount of information dependent on different correlation values. Finally, we
address the issue of how ConDist can be applied to objects characterized by
continuous and categorical attributes in Section 3.5.

3.1 Definition of ConDist

This section provides the core formula of ConDist, calculating the distance
between two objects characterized by attributes.

Let A and B be two objects in the data set D and let each object be charac-
terized by n attributes. Furthermore, let the value of attribute X for object A be
denoted by AX . ConDist follows a two-step process: First, it calculates the dis-
tance between each of the attributes of the objects A and B and then it combines
them using attribute specific weights. Formally, ConDist defines the distance for
two objects A and B as the weighted sum over all attribute distances:

ConDist(A,B) =
∑

X

wX · dX(A,B), (1)

where wX denotes the weighting factor assigned to attribute X (defined in
Section 3.3) and dX(A,B) denotes the distance of the values AX and BX of
attribute X in the objects A and B (defined in Section 3.2).

The distance function dX on the values of each attribute X needs to be
calculated beforehand and is based on the idea that attribute values with sim-
ilar distributions of values in a set of correlated context attributes are simi-
lar. The weighting factor wX accounts for differences in the number of context
attributes and the degree of their correlation with the target attribute X. Both,
the attribute distance functions dX as well as the weighting factors wX incor-
porate correlation information in order to maximize the relevant information
that can be extracted from the data set and mitigate the possibly incorrect
influence of uncorrelated attributes. For an example on differently correlated
attributes and their influence on distribution based distance measures, please
refer to Section 1 as well as Table 1 and Figure 1.

3.2 Attribute Distance dX

As mentioned in Section 3.1, the distance dX of values of a single attribute X is
based on the idea that attribute values x ∈ dom(X) are similar if they appear
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with similar distributions of values in a set of correlated context attributes.
Thus, when comparing two objects A and B in attribute X, we first calculate
the Euclidean distance between the two conditional probability distributions
P (Y |X = AX) and P (Y |X = BX) for each attribute Y ∈ contextX from the set
of correlated context attributes contextX of the target attribute X. Then, we
weight them using an individual impact factor impactX(Y ) (Section 3.4) and add
up these distances for all attributes Y ∈ contextX . The impact factor accounts
for the fact that the amount of information about the target attribute X in a
context attribute Y decreases with both increasing and decreasing correlation
cor(X|Y ) as explained in Section 3.4. The resulting formula is:

d̂X(A,B) =
∑

Y ∈contextX

impactX(Y )

√√√√
∑

y∈dom(Y )

(
p(y|AX) − p(y|BX)

)2

, (2)

where dom(Y ) is the domain of attribute Y , p(y|AX) = p(y|X = AX) denotes
the probability that value y of context attribute Y is observed under the condi-
tion that value AX of attribute X is observed in the data set D.

As mentioned above, the attribute distance dX relies on a set of correlated
context attributes contextX as defined in Section 3.4. Because every attribute
is correlated to itself, the target attribute is also added to the set of context
attributes. The motivation for including the target attribute is two-fold: First, it
ensures that the list of context attributes is not empty even if all attributes are
independent. Second, the distance between two distinct values is always larger
than 0. Thus, if no correlated context attributes can be identified, ConDist cal-
culates the maximum distance for each distinct value-pair in target attribute X.
In this case, ConDist reduces to the distance measure Overlap and distinguishes
only between equality and inequality of categorical values.

It should be noted that ConDist normalizes the attribute distance by the
maximum distance value dX,max between any two values x, u ∈ dom(X) of
attribute X:

dX(A,B) =
d̂X(A,B)
dX,max

(3)

The proof that ConDist is a distance measure closely follows the proof of
the Euclidean metric and exploits the fact that a linear combination of distance
measures is also a distance measure. For brevity reasons, we omit the proof.

3.3 Attribute Weighting Function wX

ConDist compares objects based on the distances between each of the attribute
values associated with the objects it compares (see Equation (1)). Each of these
attributes is weighted differently by an individual weighting factor wX . This
section explains why these weights wX are necessary and how they are calculated.

The weight wX is especially necessary for data sets in which some attributes
depend on each other, while others do not: refer back to the example in Table 1.
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For attribute haircolor, no correlated context attribute can be identified. Con-
sequently, only the attribute haircolor itself is used for distance calculation and
no additional information can be extracted from context attributes. Therefore,
the normalized results of Equation (2) always results in the maximum distance
1 for any pair of non-identical values. In contrast, the attribute weight is a
correlated context attribute for attribute height, and vice versa. Consequently,
ConDist is able to calculate more meaningful distances for both attributes and
these attributes should be weighted higher than haircolor.

However, average distances in attribute haircolor are larger than in attributes
weight and height. Consequently, distinct values in attribute haircolor have
implicitly larger relative weight than distinct values in attributes height and
weight.

To solve this issue, the weighting factor wX assigns a weight to each attribute
X based on (I) the amount of identified context attributes and (II) their impact
on the target attribute X:

wX = 1 +

∑
Y ∈contextX

impactX(Y )

n · c
, (4)

where contextX and impactX(Y ) are defined as in section 3.4, n is the number
of attributes in the data set D and c denotes a normalization factor defined as
the maximum of the impact function (see Section 3.4) which is independent of
the attributes X and Y and amounts to 8

27 .

3.4 Correlation, Context and Impact

The attribute distance measures dX (Section 3.2) and the weighting scheme wX

(Section 3.3) use the notion of correlation on categorical distance measures as
well as a correlation related impact factor. Both are defined here.

Correlation cor(X|Y ). A measure of correlation is required to determine an
appropriate set of context attributes. For this purpose, we build a correlation
measure on the basis of the Information Gain (IG) which is widely used in
information theory [9]. The IG is calculated as follows:

IG(X|Y ) = H(X) − H(X|Y ), (5)

where H(X) is the entropy of an attribute X, and H(X|Y ) is the condi-
tional entropy of attribute X given attribute Y . According to this measure,
the attribute X is more correlated with attribute Y than attribute W if
IG(X|Y ) > IG(X|W ). The information gain IG(X|Y ) is always less than or
equal to the entropy H(X). Based on this observation, the function cor(X|Y ) is
defined as:

cor(X|Y ) =
IG(X|Y )

H(X)
(6)
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and describes a correlation measure which is normalized to the interval [0, 1].
The quality of possible conclusions from the given attribute Y to the target
attribute X can differ from the quality of conclusions from given attribute X
to target attribute Y . This aspect is considered in the asymmetric correlation
function cor(X|Y ) and allows us to always extract the maximum amount of
useful information for each target attribute X.

Context contextX . For both, the attribute distance dX (Section 3.2) in
ConDist as well as for the weighting scheme wX (Section 3.3), the notion of a set
of correlated context attributes contextX is used. This set is defined using the
previously defined correlation function cor(X|Y ) and a user-defined threshold θ.
That is, context attributes Y are included in contextX only if their correlation
with target attribute X is equal to or exceeds the threshold θ:

contextX = {Y | cor(X|Y ) ≥ θ} (7)

Impact impactX(Y ). Again, for both, the attribute distance dX (Section
3.2) as well as for the weighting scheme wX (Section 3.3), a so called impact
factor impactX(Y ) is used. This factor accounts for the fact that the amount
of information about the target attribute X in a context attribute Y decreases
with both increasing and decreasing correlation cor(X|Y ).

A high correlation value means that a value of a context attribute Y ∈
contextX implies the value of a target attribute X with a high probability.
For example, when we know that someone is heavy, it is more likely that this
person is tall than small (see Table 1). Thus, in the extreme case of perfectly
correlated attributes, the conditional probability distributions P (Y |X = AX)
and P (Y |X = BX), for AX �= BX do not overlap. This means that using the
Euclidean distance to calculate the similarity of those two CPDs (as in For-
mula (2)) limits the distance information gained from the context attribute
to values of 0 (for AX = BX) and 1 (for AX �= BX) after normalization in
Formula (3).

A low correlation value means that a value of a context attribute Y ∈
contextX implies little to no preference for a particular value of a target
attribute X. This means that the similarity between the conditional probability
distributions P (Y |X = AX) and P (Y |X = BX) may be random, thus, possibly
conveying incorrect distance information.

Consequently, non-correlated attributes are excluded to avoid introducing
incorrect information. In contrast, perfectly correlated attributes are still used,
because they contribute at least no incorrect information. However, since they
deliver exclusively high distances for distinct values, their impacts should be
reduced. Otherwise, the distances calculated by the other context attributes
would be blurred.

Therefore, we choose a weighting function that (I) increases fast at the onset
of correlation between attributes, (II) increases more slowly with existing, but
partial correlation, and (III) decreases at nearly perfect correlation. In particular,
we propose the impact function as depicted in Figure 2 and defined as:
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impactX(Y ) = cor(X|Y )
(
1 − 0.5 · cor(X|Y )

)2

. (8)

In general, this impact function can be replaced by other functions respecting
the three properties introduced above.

Fig. 2. Graph of the impact function impactX(Y ) as defined in (8).

3.5 Heterogeneous Data Sets

Many real-world data sets contain both continuous and categorical attributes.
To apply ConDist to such data sets, two situations have to be distinguished:
either the target attribute is continuous or the context attribute is continuous.

If the target attribute is continuous, no context attributes are necessary.
The Minkowski distance can be used, but should be normalized to the inter-
val [0, 1]. Since meaningful distances can be calculated for continuous attributes,
the attribute weight wX (see Section 3.3) should be maximized. If the context
attribute is continuous, the continuous value range should be discretized. We pro-
pose to use the discretization algorithm TUBE [11], because it does not require
any parameters. Other discretization algorithms can be used as well.

4 Experiments

This section presents an experimental evaluation of ConDist in the context of
classification and clustering. We compared ConDist with DILCA [6], JiaChe-
ung [7], Quang [8] and several distance measures presented in [4], namely Eskin,
Gambaryan, Occurrence Frequency (OF) and Overlap. For DILCA, we used the
non-parametric approach DILCARR as described in [6] and for JiaCheung we
set the threshold parameter β to 0.1 as recommended by the authors [7].
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Table 2. Characteristics of the data sets. The column Correlation contains the average
correlation between each pair of attributes in the data set, calculated by the function
cor(X|Y ), see Equation (6). The value ranges from 0 if no correlation exists to 1 if all
attributes are perfectly correlated. The data sets are separated in three subsets from
highly correlated to uncorrelated based on their average correlation.

Data Sets Instances Attributes Classes Correlation

Teaching Assistant Evaluation 151 5 3 0.336
Soybean Large 307 35 19 0.263
Breast Cancer Winconsin 699 10 2 0.216
Mushroom-Extended 8416 22 2 0.162
Mushroom 8124 22 2 0.161
Dermatology 366 34 6 0.098
Lymphography 148 18 4 0.070
Soybean Small 47 35 19 0.070
Breast Cancer 286 9 2 0.054

Audiology-Standard 226 69 24 0.044
Hayes-Roth 160 4 3 0.045
Post-Operative Patient 90 8 3 0.031
TicTacToe 958 9 2 0.012

Monks 432 6 2 0.000
Balance-Scale 625 4 3 0.000
Car 1728 6 4 0.000
Nursey 12960 8 5 0.000

4.1 Evaluation Methodology

Classification. A k-Nearest-Neighbour classifier is used to compare ConDist
with existing categorical distance measures in the context of classification. For
simplification, we fix k = 7 in all tests. We evaluate by 10-fold-cross validation
and use the classification accuracy as evaluation measure. To reduce confounding
effects of the generated subsets, the 10-fold cross-validation is repeated 100 times
with different subsets for each data set. We finally compare the averages of the
classification accuracies over all executions.

Clustering. The hierarchical WARD algorithm [14] is used to evaluate the per-
formance of ConDist in the context of clustering. ConDist and its competitors
are used to calculate the initial distance matrix as input for WARD. For sim-
plification, the clustering process is terminated when the number of clusters is
equal to the number of classes in the data sets. Performance is measured by Nor-
malized Mutual Information (NMI) [12] which ranges from 0 for poor clustering
to 1 for perfect clustering with respect to the predefined classes.

Data Sets. For the evaluation of ConDist the multivariate categorical data sets
for classification from the UCI machine learning repository [10] are chosen. We
exclude data sets with less than 25 objects (e.g., Balloons) or mainly binary
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Table 3. Classification accuracies for various thresholds θ in ConDist. Each column
contains the results in percent for particular thresholds θ.

Threshold θ
Data Set 0.00 0.01 0.02 0.03 0.05 0.10 0.20 0.50 1.00

Soybean Large 91.74 91.74 91.79 91.80 91.82 89.75 89.36 89.63 91.30
Lymphography 83.36 83.36 83.30 83.24 83.01 81.99 82.01 81.24 81.26
Hayes-Roth 68.11 68.36 68.51 68.60 69.21 64.47 64.47 64.47 64.47
TicTacToe 99.99 99.99 99.99 99.98 94.74 94.74 94.74 94.74 94.74
Balance-Scale 77.35 78.66 78.66 78.66 78.66 78.66 78.66 78.66 78.66
Car 88.98 90.56 90.56 90.56 90.56 90.56 90.56 90.56 90.56

Average 84.92 85.45 85.47 85.47 84.67 83.36 83.30 83.22 83.50

attributes (e.g., Chess). Furthermore, we include some multivariate mixed data
sets for classification from the UCI machine learning repository which mainly
consist of categorical attributes and some integer attributes with a small set of
distinct values (e.g. an integer attribute that contains the number of students
in a course): Teaching Assistant Evaluation, Breast Cancer Winconsin, Derma-
tology and Post-Operative Patient. Since not all competitors have an explicit
way to process integer attributes, we treated all integer attributes as categor-
ical. The final set of data sets is given in Table 2. The data sets are divided
in three subgroups: highly-correlated (Correlation ≥ 0.05), weakly-correlated
(Correlation > 0) and uncorrelated (Correlation = 0).

4.2 Experiment 1 – Context Attribute Selection

Experiment 1 analyzes the effects of varying threshold θ (see Section 3.4) in
ConDist ’s context attribute selection. The threshold θ defines the minimum value
of the function cor(X|Y ) that a candidate attribute Y has to reach in order to be
selected as context attribute for the target attribute X. The higher the threshold
θ, the fewer context attributes are used. In the extreme case of θ = 0, all context
attributes are used for distance calculation. In the other extreme case θ = 1, only
the target attribute itself is used. For this experiment, a representative subset of
two highly-correlated (Soybean Large and Lymphography), two weakly-correlated
(Hayes-Roth and TicTacToe) and two uncorrelated (Balance-Scale and Car)
data sets are used. The results can be seen in Table 3.

The average classification accuracy (I) increases with low thresholds θ, (II)
reaches a peak at θ = 0.02 and θ = 0.03, (III) decreases slowly with medium
high thresholds, (IV) reaches the minimum at θ = 0.5 and (V) slowly increases
with high thresholds again. For nearly all data sets, the classification accuracy
stabilizes with increasing thresholds. The lower the attribute correlation within
the data set, the faster this effect is reached. For uncorrelated data sets like Car
and Balance-Scale, it can already be observed with thresholds greater than or
equal to θ = 0.01. Due to the peak at θ = 0.02, this value is used for the further
experiments in this paper.
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Table 4. Comparison of categorical distance measures in the context of classification.
Each column contains the classification accuracies in percent for a particular distance
measure. The data sets are separated in three subsets from highly correlated to uncor-
related based on their average correlation.

Data Set Con
Dist

DIL
CA

Eski
n

Jia
Che

un
g

Gam
ba

rya
n

OF Over
lap

Qua
ng

Teaching Assistant. E. 49.85 50.68 48.79 49.54 49.44 39.16 45.84 44.48
Soybean Large 91.79 91.48 89.83 89.45 87.18 89.61 91.30 92.01
Breast Cancer W. 96.13 95.55 95.67 95.08 92.84 72.47 95.25 96.28
Dermatology 96.76 97.97 94.91 97.39 91.69 61.12 95.90 96.64
Lymphography 83.30 82.09 79.17 83.95 80.72 72.77 81.26 81.53
Breast Cancer 73.85 72.94 73.18 74.30 74.55 68.32 74.06 70.45

Audiology Standard 66.44 64.80 63.24 60.95 66.16 51.87 61.27 55.56
Hayes-Roth 68.50 67.59 46.71 68.27 60.84 58.71 61.74 71.19
Post-Operative Patient 69.62 68.22 68.36 67.28 69.69 69.44 68.59 68.69
TicTacToe 99.99 90.65 94.74 99.93 98.25 76.80 94.74 99.65

Car 90.56 90.25 90.03 90.01 90.25 87.83 90.56 88.25
Nursey 94.94 92.61 93.29 93.32 93.24 94.65 94.94 94.72
Monks 94.50 90.76 87.29 87.34 86.61 98.67 94.50 96.66
Balance-Scale 78.66 78.43 78.66 78.65 77.13 78.54 78.66 77.51

Average 82.49 81.00 78.85 81.10 79.90 72.85 80.62 80.97

4.3 Experiment 2 – Comparison in the Context of Classification

Experiment 2 compares ConDist with several categorical distance measures in
the context of classification. All data sets from Table 2 are used. The results
are given in Table 4, except for the data sets Mushroom-Extended, Mushroom
and Soybean Small. These data sets are omitted in the table since all distance
measures reach 100 percent classification accuracy. Consequently, these data sets
would only blur the differences between the categorical distance measures.

ConDist achieves the highest average classification accuracy of all distance
measures. In the case of highly- and weakly-correlated data sets, context based
categorical distance measures (ConDist, DILCA, JiaCheung and Quang) achieve
mostly better results than other distance measures. In the case of uncorre-
lated data, previous context based categorical distance measures are inferior
to ConDist and non-context based categorical distance measures.

Statistical Significance Test. In this test, we want to evaluate if the differ-
ences in Table 4 are statistically significant. Dems̆ar [5] deals with the statistical
comparison of classifiers over multiple data sets. They recommend the Wilcoxon
Signed-Ranks Test for the comparison of two classifiers and the Friedman-Test
for the comparison of multiple classifiers. Therefore, we use the Friedman-Test to
compare all distance measures and the Wilcoxon Signed-Ranks Test for post-hoc
tests. The Friedman-Test is significant for p < 0.001; thus we can reject the null
hypothesis that all distance measures are equivalent. Consequently, we applied
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Table 5. Results of the Wilcoxon Signed-Ranks Test comparing the classification
accuracies of ConDist with each other distance measure. The first row contains the
calculated p-value, the second row contains the result of the Wilcoxon Signed-Ranks
Test: yes, if ConDist performs statistically different, no otherwise.

DILCA Eskin JiaCheung Gambaryan OF Overlap Quang

p-value 0.016 0.002 0.045 0.002 0.002 0.008 0.096
significant yes yes yes yes yes yes no

the Wilcoxon Signed-Ranks Test with α = 0.05 on the classification accuracies
of Table 4. Table 5 shows that there is a significant difference between ConDist
and the distance measures Eskin, JiaCheung, Gambaryan, OF and Overlap.
However, the test fails for ConDist and Quang.

4.4 Experiment 3 – Comparison in the Context of Clustering

Experiment 3 compares ConDist with several categorical distance measures in
the context of clustering. All data sets from Table 4 are used. The results are
given in Table 6.

For some data sets (Teaching Assistang Evaluation, Lymphography, Breast
Cancer, Hayes-Roth, Post-Operative Patient, TicTacToe, Monks, Balance-Scale,
Nursey and Car) the clustering fails to reconstruct the predefined classes. For
the remaining data sets, no distance measure dominates. However, most distance
measures perform poorly on single data sets, whereas ConDist achieves more
stable results.

Statistical Significance Test. In analogy to Section 4.3, we first apply the
Friedman-Test on the results shown in Table 6. Here, the null hypothesis that
all distance measures are equivalent cannot be rejected. Nevertheless, we applied
the Wilcoxon Signed-Ranks Test (α = 0.05) between ConDist and the other
distance measures. Except for Eskin and Quang, the results of the Wilcoxon
Signed-Ranks Test show no statistically significant differences.

5 Discussion

5.1 Experiment 1 – Context Attribute Selection

Table 3 shows that many useful context attributes are discarded if threshold θ is
too high. This is especially the case for weakly correlated data sets, e.g. Hayes-
Roth and TicTacToe. For Hayes-Roth, the decrease of classification accuracy is
observed for θ > 0.05, and for TicTacToe the decrease of classification accuracy
is already observed for θ > 0.02. In contrast to this, if the threshold θ is too
low, independent context attributes are added which may contribute noise to
the distance calculation. This is especially the case for uncorrelated data sets,
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Table 6. Comparison of categorical distance measures in the context of clustering.
Each column contains the NMI of the clustering results found by the WARD algorithm
where the initial distance matrix is calculated with the particular distance measure.
NMI assigns low values to poor clusterings and high values to good clusterings with
respect to the predefined classes. The data sets are also separated in three subsets
based on their average correlation.

Data Set Con
Dist

DIL
CA

Eski
n

Jia
Che

un
g

Gam
ba

rya
n

OF Over
lap

Qua
ng

Teaching Assistant Eva. .078 .085 .085 .085 .085 .060 .044 .042
Soybean Large .803 .785 .758 .735 .772 .805 .793 .778
Breast Cancer Winconsin .785 .557 .749 .656 .601 .217 .621 .798
Mushroom Extended .597 .597 .317 .223 .597 .597 .597 .245
Mushroom .594 .594 .312 .594 .594 .312 .594 .241
Dermatology .855 .946 .832 .879 .863 .292 .847 .859
Lymphography .209 .303 .165 .207 .163 .243 .226 .320
Soybean Small .687 .690 .687 .701 .692 .690 .689 .692
Breast Cancer .063 .068 .031 .074 .001 .002 .100 .001

Audiology-Standard .661 .612 .623 .679 .620 .439 .568 .582
Hayes-Roth .017 .027 .004 .012 .007 .166 .006 .029
Post-Operative Patient .043 .017 .018 .025 .017 .032 .019 .033
TicTacToe .087 .003 .003 .082 .085 .001 .033 .039

Monks .001 .000 .000 .000 .000 .081 .001 .003
Balance-Scale .083 .036 .064 .067 .064 .064 .083 .036
Car .062 .036 .150 .150 .150 .062 .062 .036
Nursey .048 .006 .037 .037 .037 .098 .048 .006

Average .334 .315 .284 .306 .315 .245 .314 .279

e.g. for θ = 0 in Balance-Scale and Car. However, ConDist’s impact function
impactX(Y ) accounts for this effect in highly-correlated data sets.

Consequently, the concrete value of the threshold θ is not too crucial as long
as two conditions are fulfilled: (I) θ must be large enough to ensure that context
attributes are purged whose correlations are caused by too small data sets and
(II) θ must be small enough to ensure that context attributes with significant cor-
relations are retained. Therefore, we recommend θ = 0.02 for ConDist, because
the experiments show that this threshold achieves the best overall results.

5.2 Experiment 2 – Comparison in the Context of Classification

For highly correlated data sets, distance measures using context attributes out-
perform other distance measures. However, for those data sets no best distance
measures can be identified among the context based distance measures.

For uncorrelated data sets, previous context-based distance measures
(DILCA, Quang and JiaCheung) achieved inferior results in comparison to
ConDist and non-context based distance measures. This is because, e.g., DILCA
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and Quang use only context attributes for the distance calculation which results
in random distances if all context attributes are uncorrelated.

In contrast, ConDist achieved acceptable results because not only correlated
context attributes, but also the target attributes are considered. This effect is
also illustrated by the comparison between ConDist and Overlap. ConDist is
equal to Overlap if no correlated context attributes can be identified, see uncor-
related data sets (Monks, Balance-Scale, Nursey and Car) in Table 4. However,
for weakly- and highly-correlated data sets, ConDist’s consideration of context
attributes turns into an advantage, leading to better results than Overlap. The
improvement of ConDist can be statistically confirmed by the Wilcoxon Signed-
Ranks Test (see Table 5).

5.3 Experiment 3 – Comparison in the Context of Clustering

Table 6 shows that the majority of the different distance measures reach, by and
large, similar outcomes for individual data sets. This is because the clustering
algorithm and its ability to reconstruct the given classes have much higher impact
on the results than the distance measure used to calculate the initial distance
matrix. However, it can be seen that the performance of single distance measures
strongly decreases for individual data sets. For example, JiaCheung which often
achieves good results, performs very poorly in the Mushroom data set. Similar
observations can be made for OF, Eskin, Quang and DILCA, mainly in the data
sets Breast Cancer Winconsin, Mushroom, Mushroom Extended, Dermatology
and Audiology-Standard. In contrast, ConDist is almost always among the best
results and shows the most stable results for the different data sets.

The Friedman-Test fails for Experiment 3 and the Wilcoxon Signed-Ranks
Test shows also no statistically significant differences in the performance of
ConDist and the compared distance measures, except for Eskin and Quang.
However, the results of Experiment 3 lead to the assumption that ConDist may
be a more robust distance measure than its competitors.

6 Summary

Categorical distance calculation is a key requirement for many data mining tasks.
In this paper, we proposed ConDist, an unsupervised categorical distance mea-
sure based on the correlation between the target attribute and context attributes.
With this approach, we aim to compensate for the lack of inherent orders within
categorical attributes by extracting statistical relationships from the data set.

Our experiments show that ConDist is a generally usable categorical distance
measure. In the case of correlated data sets, ConDist is comparable to existing
context based categorical distance measures and superior to non-context based
categorical distance measures. In the case of weakly and uncorrelated data sets,
ConDist is comparable to non-context based categorical distance measures and
superior to context based categorical distance measures. The overall improve-
ment of ConDist can be statistically confirmed in the context of classification. In
the context of clustering, this improvement could not be statistically confirmed.
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In the future, we want to extend the proposed distance measure so that it
can automatically infer the parameter θ from the data sets. Additionally, we
want to transform categorical attributes to continuous attributes with aid of the
proposed distance measure.
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