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Abstract. Traditional sparse representation algorithms usually operate
in a single Euclidean space. This paper leverages a self-explanatory re-
formulation of sparse representation, i.e., linking the learned dictionary
atoms with the original feature spaces explicitly, to extend simultaneous
dictionary learning and sparse coding into reproducing kernel Hilbert
spaces (RKHS). The resulting single-view self-explanatory sparse rep-
resentation (SSSR) is applicable to an arbitrary kernel space and has
the nice property that the derivatives with respect to parameters of the
coding are independent of the chosen kernel. With SSSR, multiple-view
self-explanatory sparse representation (MSSR) is proposed to capture
and combine various salient regions and structures from different kernel
spaces. This is equivalent to learning a nonlinear structured dictionary,
whose complexity is reduced by learning a set of smaller dictionary blocks
via SSSR. SSSR and MSSR are then incorporated into a spatial pyramid
matching framework and developed for image classification. Extensive ex-
perimental results on four benchmark datasets, including UIUC-Sports,
Scene 15, Caltech-101, and Caltech-256, demonstrate the effectiveness of
our proposed algorithm.

Keywords: Reproducing Kernel Hilbert Spaces, Sparse Representation,
Multiple View, Image Classification.

1 Introduction

After decades of effort, the power of sparse representation has been gradually
revealed in visual computation areas, such as image annotation [21,22], image
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Fig. 1. Flowchart of the proposed SSSR & MSSR dictionary learning and coding pro-
cess for image classification

inpainting [27,36], and have achieved impressive performance. Different from
traditional decomposition frameworks like PCA, non-negative matrix factor-
ization [28,29,37,39], and low-rank factorization [30,31,35], sparse representa-
tion [16] allows coding under over-complete bases (i.e., the number of bases is
greater than the input data dimension), and thus generates sparse codes capable
of representing the data more adaptively.

One example task is image classification [18,19,40], which aims to associate
images with semantic labels automatically. The most common framework is the
discriminative model [12,38,40]. There are five main steps: feature extraction,
dictionary learning, image coding, image pooling, and SVM-based classification.
Dictionary (also called vocabulary) learning is the key step here. One standard
version of vocabulary learning is K-means clustering on image patches combined
with hard- or soft-assignment vector quantization (VQ) [7]. Spatial pyramid
matching (SPM) is typically incorporated in the pipeline to compensate the
loss of spatial information [12]. In 2009, [40] introduced sparse representation
algorithm for learning dictionary and coding images based on SPM, resulting in
state-of-the-art performance in image classification.
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Works of this kind usually operate in the original Euclidean space, which can-
not capture nonlinear structures hidden in the data. Meanwhile, image descrip-
tors often have intrinsic nonlinear similarity measures, such as SPM. A classical
way to deal with this is to adopt the “kernel trick” [25], which maps the features
into high dimensional feature space to make features of different categories more
linearly separable. In this case, we may find a sparse representation for the fea-
tures more easily [5,41]. With the introduction of kernel techniques, the learned
dictionary becomes versatile. For the K-means based scheme, [38] learned a dic-
tionary in the histogram intersection kernel (HIK) space, while [8] learned it in
the Gaussian radial basis function (RBF) kernel space. For the sparse represen-
tation based scheme, [23] proposed kernel K-SVD and kernel MOD methods. [4]
proposed kernel sparse representation (KSR), where the dictionary is trimmed
to work well with a simplified Gaussian Mixture Model which can be viewed as
a solution to density estimation problems. It generally outperforms the previous
alternative extensions of sparse representation for image classification and face
recognition. However, applications are very restricted since the derivation is ex-
clusively based on the property of RBF kernel. That is, this method is limited
to a few specific kernels and there are many useful kernels for which even the
kernel functions cannot be expressed mathematically. To cover arbitrary kernel
spaces, their other work [5] instead learned the dictionary first in the original
space, and then mapped it to the high dimensional ambient space, whose im-
proved performance was shown by using HIK. Unfortunately, this procedure is
only an approximation and does not solve exact dictionary learning in the ker-
nel space. [33] aims to make kernel-based classifiers efficient in both space and
time. Sparse coding here is exploited to approximate the mapped features in the
kernel space. There is no dictionary learning involved. They apply it to large
image feature vectors, such as Fisher encoding, and the cost of non-linear SVM
prediction is reduced by this approximation while maintaining the classification
accuracy above an acceptable threshold. [3,20] point out that the data are self-
explanatory. These approaches have many applications. However, treating the
samples as a dictionary is almost impossible for the application of image classi-
fication based on bags of words, since we may easily have more than millions of
local features to form the matrix. Thus, it is usually too expensive to calculate
the sparse codes. [17] proposed a self-explanatory convex sparse representation
for image classification. However, the additional convexity constraint is too re-
strictive to obtain better performance in practice.

Given that existing work either handles specific kernels or is implemented as
an approximation, an issue arises naturally: we need a systematic scheme to
generalize sparse representation into reproducing kernel Hilbert spaces (RKHS),
which can directly learn dictionaries for arbitrary kernels. This leads to the first
contribution of this paper, i.e., single-view self-explanatory sparse representa-
tion (SSSR). The key idea here is a new formulation as self-explanatory sparse
representation inspired by the representer theorem of Schölkopf et al. [26], which
enforces each dictionary atom in the RKHS to lie in the span of the features.
Owing to the properties of this reformulation, the sparse representation can be
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tractably solved in arbitrary kernel spaces. The procedures do not require that
the mathematical form of any kernel function be known, rather they work di-
rectly on the kernel matrices. It thus has the nice property that the derivatives
with respect to parameters of the coding are independent of the used kernel. It
also presents an explicit relationship between the basis vectors and the original
image features, leading to enhanced interpretability.

On the other hand, a single kernel is generally not enough. Multiple ker-
nel learning (MKL) and multiple view learning have thus been flourishing in
computer vision [9]. Different kernels correspond to different implicit feature
transformations, which result in different measures of similarity in the original
feature space. MKL tries to integrate the power of different kernels by learning
a weighted linear combination of them. A typical example is [42], which selects
different input features and combines them by mapping them to a homogeneous
Gaussian RBF kernel space.

Motivated by the success of the above SSSR for arbitrary kernels and multiple
kernel learning [32], we propose multiple-view self-explanatory sparse represen-
tation (MSSR) to identify and combine various salient regions and structures
from different kernel spaces. This is the second contribution of this paper. It is
equivalent to learning a dictionary with non-linear structure, whose complexity
is reduced by learning a set of smaller dictionary blocks via SSSR. Slightly dif-
ferent from the typical MKL scenario metioned above [42], here we exploit the
nonlinear representation capability. That is, only a single source of the original
image features is chosen while various kernel subspaces are merged. To effec-
tively solve the corresponding sparse coding subproblem and dictionary learning
subproblem, feature-sign search [13] and Lagrange multipliers are then general-
ized in the high dimensional space. As an application example, we incorporate
SSSR and MSSR into the spatial pyramid matching framework and develop them
for image classification. In fact, SSSR and MSSR could also be used in many
other applications. The extensive experimental results demonstrate that the pro-
posed SSSR and MSSR algorithms can learn more discriminative sparse codes
than sparse coding, leading to improved performance in image classification. A
flowchart of the proposed algorithm is illustrated in Figure 1.

The rest of the paper is organized as follows. Section 2 overviews sparse rep-
resentation briefly, and introduces self-explanatory sparse representation refor-
mulation naturally. SSSR and MSSR algorithms are proposed in Section 3. The
solutions to the corresponding optimization problems are elaborated in Section 4.
The overall algorithm is also summarized. Experimental results on several bench-
mark datasets are given in Section 5. Finally, discussions and conclusions are
drawn in Section 6.

2 Self-explanatory Sparse Representation

We assume that the data vectors can be represented as linear combinations of
only few active basis vectors that carry the majority of the energy of the data.
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Formally, we solve the following problem:

min
B,S

f(B,S) = ‖X −BS‖2F + 2α‖S‖1
s.t. ‖B•i‖2 ≤ 1, ∀i = 1, 2, . . . ,K.

(1)

Here, X ∈ R
D×N represents the local descriptors extracted from images, where

D is the dimension of X, and N is the number of samples in X. B ∈ R
D×K is the

dictionary, where K is the size of the dictionary. S ∈ R
K×N is the corresponding

sparse codes. ‖·‖2F represents the Frobenius norm. B•i and Bj• denote the i-th
column and j-th row vectors of matrix B, respectively. The regularization term
is to control sparsity in S, where α is a regularization parameter balancing the
tradeoff between fitting goodness and sparseness.

However, there is no explicit relationship between the learned dictionary and
the original features in the above formulation. Notice that K-means can be
viewed as a special case of sparse representation with ‖S•i‖0 = 1, ‖S•i‖1 =

1,S•i ≥ 0, while its learned dictionary atoms are the centroids of the input data.
Hence, for reasons of interpretability it may be useful to impose the constraint
that each basis vector lies within the column space of the original features X. By
introducing the weight matrix W ∈ R

N×K and substituting the bases B in (1)
with XW , we get a new formulation as self-explanatory sparse representation:

min
W ,S

f(W ,S) = ‖X −XWS‖2F + 2α‖S‖1
s.t. ‖XW •k‖2 ≤ 1, ∀k = 1, 2, . . . ,K.

(2)

Typically K � N , and the trivial solution W = I is thus naturally ruled out.
Actually, these two formulations can be unified from the perspective of the rep-
resenter theorem of Schölkopf et al. [26]. When applied to the linear kernel, the
solution to Eqn. 1, when minimizing over B, is going to be of the form B = XW .
Hence, Eqn. 2 can be intuitively viewed as the “dual” reformulation of Eqn. 1,
the “primal” form of the sparse representation problem, and gives the same solu-
tion. This is better understood if one draws an analogy with linear SVM training:
one can formulate the training problem as an optimization over 1) either directly
the weights of a linear classifier vector of the same dimension as the input signal
2) or the support vectors weights, that is a vector of dimension equal to the size
of the training set that is used to linearly combine the training inputs. In the
context of the problem here, the linear classifier is analogous to the dictionary
B, and the support vector weights are analogous to the weights W .

Replacing the bases with linear combinations of image features has several
advantages. The atoms now capture a notion of centroids similar to K-means,
which explicitly expresses what happens during dictionary learning, leading to
enhanced interpretability. Correspondingly, the code S can be interpreted as
the posterior cluster probabilities and the weight W can be considered as the
contributions of each data point when learning bases. Sparse representation and
K-means can be thus unified in the same framework. Moreover, by confining the
search space of potential bases, it might limit overfitting. The weight W makes
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the scenario more flexible, and different constraints like non-negativity can be
incorporated into it so as to adapt to various tasks, while they might be difficult
to directly impose on B. An obvious cost of the reformulation is the increased
computational complexity, because D � N generally for over-complete repre-
sentation. However, we will soon discover in the next section that it actually
facilitates our solution with executable steps in the nonlinear kernel spaces.

3 Single- and Multiple-View Self-explanatory Sparse
Representation

3.1 Single View Formulation

Besides the interpretability, another important property for self-explanatory
sparse representation is that it is easy to kernelize due to the separation of
original data. Suppose that there exists a feature mapping function φ : RD →
R

t. It maps the original feature space to the high dimensional kernel space:
X = [X•1,X•2, · · · ,X•N ] → φ(X) = [φ(X•1), φ(X•2), · · · , φ(X•N)]. Then, the ob-
jective function of (2) can be generalized to reproducing kernel Hilbert spaces
as

min
W ,S

f(W ,S) = ‖φ(X)− φ(X)WS‖2H + 2α‖S‖1
s.t. ‖φ(X)W •k‖H ≤ 1, ∀k = 1, 2, . . . ,K,

(3)

which is single-view self-explanatory sparse representation (SSSR).
Now, the Frobenius norm has been replaced by the inner-product norm of that

Hilbert space, such that ||φ(X)||2H = κ(X ,X), with kernel function κ(X•i,X•j) =
φ(X•i)Tφ(X•j). The dictionary becomes a set of K arbitrary functions in that
Hilbert space. Using the “kernel trick”, we get

‖φ(X)− φ(X)WS‖2H + 2α‖S‖1
= trace{κ(X,X)} − 2trace{κ(X,X)WS}
+ trace{STW Tκ(X,X)WS}+ 2α‖S‖1.

(4)

On the other hand, if directly kernelizing the primal form (1), we get

min
B,S

f(B,S) = ‖φ(X)− φ(B)S‖2H + 2α‖S‖1. (5)

Still, according to the representer theorem [26], the solution φ(B) to problem
(5) has the form φ(B) = φ(X)W . This is already explicitly encoded in the
formulation (3). That is, Eqns. 5, 3 are intuitively akin to the primal and dual
forms of sparse representation in the Hilbert spaces.

There are also some benefits which make the dual form (3) preferable. Exactly
optimizing to the standard formulation (5) is quite difficult. In the new high
dimensional space, t, the dimension of φ(X)� the number of samplesN , perhaps
even infinite. By leveraging the “kernel trick”, this can only be partially tackled.
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Since B is involved in κ(B,B), the optimal solution to B is always related to the
partial derivative of κ(B,B) with respect to B, which is relatively easy only for
some specific kernels [4]. For others, only an approximation strategy is feasible,
where the dictionary in the kernel space is transformed from the one learned
in the original space [5]. There is no guarantee that the transformation of the
optimal dictionary in the original space will remain optimal in the kernel space.
However, using the equivalent formulation (3), we can now search an optimal
dictionary directly in the kernel space through optimizing W instead of B. Since
(4) only depends on the kernel function κ(X,X) = φ(X)Tφ(X), which can be pre-
computed before sparse representation, we can now handle arbitrary kernels with
tractable computation.

3.2 Multiple View Joint Formulation

Using a single specific kernel may be a source of bias, and in allowing a learner
to combine a set of kernels, a better solution can be found. Here, instead of
choosing a single kernel function, a feasible alternative is to use a combination
of kernels as in multiple kernel learning (MKL) methods.

Assume there are G candidate Hilbert spaces forming a set as H = {H1, ...,

Hg, ..., HG}, and the corresponding kernel functions
{
κg : RDg × R

Dg →R
}G

g=1

with κg(X•i,X•j) = φg(X•i)Tφg(X•j). Candidate spaces include the well-known
linear kernel space, the polynomial kernel space, the Gaussian RBF kernel, and
widely used ones in vision community such as the Hellinger kernel space and
the histogram intersection kernel space. Given the original G feature represen-
tations Xg with dimension Dg ×N (not necessarily different) of data instances
and mapping them to these different Hilbert spaces, the general formulation for
multiple kernel learning sparse representation is

κη (X•i,X•j) = fη

({
κg

(
Xg
•i,X

g
•j
)G
g=1

})
, (6)

where fη : RG →R is a linear or nonlinear function combination function. The
weight matrix W and S are also redefined in different spaces as W = {W g}Gg=1

and S = {Sg}Gg=1.
For visual tasks, S is the most important part in that it serves as the newly

mapped feature representation and the input of the final classifiers. Since dif-
ferent kernels correspond to different notions of similarity, {Sg}Gg=1 in different
Hilbert spaces will capture various salient regions or structures, making the final
representation more discriminative. Here, we fix the input features from a single
source, and focus on its combination, and then generalize (3) to multiple-view
self-explanatory sparse representation (MSSR):

min
W ,S

f(W ,S) =
∑

Hg∈H
‖φg(X)− φg(X)W gSg‖2Hg

+ 2α‖Sg‖1

s.t.‖φg(X)W g
•k‖Hg

≤ 1, ∀k = 1, . . . ,K, g = 1, . . . , G.

(7)
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After obtaining {Sg}, we concatenate them to form the final representation
as S. Another notable benefit is that since each set {W g ,Sg} can be learned
and inferred independently from each other, the computational cost is signifi-
cantly reduced if a large weight matrix W is required. Generally speaking, for
sparse representation a larger dictionary will lead to better performance while
the computational consumption grows beyond linear increase. Moreover, since
our dictionary blocks are built from different kernel spaces, it will outperform
the one coming from the same kernel space. In our experiments, we show that
learning 4,096 bases in total by learning four sets of 1,024 bases separately, out-
performs 4,096 bases obtained from the single kernel space both in speed and
classification accuracy.

4 Optimization of the Objective Function

In this section, we focus on solving the optimization of the objective function
proposed in the last section. This optimization problem is not jointly convex in
both W g and Sg, but is separately convex in either W g or Sg with Sg or W g

fixed. So the objective function can be optimized by alternating minimization to
two optimization subproblems as follows.

– With fixed W g, the objective function of finding sparse codes Sg can be writ-
ten as an �1− regularized least-squares (�1 − ls) minimization subproblem:

f(Sg) = ‖φg(X)− φg(X)W gSg‖2F + 2α‖Sg‖1 (8)

– With fixed Sg, the objective function of learning weight W g can be written
as an �2− constrained least-squares (�2 − ls) minimization subproblem:

f(W g) = ‖φg(X)− φg(X)W gSg‖2F
s.t. ‖φg(X)W g•k‖22 ≤ 1, ∀k = 1, 2, · · · ,K.

(9)

4.1 �1 − ls Minimization Subproblem

Eqn. 8 can be simplified as

f(Sg) = trace{κg(X ,X)} − 2
N∑

n=1
[κg(X,X)W g]n•S

g•n

+
N∑

n=1
SgT
•n[W

gTκg(X,X)W g]Sg•n+2α
K∑

k=1

N∑

n=1
|Sg

kn|.
(10)

For each feature x in X, the objective function in Eqn. 10 can be rewritten as

f(sg) = κg(x,x) + sgTUsg − 2V sg + 2α‖sg‖1, (11)

where U = W gTκg (X,X)W g, V = κg (x,X)W g. Once the W g and κg(X,X)
are fixed, we can easily extend the feature-sign search algorithm [13] to optimize
the objective function.
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Denoting L(sg) = κg(x,x) + sgTUsg − 2V sg, then

∂L(sg)

∂sg
= 2Usg − 2V T , (12)

∂2L(sg)

∂2sg
= 2U . (13)

The sparse coding algorithm can be represented as solving the problem:min
sg

L(sg)

+2α‖sg‖1. The detailed algorithmic procedure uses Algorithm 1 in [5]. Note that
the computational cost of SSSR or MSSR is the same as that of sparse coding
in [13] except for the additional expenditure in calculating the different kernel
matrix.

4.2 �2 − ls Minimization Subproblem

Ignoring the unrelated term, Eqn. 9 can be simplified as

f(W g)=−2
K∑

k=1

[Sgκg(X,X)]k•W
g•k+

K∑

k=1

W gT
•k [κg(X,X)W gSgSgT ]•k

s.t. ‖φg(X)W g•k‖22 ≤ 1, ∀k = 1, 2, · · · ,K.

(14)

We optimize each column of W g alternately. Specifically, ignoring the constant
term trace{κg(X ,X)}, the Lagrangian is

L(W g, λk)=
K∑

k=1

W gT
•k [κg(X ,X)W gSgSgT ]•k−2

K∑

k=1

[Sgκg(X,X)]k•W
g•k

+ λk(1− [W gTκg(X,X)W g]kk).

(15)

The partial derivative with respect to W g
•k is

∂L(W g, λk)

∂W g•k
= 0. (16)

Hence, the solution to W g
•k is obtained as

W g•k =
SgT

k• − [W̃ g
k
F ]•k

F kk − λk
, (17)

where F = SgSgT , ˜W g
k
=

{

W g•p, p �= k
0, p = k

. Now, substituting W g
•k into the La-

grangian and only keeping the term including W g
•k, we then have

L(W g, λk) = λk +
(ST

k•−[˜W gk
F ]•k)Tκg(X,X)(SgT

k•−[˜W gk
F ]•k)

λk−F kk
. (18)

Thus, λk can be obtained. Substituting λk into W g
•k,

W g•k =
SgT

k•−[˜W gk
F ]•k

±
√

(SgT
k•−[˜W gk

F ]•k)
T
κg(X,X)(SgT

k•−[˜W gk
F ]•k)

. (19)

From Eqn. 19, two solutions are obtained with ± signs. The sign of W g
•k is not

essential since it can be easily absorbed by converting between Sg
k• and −Sg

k•.
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Algorithm 1 Algorithm for SSSR or MSSR

Require: Data matrix X ∈ R
D×N , α and K

1: Compute the kernels κ(X,X) on X.
2: W ←rand(N,K)− 0.5,S ←zeros(K,N)− 0.5

3: Compute F = SST ,G = F � (1−I)
4: for k = 1;k ≤ K;k++ do
5: δ = W T

•kκ(X,X)W •k
6: W •k = W •k/

√
δ

7: end for
8: iter = 0
9: while (f(iter)−f(iter + 1))/f(iter)>1e−5 do
10: iter ← iter + 1
11: Update S:
12: Sparse coding: compute using feature-sign search algorithm
13: Update W :

14: Compute F = SST ,G = F � (1−I)
15: for k = 1;k ≤ K;k++ do
16: W •k = ST

k• −WG•k
17: δ = W T

•kκ(X,X)W •k
18: W •k = W •k/

√
δ

19: end for
20: Update the objective function:
21: f = trace{κ(X,X)} − 2trace{AST }+ trace{FE}+ 2α‖S‖1
22: end while
23: return W , and S

4.3 Overall Algorithm

Our algorithm for SSSR or MSSR is shown in Algorithm 1. Here, 1 ∈ R
K×K is

a square matrix with all elements 1, I ∈ R
K×K is the identity matrix, and �

indicates the Hadamard product. By iterating S and W alternately, the sparse
codes are obtained, and the bases are learned.

5 Experimental Results

In this section, we present our experimental results for SSSR and MSSR
compared with several baselines and previous published techniques on four bench-
mark datasets, such as UIUC-Sports dataset [15], Scene 15 dataset [12], Caltech-
101 dataset [14], and Caltech-256 dataset [10].

5.1 Experimental Settings

For each dataset, the data are randomly split into training set and testing set
based on published protocols. The experimental process is repeated 8 times, and
the mean and standard deviation of the classification accuracy are record. Each
image is resized with maximum side 300 pixels firstly, except 400 pixels for UIUC-
Sports dataset due to the high resolution of original images. As for the image
features, two types of densely sampled SIFT features are used to demonstrate the
effectiveness of SSSR and MSSR. One feature is extracted with patch size 16×16
and step size 8 pixels, which we call single scale SIFT. The other one is extracted
under three scales 16× 16, 24× 24, and 32× 32, and the step size 8 pixels, which
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Table 1. Performance comparisons on UIUC-Sports dataset and Scene 15 dataset (%).

Methods UIUC-Sports Scene 15

Single scale SIFT

ScSPM(1024) [40,6] 82.74 ± 1.46 80.28 ± 0.93
EMK [1] 74.56 ± 1.32 NA
KSR [4] 84.92 ± 0.78 83.68 ± 0.61
SCSR(1024) [17] 87.97 ± 1.11 81.51 ± 0.32
DLSM(1024) [18] 86.82 ± 1.04 83.40 ± 0.44
DLMM(1024) [18] 86.93 ± 0.99 83.67 ± 0.49

Ours(SSSR)
Hellinger+1024+linearSVM 88.49 ± 1.25 82.25 ± 0.31
HIK+1024+linearSVM 88.41 ± 1.11 84.42 ± 0.33
POLY+1024+linearSVM 88.26 ± 1.12 83.59 ± 0.26
linear+1024+linearSVM 88.07 ± 1.33 83.84 ± 0.40
Ours(MSSR)
4096+linearSVM 89.77 ± 1.12 85.18 ± 0.26
4096+polySVM 89.79 ± 0.96 85.36 ± 0.29

Multiple scale SIFT
KSRSPM-HIK(4096)[5] 86.85 ± 0.45 NA

Ours(SSSR)
Hellinger+4096+linearSVM 88.36 ± 0.82 84.89 ± 0.37
HIK+4096+linearSVM 88.54 ± 1.09 84.18 ± 0.47
POLY+4096+linearSVM 88.93 ± 0.81 84.09 ± 0.35
linear+4096+linearSVM 88.83 ± 0.81 83.67 ± 0.46
Ours(MSSR)
16384+linearSVM 89.95 ± 0.64 84.89 ± 0.38
16384+polySVM 89.61 ± 0.70 84.93 ± 0.45

(a) Hellinger kernel (b) HIK kernel

(c) polynomial kernel (d) linear kernel

(e) MSSR

Fig. 2. Confusion matrix on UIUC-Sports dataset (%) with single scale SIFT features
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Table 2. Performance comparisons on Caltech-101 dataset (%)

Methods 5train 10train 15train 20train 25train 30train

Single scale SIFT
ScSPM(1024) [40] NA NA 67.0 ± 0.45 NA NA 73.2 ± 0.54
DLSM(1024) [18] NA NA 66.88 ± 0.53 NA NA 74.39 ± 0.82
DLMM(1024) [18] NA NA 67.54 ± 0.41 NA NA 74.87 ± 0.67

Ours(SSSR)
Hellinger+1024+linearSVM 47.42 ± 0.61 60.64 ± 0.48 65.65 ± 0.30 68.83 ± 0.50 71.35 ± 0.58 73.04 ± 1.27
HIK+1024+linearSVM 47.66 ± 0.41 60.44 ± 0.44 65.91 ± 0.54 69.05 ± 0.39 71.59 ± 0.73 73.43 ± 0.65
POLY+1024+linearSVM 48.10 ± 0.35 60.67 ± 0.37 65.91 ± 0.68 69.43 ± 0.21 71.77 ± 0.63 73.80 ± 0.64
linear+1024+linearSVM 48.27 ± 0.47 61.04 ± 0.59 66.26 ± 0.57 69.31 ± 0.65 71.72 ± 0.71 73.47 ± 0.42
Ours(MSSR)
4096+linearSVM 49.52 ± 0.47 62.50 ± 0.23 67.97 ± 0.53 71.21 ± 0.38 73.68 ± 0.74 76.04 ± 0.67
4096+polySVM 49.34 ± 0.45 62.48 ± 0.26 67.79 ± 0.48 71.39 ± 0.36 73.63 ± 0.70 76.06 ± 0.83

Multiple scale SIFT
LLC(4096) [34] 51.15 59.77 65.43 67.74 70.16 73.44

SC(AxMin@n)(4k) [11]1 NA NA 74.6 ± 0.4 NA NA 81.3 ± 0.6

Ours(SSSR)
Hellinger+4096+linearSVM 51.43 ± 0.82 64.60 ± 0.47 70.09 ± 0.27 73.70 ± 0.50 75.60 ± 0.51 77.43 ± 1.13
HIK+4096+linearSVM 51.81 ± 0.75 64.83 ± 0.56 69.93 ± 0.43 73.40 ± 0.57 75.25 ± 0.47 77.16 ± 1.01
POLY+4096+linearSVM 52.22 ± 1.02 65.39 ± 0.44 70.26 ± 0.50 73.79 ± 0.57 75.72 ± 0.48 77.31 ± 0.90
linear+4096+linearSVM 52.76 ± 0.81 65.67 ± 0.54 70.62 ± 0.60 74.18 ± 0.55 75.90 ± 0.60 77.51 ± 0.88
Ours(MSSR)
16384+linearSVM 53.36 ± 0.71 66.20 ± 0.56 71.58 ± 0.43 75.23 ± 0.68 76.89 ± 0.60 78.74 ± 0.81
16384+polySVM 53.10 ± 0.76 66.10 ± 0.45 71.41 ± 0.38 75.08 ± 0.61 76.82 ± 0.52 78.59 ± 0.95

we call multiple scales SIFT. 128 dimensional SIFT descriptors are obtained
and normalized to 1 with �2-norm. For learning the dictionaries, 30,000∼50,000
samples are used. For single scale SIFT, the dictionary size is 1,024 for each
kernel space. For multiple scales SIFT, the dictionary size is 4,096. The spatial
pyramid matching kernel is with 1, 4, and 16 segments. We use a max pooling
strategy [40]. An image is represented by the concatenation of each segment and
normalized to 1 with �2-norm.

We use four different kernels: the Hellinger kernel (κ(x,y) =
∑D

d=1

√
xdyd), his-

togram intersection kernel (κ(x,y) =
∑D

d=1 min {xd,yd}), polynomial kernel (κ(x,y) =

(1 + xTy)p), and linear kernel (κ(x,y) = xTy). Here, we set p = 2. Now only one
parameter α needs tuning in the objective functions of SSSR and MSSR. The
choice of α is obtained by cross-validation (CV). The CV results indicated that
the optimal performance is achieved when maintaining approximate 10 non-0
elements, which agrees with the empirical conclusion in [40]. The parameter α
is 0.15 for linear kernel, 0.3 for polynomial kernel, 0.4 for histogram intersection
kernel, and 0.5 for hellinger kernel. Linear or Polynomial kernel SVM classifier
is used with one-vs-all multi-class, and the LIBSVM [2] package is used.

1 In [11], the image features are extracted with 16, 24, 32, 40 patch size and 4, 6, 8, 10
step size, respectively. Besides, the experimental setting in [11] is “approximate pool-
ing (AxMin@n) with 4 levels of SPM”.
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Table 3. Performance comparisons on Caltech-256 dataset (%)

Methods 15train 30train 45train 60train

Single scale SIFT

ScSPM(1024) [40] 27.73 ± 0.51 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91
LLC(1024) [34,6] 27.74 ± 0.32 32.07 ± 0.24 35.09 ± 0.44 37.79 ± 0.42
KSR(1024) [4] 29.77 ± 0.14 35.67 ± 0.10 38.61 ± 0.19 40.30 ± 0.22
SCSR(1024) [17] 29.23 ± 0.38 35.51 ± 0.32 38.68 ± 0.29 41.05 ± 0.42
DLSM(1024) [18] 29.31 ± 0.58 35.12 ± 0.34 37.62 ± 0.57 39.96 ± 0.62
DLMM(1024) [18] 30.35 ± 0.42 36.22 ± 0.33 38.97 ± 0.56 41.09 ± 0.44

Ours(SSSR)
Hellinger+1024+linearSVM 32.74 ± 0.35 39.68 ± 0.33 43.18 ± 0.41 45.33 ± 0.34
HIK+1024+linearSVM 32.38 ± 0.47 39.13 ± 0.48 42.40 ± 0.34 44.86 ± 0.32
POLY+1024+linearSVM 31.58 ± 0.22 38.32 ± 0.32 41.74 ± 0.47 44.24 ± 0.43
linear+1024+linearSVM 31.52 ± 0.31 38.19 ± 0.33 41.39 ± 0.49 43.95 ± 0.63
Ours(MSSR)
4096+linearSVM 34.06 ± 0.36 41.14 ± 0.43 44.72 ± 0.42 47.26 ± 0.43
4096+polySVM 35.38 ± 0.31 42.92 ± 0.46 46.88 ± 0.52 49.70 ± 0.43

Multiple scale SIFT

LLC(4096) [34] 34.36 41.19 45.31 47.68
KSRSPM-HIK(4096)[5] 33.61 ± 0.34 40.63 ± 0.22 44.41 ± 0.12 47.03 ± 0.35

IFK [24]2 34.7 ± 0.2 40.8 ± 0.1 45.0 ± 0.2 47.9 ± 0.4

Ours(SSSR)
Hellinger+4096+linearSVM 37.11 ± 0.50 44.73 ± 0.37 48.65 ± 0.43 51.24 ± 0.60
HIK+4096+linearSVM 35.95 ± 0.36 43.45 ± 0.29 47.27 ± 0.33 49.96 ± 0.56
POLY+4096+linearSVM 35.54 ± 0.33 42.94 ± 0.40 46.70 ± 0.41 49.42 ± 0.62
linear+4096+linearSVM 35.66 ± 0.43 43.10 ± 0.28 46.98 ± 0.38 49.52 ± 0.60
Ours(MSSR)
16384+linearSVM 37.12 ± 0.41 44.95 ± 0.38 48.89 ± 0.37 51.47 ± 0.72
16384+polySVM 37.76 ± 0.25 45.70 ± 0.47 49.83 ± 0.18 52.81 ± 0.53

5.2 UIUC-Sports Dataset

For the UIUC-Sports dataset [15], there are 8 classes with 1,579 images in total.
We follow the common setup: 70 images per class are randomly selected as the
training data, and 60 images per class for testing. Figure 2 shows the confu-
sion matrices with single scale SIFT features. Table 1 shows the performance of
different methods. Our proposed MSSR algorithm outperforms the traditional
sparse representation based image classification [40] by 7.05% with single scale
SIFT features.

5.3 Scene 15 Dataset

For the Scene 15 dataset [12], there are 15 classes with 4,485 images in total.
We use an identical experimental setup as [12]: 100 images per class are ran-
domly selected as the training data, and the rest for testing. Table 1 lists the
comparisons of our SSSR and MSSR methods with previous work. Our proposed
MSSR algorithm outperforms the traditional sparse representation based image
classification [40] by 5.08% with single scale SIFT features.

2 In [24], 5 scales are used for extracting the image features, and the total length of
the vector to represent each image is 30k.
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5.4 Caltech-101 Dataset

The Caltech-101 dataset [14] contains 102 classes, one of which is the background.
After removing the background class, the remaining 101 classes with 8,677 images
in total are used for classification, with each class varying from 31 to 800 images.
We follow the standard experiment setup for this dataset: 5, 10, 15, 20, 25, and 30
images per category are selected as the training set, and the rest for testing (the
maximum is 50 images per category for testing). Table 2 shows performances of
different methods. The best results reported in [11] are 74.6% and 81.3% with
15 and 30 images per class as the training set. With single scale SIFT features,
our proposed MSSR algorithm outperforms the traditional sparse representation
based image classification [40] by 0.97% and 2.86% for 15 and 30 training images
per class, respectively.

5.5 Caltech-256 Dataset

The Caltech-256 dataset [10] contains 257 classes, one of which is the background.
After removing the background class, the remaining 256 classes with a total of
29,780 images are used for classification. We follow the standard experimental
setup for this dataset: 15, 30, 45, and 60 training images per category, and 25
testing images per category. Table 3 shows the performance of different methods.
With single scale SIFT features, our proposed MSSR algorithm outperforms the
traditional sparse representation based image classification [40] by 7.65%, 8.9%,
9.42% and 9.56% for 15, 30, 45 and 60 training images per class, respectively.

6 Conclusions

In this paper, motivated by the fact that sparse representation, kernel repre-
sentation, and multiple kernel learning are powerful tools in discovering hid-
den structure of complex data, we proposed novel single- and multiple-view
self-explanatory sparse representation (SSSR and MSSR) schemes. By leverag-
ing a self-explanatory reformulation of sparse representation, where the bases
lie in the span of the image features, the new formula is readily generalized
into reproducing kernel Hilbert spaces for arbitrary kernels with computational
tractability and conceptual interpretability. SSSR is capable of identifying both
nonlinear structural information and sparse active components. The multiple-
view joint representation not only captures various structure information of the
image features under different kernels, but also reduces the complexity of dictio-
nary learning. This leads to enhanced visual representation power as has been
demonstrated by extensive experiments on image classification tasks.
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