
© IFIP International Federation for Information Processing 2015
L.M. Camarinha-Matos et al. (Eds.): DoCEIS 2015, IFIP AICT 450, pp. 157–164, 2015.
DOI: 10.1007/978-3-319-16766-4_17

EmbedCloud – Design and Implementation Method
of Distributed Embedded Systems

Kazimierz Krzywicki(), Marian Adamski, and Grzegorz Andrzejewski

Department of Electrical Engineering, Computer Science and Telecommunications,
University of Zielona Gora,

ul. Licealna 9, 65-417 Zielona Gora, Poland
K.Krzywicki@weit.uz.zgora.pl,

{M.Adamski,G.Andrzejewski}@iie.uz.zgora.pl

Abstract. This paper presents a novel design and implementation methodology of
the distributed embedded systems, called EmbedCloud. It defines structured
implementation model for each module in the system. EmbedCloud forms the
basis for the automatic code generation algorithm of the distributed embedded
systems which accelerates and simplifies synthesis process of such systems.
The EmbedCloud utilizes CloudBus protocol demonstrated in previous publica-
tions, which provides a process synchronization and control mechanism for a num-
ber of processing units distributed in a network. The CloudBus protocol allows to
significant savings in the amount of transmitted data between end modules in the
distributed embedded system, especially when compared with the other protocols
used in the industry. To verify and evaluate the performance of the EmbedCloud, a
concurrent process was described using Petri nets. Hardware tests and synthesis
verification of the distributed embedded system was performed on the testing plat-
form built with AVR, ATmega series microcontrollers. The tests confirmed
the correctness of the developed source code and EmbedCloud method. Further-
more, resource requirements and reaction time analysis were performed.

Keywords: Distributed embedded systems · Embedded system design · Hardware
synthesis · Process control · EmbedCloud method · CloudBus protocol

1 Introduction

The dynamic development of the automatic industrial process control has caused an
increased complexity and size of embedded systems. Typically, they are composed of
execution units that are connected together in a logical way and form a distributed
embedded system. The design and implementation of such systems is often compli-
cated and requires long time for a large number of end modules operating in a system
[1, 4, 7]. Moreover, the operating costs of systems based on PLCs (Programmable
Logic Controllers) networks is high.

Most of the currently available models and tools for automatic code generation pro-
vide synthesis to a single hardware execution unit without any internally implemented
process synchronization and communication with external hardware units [2, 3, 5, 6].

158 K. Krzywicki et al.

For a large number of end modules it is necessary to design them separately, e.g. using
GALS (Globally Asynchronous Locally Synchronous) architecture [7, 8, 10].
These problems have led us to develop a new method which significantly reduces the
design and implementation time of distributed embedded systems.

This paper proposes a novel design and implementation method of the distributed
embedded systems, called EmbedCloud. It allows a structured implementation for
each module in a distributed embedded system. Furthermore, the EmbedCloud is the
base for the automatic code generation algorithm which accelerates and simplifies
synthesis process of such systems. The end module communication and process syn-
chronization is achieved through the CloudBus protocol presented in [9].

In Section II relationship to Cloud-based Engineering System is described, Sec-
tion III describes the CloudBus protocol. Section IV presents synthesis model
and EmbedCloud method. Section V discuss verification and research results
in the term of resource usage and reaction time. Section VI, concludes the paper.

2 Contribution to Cloud-Based Engineering Systems

Large and complex distributed embedded systems form a cloud-based systems, due to
large number of modules that perform various tasks and exchange data. How-
ever, such system is presented to an end-user as a single, complex, global system.

The proposed EmbedCloud accelerates and simplifies synthesis process
of such systems and through the use of the CloudBus protocol provides a process
synchronization and control mechanism for a number of processing units distributed
in a network. The CloudBus protocol allows fast reconfiguration of the implemented
system and allows to form the distributed embedded system with devices based
on a different architectures.

The distributed embedded systems are able to overcome the limitations of single-
unit environments and scatter the system into a various number of processing units.

3 CloudBus Protocol

The CloudBus protocol is one of the methods of the data exchange and concurrent
process synchronization in the distributed embedded systems. It realizes distributed
control method with a various number of end modules, where all of them are equal
to each other and each of them implements a functional part of designed concurrent
process. The CloudBus communication model allows the significant savings
of the transmitted data between end modules [9]. Schematic diagram of the CloudBus
protocol network topology is shown in Fig. 1.

The data transfer between end modules, necessary for process synchronization
is executed only when one of the end modules requires information (input or variable
state) from outside their own native resource variables. The end module broadcasts
question to the system (other end modules) about the state of the specified variable,
e.g. if p1 = 0?.

The end module that natively controls this variable (e.g. p1) sends the answer to the
system (other end modules) when it gets previously quested state.

EmbedCloud – Design and Implementation Method of Distributed Embedded Systems 159

Basic data frame of the CloudBus protocol is shown in Fig. 2.

Fig. 1. Schematic diagram of the CloudBus protocol network topology

CNT FUNC VARS DATA CRC

Fig. 2. Data frame structure of the CloudBus protocol

The fields of the protocol corresponds to: CNT – entire frame length; FUNC –
command code (e.g. question/answer); VARS and DATA represents binary arrays
of the variables and their states (values); CRC – the CRC error checksum.

In order to ensure safety and proper operation of the system, each module has a de-
fined maximum time for receiving a response with quested variable. Alternatively,
the CloudBus protocol allows to check presence of other end modules in the system.

The comparison of the CloudBus protocol with other protocols used in the industry
(e.g. Modbus RTU, Profibus DP or DeviceNet protocol) showed significant savings
in the amount of transmitted data between end modules in the distributed embedded
system [9].

4 EmbedCloud – Design and Implementation Method

4.1 Hardware-Software Synthesis of Embedded Systems

The general requirements [1, 7] of the distributed embedded system are listed below:
• concurrency – concurrent process execution,
• openness, flexibility, scalability – fast reconfiguration and development,
• resource sharing – ability to share data between end modules,
• platform independent model architecture – end modules may have different

hardware architecture.
Fig. 3 presents a comparison of two synthesis models of the embedded systems:

(a) where one module performs the entire concurrent process, and (b) where
the process has been decomposed into individual sub-processes and is implemented
by three independent end modules.

160 K. Krzywicki et al.

Fig. 3. Single module (a) embedded system vs. distributed (b) embedded system synthesis
model

Fig. 4. General diagram of the concurrent process synthesis of the distributed embedded system

A general diagram of the concurrent process synthesis of distributed embedded
system is shown in Fig. 4. The first step is to Design (describe) concurrent process
using one of the models e.g. Petri nets. The next step is Decomposition into individual
sub-processes. The decomposition can be realized by different criteria imposed
by the designer such as: system reaction time, hardware resource usage or designer’s
manual decomposition. After structural and behavioural Analysis of the decomposed
process, IN/OUT assign is made – the designer assigns inputs/outputs for each end
module. Finally, each module in the distributed embedded system is implemented.

4.2 EmbedCloud Structure

The proposed new design and implementation method (called EmbedCloud) of the
distributed embedded system, defines an implementation model of ordered structure

EmbedCloud – Design and Implementation Method of Distributed Embedded Systems 161

for each end module, Fig. 5. Implementation structure is the same for all end modules
of the distributed embedded system.

Fig. 5. General diagram of the EmbedCloud implementation method

The main step in the EmbedCloud implementation flow is DATA STRUCT.
It is responsible for storing the information about the state of the native I/O and the
state of shared variables in the system. In the Read input block native I/O states are
read and stored in DATA STRUCT. Afterwards FSM (Finite State Machine) block
using the data from DATA STRUCT, executes a selected control process or some of its
parts. In the next step (Set output) the native I/O states are set. After performing all
process operations, the information is exchanged (Communication) between end
modules using the CloudBus protocol. The CloudBus and EmbedCloud method
are closely related, because the CloudBus protocol is responsible for obtaining
and making available the necessary data from other end modules. Moreover,
it provides a process synchronization mechanism. In the Communication step, the end
module broadcasts to the system (other modules) messages about the state of specific
variables that were asked. The received responses are stored in the DATA STRUCT
and algorithm returns to the Read input and starts again.

Such structure of the EmbedCloud allows to implement end modules, which differ
only in the following elements: the native I/O and implemented control model (FSM
block). This allows to use different architecture of each end module, such as micro-
controller, FPGA or DSP devices. Furthermore, it forms the basis for the automatic
code generation algorithm.

4.3 The Conception of the Automatic Code Generation Algorithm

The EmbedCloud structure allows to propose a simplified version of the algorithm
for the automatic code generation for the end modules, Fig. 6.

After designing the concurrent model (Model design), the algorithm starts perform-
ing the decomposition. The Decomposition output are files in PNML or HPN format
that contains divided sub-processes (represented by structured text) for each end
module in the system. In the loop, files are parsed and processed for the structural

162 K. Krzywicki et al.

Fig. 6. Proposed algorithm for automatic code generation

and behavioural Analysis. After processing the code is generated using the Embed-
Cloud method. The process stops, when all files have been processed. The output of
the algorithm is source code for each end module.

5 Experimental Results

To verify and evaluate the performance of the EmbedCloud method a concurrent
process was designed with interpreted 1-bounded Petri net model, Fig. 3 (a).
Fig. 3 (b) presents Petri net model after manual decomposition to three individual
sub-processes for each end module. For the Module 1 and Module 3 it was necessary
to add resting places (RP1) to preserve the proper functioning and synchronization
of the end modules. The Module 2 executes the P1 place with y0 output.
The transitions and allowing arc are described by logic equations e.g. x3*P7M2,
which means: input x3 AND place P7 from Module 2.

Hardware tests and synthesis verification of the distributed embedded system was
performed on the testing platform built with AVR family, ATmega8 microcontrollers.

Table 1 presents a comparison of the synthesis results in the terms of memory us-
age and reaction time. The results were obtained with EmbedCloud method
to generate a source code for ATmega8 microcontrollers. All of the end modules were
transmitting data with the RFM12 transceiver (manufactured by Hope Microelectron-
ics) using the CloudBus protocol. The results demonstrated following memory usage
for the ATmega8 end module: 25% of total (8k bytes) program memory, 6% of total
(1k byte) data memory. The maximum reaction time (CPU clock set to 16MHz) is
0,07ms for CPU processing and less then 2ms when external communication (at
115,2kbit/s) is also performed. Concluding, the hardware resource usage and reaction
time is negligibly small.

It should be noted, that memory usage and reaction time depends on the concurrent
model and its decomposition. Incorrectly performed decomposition may negatively
affect the obtained results, hence it is necessary to make appropriate optimization
and decomposition process.

EmbedCloud – Design and Implementation Method of Distributed Embedded Systems 163

Fig. 7. Petri net model before (a) and after (b) decomposition

Table 1. Memory usage and reaction time for implemented distributed embedded system

End Mod-
ule

Program
Memory
Usage
[Bytes]

Data
Memory
Usage
[Bytes]

Max.
CloudBus
Data
Transmit
[Bytes]

Max.
CloudBus
Reaction
Time
[ms]

Max. CPU
Reaction
Time
[ms]

Max. Total
Reaction
Time
[ms]

Module 1 1928 60 25 1,74 0,06 1,80

Module 2 2134 60 25 1,74 0,07 1,81

Module 3 1888 60 20 1,39 0,06 1,45

6 Conclusion

The paper presented the new EmbedCloud design and implementation methodology
of the distributed embedded systems and formed the basis for the automatic code
generation algorithm to accelerate and simplify the synthesis process of such systems.

Experimental results verified the proposed methodology and demonstrated
a negligible memory usage (less than 2k bytes of program memory and 60 bytes
of data memory usage) and minimal reaction time to the data requests (reaction time
for CPU processing was 0,07ms; after including the data transmission to other mod-
ules – the result was less than 2ms for entire sub-process). However, it is necessary to
implement and investigate various number of real distributed embedded systems
with different wired and wireless network connections.

Current and further research focuses on developing the automatic code generation
algorithm and graphic software tool where the embedded system designer, draws
concurrent process model, assigns I/O and gets generated source code as output.
Depending on the requirements, the software tool gives code in ANSI C language

164 K. Krzywicki et al.

or one of the HDL (Hardware Description Language), such as VHDL or Verilog.
Using the automatic code generator and design tool, allows the significant time sav-
ings in the design and implementation of the distributed embedded systems.

References

1. Marwedel, P.: Embedded system design. Springer, New York (2011)
2. Nicolescu, G., Mosterman, P.J.: Model-Based Design for Embedded Systems. CRC Press,

Boca Raton (2009)
3. Moreira, T.G., Wehrmeister, M.A., Pereira, C.E., Petin, J., Levrat, E.: Automatic code

generation for embedded systems: From UML specifications to VHDL code. In: Industrial
Informatics (INDIN), pp. 1085–1090. IEEE (2010)

4. Hsieh, W.H., Kao, S.P., Tan, K.H., Chen, J.L.: Energy-saving cloud computing platform
based on micro-embedded system. In: Advanced Communication Technology (ICACT),
pp. 739–743. IEEE (2014)

5. Raghav, G., Gopalswamy, S., Radhakrishnan, K., Hugues, J., Delange, J.: Model based
code generation for distributed embedded systems (2010)

6. Babic, J., Marijan, S., Petrovic, I.: Introducing Model-Based Techniques into Development
of Real-Time Embedded Applications. Automatika 52(4), 329–338 (2011)

7. Adamski, M., Karatkevich, A., Wegrzyn, M.: Design of embedded control systems,
vol. 267. Springer, New York (2005)

8. Bukowiec, A., Tkacz, J., Gratkowski, T., Gidlewicz, T.: Implementation of Algorithm
of Petri Nets Distributed Synthesis into FPGA. International Journal of Electronics and
Telecommunications 59(4), 317–324 (2013)

9. Krzywicki, K., Andrzejewski, G.: Data exchange methods in distributed embedded sys-
tems. In: New Trends in Digital Systems Design, Fortschritt - Berichte VDI, Dusseldorf,
vol. 836, pp. 126–141 (2014)

10. Bukowiec, A., Mroz, P.: An FPGA synthesis of the distributed control systems designed
with Petri nets. In: Networked Embedded Systems for Every Application (NESEA). IEEE,
London (2012)

	EmbedCloud – Design and Implementation Method of Distributed Embedded Systems
	1 Introduction
	2 Contribution to Cloud-Based Engineering Systems
	3 CloudBus Protocol
	4 EmbedCloud – Design and Implementation Method
	4.1 Hardware-Software Synthesis of Embedded Systems
	4.2 EmbedCloud Structure
	4.3 The Conception of the Automatic Code Generation Algorithm

	5 Experimental Results
	6 Conclusion
	References

