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Abstract. The novel proposal of this work is the application of the nonparame-
tric mean shift technique, for image segmentation, to low-resolution (LR) 
speckle-corrupted imagery, acquired with conventional low-cost fractional syn-
thetic aperture radar (Fr-SAR) systems; with aims of analyzing the resultant 
textures, related to the remotely sensed (RS) scenes, via neural network (NN) 
classification. The LR speckle-corrupted recovery of the spatial reflectivity 
maps, provided by Fr-SAR systems, is due to the fractional synthesis mode and 
the different model-level and system-level operational scenario uncertainties, 
peculiar to such systems operating in harsh remote sensing scenarios. The mean 
shift segmentation method delineates arbitrarily shaped regions in the treated 
LR image by locating the modes in the density distribution space, and by group-
ing all pixels associated with the same mode. Then, the textures extracted from 
the segmented image are classified through NN computing, to posteriorly be 
used for analysis and interpretation. 

Keywords: Fractional synthetic aperture radar, remote sensing, mean shift 
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1 Introduction 

Conventional low-cost fractional synthetic aperture radar (Fr-SAR) systems inherent-
ly sacrifice spatial resolution due to their minor aperture synthesis mode; furthermore, 
since such Fr-SAR systems typically operate in harsh remote sensing (RS) environ-
ments, they suffer from different operational scenario uncertainties at model and sys-
tem levels [1], [2]. These aspects cause the low-resolution (LR) and speckle corrup-
tion on the provided Fr-SAR imagery. Most Fr-SAR systems use the matched spatial 
filtering (MSF) methodology for image formation [1], [2]; the resultant LR speckle-
corrupted MSF image represents an inaccurate estimate of the spatial spectrum pattern 
(SSP) of the backscattered field, which denotes a spatial map of the RS scene power 
reflectivity. 

In this study, the LR speckle-corrupted Fr-SAR image, formed employing the  
conventional MSF processing method, is segmented through the proper mean shift 
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procedure, for further texture analysis via neural network (NN) classification. Mean 
shift is a nonparametric tool for finding the modes (peaks) in a set of data samples, 
manifesting an underlying probability density function (pdf) [3]-[5]. The mean shift 
based image segmentation procedure consists on associating each pixel in the image 
with a mode located in its neighborhood, after nearby modes are pruned [3], [5]. 

The main perceptual characteristics in SAR imagery are tone, texture and edges 
[1]. Due to speckle and blurring, Fr-SAR image features with similar backscattering 
coefficients may express similar tone and texture, causing confusion. The mean shift 
segmentation process alleviates this confusion by delineating arbitrarily shaped re-
gions associated to the same mode, regardless the additive and multiplicative speckle 
noise presence. The main advantage of such technique lies in achieving image seg-
mentation without any assumptions concerning the underlying statistics involved in 
the images [3]. Once the Fr-SAR image is segmented, feature extraction from each 
texture in the segmented image is performed, in order to train a feed-forward back-
propagation sigmoid NN, responsible of classifying the Fr-SAR image textures, asso-
ciated to the remotely sensed scenes.  

2 Imaging Radar Problem Phenomenology 

The imaging radar problem model treated in this section is structurally similar to 
the previous studies [6]. The model of the observation field u  is defined through 
the vector-form equation of observation given by [6] 

 ( ) ,= Δu = Sv + n S + S v + n   (1) 

where the vectors u , n  and v  are treated as Gaussian zero-mean vectors composed 

of the coefficients 1{ }M
m mu = , 1{ } =

M
m mn  and 1{ }L

l lv =  of the finite-dimensional approximations 

of the observation u , noise n  and complex random reflectivity v  fields, respectively; 

and S  is the M L× matrix-form approximation of the integral perturbed signal for-

mation operator (SFO). Vectors u , n  and v are characterized by the correlation ma-

trices 0 ,N+= +u vR SR S I   0N=nR I  and ( ) diag( ),= =vR D b b  correspondingly, 

where superscript + stands for Hermitian conjugate and N0 is the white observation 

noise power. Vector { }ˆ ˆ=b B  is a lexicographically ordered vector-form approxi-

mation of the SSP map ( ){ },
x y

b ll=B  over the Lx×Ly pixel-framed 2-D scene {lx = 

1,…, Lx; ly = 1,…, Ly; l = 1,…, L= LxLy} [6].  
The radar imaging problem discrete representation is expressed as [6] 

 ˆ est{ | }.= = +b b u Sv n   (2) 

This is interpreted as the SSP estimation from the available data recordings u  de-
graded by composite additive multiplicative noise with perturbation statistics 

+
vSR S   unknown to the observer. The nonlinear inverse problem at hand is ill 

posed, due to the violation of the existence condition. Besides, the unavoidable pres-
ence of noise in the data and problem model imprecisions, add statistical uncertainty 
to the SSP estimation problem. 
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3 Matched Spatial Filtering SSP Estimate 

The matched spatial filtering (MSF) technique is the most commonly used approach 
to estimate the SSP from the available recordings of data .u  The MSF technique is 
roughly described as the application of the solution operator, the scaled conjugate 
transpose (adjoint) SFO matrix +S , to the measured data ( )ju , recorded from several 

independent observations { }1,...,j J= ; the squared detection to the MSF filter out-

puts; and the averaging of all approximations acquired from each independent data 
observation [6]: 

 
MSF diag

ˆ { } ,+=b S YS   (3) 

where the data matrix ( ) ( )1

1 J

j jjJ
+

=
= Y u u  is formed by the averaging of the multiple 

independent observed data realizations ( ){ }; 1,..., .j j J=u  

Synthetic aperture radar (SAR) systems hardware quality has a direct impact on the 
resolution of the imagery acquired employing the MSF processing method [1], [2]. 
An example of an image acquired via a high-cost high-resolution wide focus SAR 
system, using the MSF image formation technique, is depicted by Fig. 1(a). In the 
other hand, Fig. 1(b) corresponds to the image obtained via a simulated low-cost LR 
Fr-SAR system, employing also the MSF image formation methodology.  

4 Mean Shift Segmentation 

This section firstly reviews the results described in [3], which are posteriorly applied 

to Fr-SAR imagery. Kernel density estimation is one of the most popular density es-

timation methods. Let 1{ }I

ii =a  be an arbitrary set of I data points in the d -dimensional 

space ,d the kernel density estimator for the sample point ,a  with kernel ( )K a and 

window radius (bandwidth value) ,h  is defined by [3]  

  ( )
1

1
.

I i
K d i

f K
hIh =

− =  
 

 a a
a   (4) 

For the case of radially symmetric kernels satisfying [3] 

 ( ) ( )2
,KK c k=a a  (5) 

it suffices to define the profile ( )k a  of the kernel, only for 0.a ≥  The normalization 

constant Kc  assures ( )K a  integrates to one. The next step is to find the modes of the 

underlying density ( ) ,f a located among the zeros of the gradient ( ) .f∇ =a 0
 

Function ( ) ( )'g a k a= −  is defined when the derivative of the kernel profile ( )k a  

exists. Taking the latter into consideration, the gradient of the kernel density estimator 

(4) is expressed by [3] 
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(a) 

 
(b) 

Fig. 1. (a) HR 512×512 pixel-framed test scene borrowed from the real-world high resolution 
SAR imagery [7]; (b) LR speckle-corrupted MSF image of the same scene formed with a simu-
lated Fr-SAR system; model system parameters: triangular range point spread function (PSF), 
the width (at ½ of the peak value) ly = 10 pixels; Gaussian bell azimuth PSF, the width (at ½ of 
the peak value) lx = 15 pixels; the worst case single-look scenario with fully developed speckle, 
(SNR = 0 dB). 
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From (6), the first term, on the right side of the equation, is proportional to the density 

estimate at a computed with kernel ( ) ( )2
;GG c g=a a  and the second term, the 

difference between the weighted mean, is the mean shift, which uses kernel G  for 

weights and a as the kernel (window) center. Expression (6) becomes [3] 

  ( )  ( ) ( )2

2
,K

GK G
G

c
f f

h c
∇ =a a m a   (7) 

yielding 

 ( )
 ( )
 ( )

21
,

2
K

G

G

f
h c

f

∇
=

a
m a

a
  (8) 

which reveals that the mean shift vector (8) computed with kernel G  at location a is 
proportional to the normalized density gradient estimate acquired with kernel .K  The 
mean shift vector points towards the maximum increase of density direction. 
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An image is represented as a two-dimensional lattice of p -dimensional vectors, 

1p = in the gray-level case of the considered LR speckle-corrupted Fr-SAR imagery. 

The lattice is represented in the spatial domain, whereas the gray-level information is 
represented in the range domain, assuming Euclidean metric for both domains. The 
kernel (5) is defined as the product of two radially symmetric kernels [3] 

 ( )
2 2

2
,

s r

p
s rs r

C
K k k

h hh h

   
   =

  
  

a a
a   (9) 

where sa and ra are the spatial part and range part of a feature vector a correspon-

dingly, ( )k a  is the profile, common to both domains, sh  and rh are the employed 

kernel bandwidths, which control the kernel size and determines the mode detection 

resolution [3], and C is the corresponding normalization constant. 
In order to describe the mean shift segmentation process applied to Fr-SAR im-

agery, consider 1{ }I

ii =x  to be the pixels of the SSP map matrix-form approximation B̂  

in the joint domain, 1{ }I

ii =z  are the mean shift technique points of convergence and 

1{ }I

iiH =  are a set of labels (scalars). Represent by 1{ }J

j j =y  the successive positions of 

kernel ,G where, from (6) [3], 

 
2 2

1 1 1
; 1,..., ;

I Ij i j i
j ii i

g g j J
h h+ = =

   − −
   = =
   
   

 
y x y x

y x  (10) 

is the weighted mean at jy  with 1y  as the kernel center initial location. For each 

{ }1,...,i I=  [3]-[5]: 

i. Initialize 1j =  and .j i=y x  

ii. Calculate 1j +y (10) until convergence, ( ) 1 .G J J J −= − ≈m y y y 0 Convergence 

occurs simultaneously in both domains. 

iii. Assign ( ),s r
i i J=z x y ; superscripts s  and r  stand for spatial and range domain 

respectively. 

iv. Once all 1{ }I

ii =z are reached, group together all of them closer than sh  and rh in 

the range and spatial domain correspondingly, in order to delineate the clusters 

1{ }P

pp =C  in the joint domain. 

v. For each { }1,...,i I=  assign { }| .i i pH p= ∈z C  

The application of the mean shift segmentation procedure to Fr-SAR imagery is 
exemplified by Fig. 2. The mean shift segmentation technique is applied to the image 
depicted by Fig. 1(b) using a uniform kernel, achieving convergence in a finite num-
ber of steps [3] with ( ) ( ), 20,32 .s rh h =  
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Fig. 2. Mean shift segmented Fr-SAR image with a 512×512 pixel frame 

5 Neural Network Classification 

The supervised NN model consists of a multi-layer perceptron (MLP) which uses a 
back-propagation learning methodology and a sigmoid activation function; it is sum-
marized as follows [8], [9]:  

i. Select an input vector ( )T

1,..., Jη η=η  and a desired output vector 

( )T

1ρ ,...,ρ I=d ; superscript T stands for transpose. 

ii. Initialize the synaptic weights between layers { }1,...,l L=  with small random 

values.  

iii. Compute the activation of each neuron. The activation ρl
i  of neuron i  in layer 

l  is expressed by 

     1

1

ρ ρ ,
J

l l l l
i j ij i

j

wϕ λ−

=

 
= + 

 
  (11) 

where summation is done over all J neurons in the ( )1l − layer, and ( )ϕ ⋅ is the 

sigmoid activation function. The weight for the connection from the j neuron in 

the ( )1l −  layer to the i  neuron in the l  layer is denoted by ;l
ijw  the bias of the 

i  neuron in layer l  is represented by l
iλ . 

iv. Find the error between the layer L  output vector ρ  and the target vector d via 

    ( )
2

1

1
.

2

I

i i
i

E
=

= − ρ d  (12) 

The calculated error is then propagated backward in order to obtain the change 

in the synaptic weights between layers { }1,..., ,l L= through ,l
ij l

ij

E
w

w
α ∂Δ = −

∂
 where 

α  is a training rate coefficient [8]. 
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 Urban  Land  Highland  Water 

Fig. 3. Feature vectors extraction from 512×512 pixel-framed mean shift segmented Fr-SAR 
imagery, used to train the neural network (NN) classifier. 

Table 1. Confusion matrix 

 Urban Land Highland Water Total 

Urban 49 0 0 0 49 
Land 1 48 0 0 49 
Highland 0 2 50 1 53 
Water 0 0 0 49 49 
Total 50 50 50 50 200 

 
v. Update the synaptic weights using 

    
[ 1] [ ]

;
m m

l l l
ij ij ijw w w

+
= + Δ  (13) 

where { }1,...,m M= are the iterations required for achieving the desired NN 

output. 
 

With aims of training the texture classifier, a set of 200 feature vectors are used. 
Each feature vector is formed from a lexicographically ordered 20 20× pixels squared 
window, taken from a set of 10  mean shift segmented Fr-SAR images. Each feature 
vector is associated with one of four textures (classes): urban, land, highland and wa-
ter. The feature vectors extraction process is exemplified by Fig. 3.  

Confusion matrix is presented in Table 1. The diagonal elements refer to the cor-
rectly identified textures; out of 200 feature vectors considered, correctly identified 
textures sum to an overall of 196, meaning a 98% of classification accuracy. 

6 Concluding Remarks 

The reported results show that notwithstanding the low resolution, blurring, speckle 
and additive noise presence in the considered Fr-SAR imagery, thanks to the applied 
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mean shift segmentation process and the appropriate feature vectors extraction, the 
classification accuracy obtained is satisfactory for distinguishing the provided Fr-SAR 
imagery texture samples between the four contemplated classes. 

The mean shift segmentation  procedure technique is convenient because of its 
simplicity and applicability. Nevertheless, due to the pixel by pixel processing, the 
computational cost of this methodology is high. On the other hand, the feature vectors 
extraction step might be suppressed if using unsupervised classification; however, 
unclassified areas may arise. 
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