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Abstract. Understanding group activities from images is an important yet chal-
lenging task. This is because there is an exponentially large number of semantic
and geometrical relationships among individuals that one must model in order to
effectively recognize and localize the group activities. Rather than focusing on di-
rectly recognizing group activities as most of the previous works do, we advocate
the importance of introducing an intermediate representation for modeling groups
of humans which we call structure groups. Such groups define the way people
spatially interact with each other. People might be facing each other to talk, while
others sit on a bench side by side, and some might stand alone. In this paper we
contribute a method for identifying and localizing these structured groups in a
single image despite their varying viewpoints, number of participants, and oc-
clusions. We propose to learn an ensemble of discriminative interaction patterns
to encode the relationships between people in 3D and introduce a novel efficient
iterative augmentation algorithm for solving this complex inference problem. A
nice byproduct of the inference scheme is an approximate 3D layout estimate of
the structured groups in the scene. Finally, we contribute an extremely challeng-
ing new dataset that contains images each showing multiple people performing
multiple activities. Extensive evaluation confirms our theoretical findings.

Keywords: Group discovery, Social interaction, Activity recognition.

1 Introduction

In day-to-day environments we observe various types of complex group activities such
as people conversing, waiting in a line, listening to a lecture, and eating together. Con-
sider the images in Figure 1 - each shows multiple people involved in multiple different
activities. To understand these scenes, we need to understand all of the activities, and to
localize the activities we need to divide the people into groups with consistent spatial
configurations consisting of individuals’ poses, their relative poses, and their geometric
patterns. For example, a group of people in conversation are often all sitting or standing
while facing each other; a group of people standing in line may all face the same di-
rection and stand one-behind-the-next; a group listening to a lecture might sit or stand
while all face the same direction side-by-side. We call these consistent spatial configu-
rations of people structured groups.

Structured groups are building blocks which can be composed to recognize and local-
ize higher-level semantic group activities when combined with contextual information.
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Fig. 1. Natural images often contain people forming multiple groups. Such groups can be cate-
gorized by the way people spatially interact with each other. People might be facing each other
to talk, while others sit on a bench side by side, and some might stand alone. An image may
contain multiple instances of the same group category. Group discovery is the problem of finding
such structured groups despite their varying viewpoints, number of participants, and occlusions.
In this paper we propose a framework for group discovery from a single image. Our approach is
also capable of localizing the structure groups in 2D and half as shown in the lower part of the
figure. Each person is depicted with a different color and symbol which corresponds to the struc-
tured group it belongs to (see figure 2 for a list of structure groups). Different colors corresponds
to different group instances.

For example, a line of people queuing plus two people at the front conversing plus a
store context equals a group of people paying for something. Or a group of people sit-
ting side-by-side plus a teacher at the front teaching plus a classroom context equals a
lecture. Moreover, by identifying the members of a structured group, we can segment
the people in a scene into different localized interactions. This will enable methods for
identifying multiple activities in a given image.

In this paper, we focus on the problem of discovering structured groups of people and
contribute a method for identifying and localizing these groups in a single image. We
call this problem group discovery. Our approach seeks to 1) divide people into different
classes of structured groups wherein participating individuals share the same patterns
of interactions; 2) localize these groups in the 3D space; and 3) provide semantic de-
scriptions to each structured group.

There are multiple challenges related to this problem domain. Detecting people in
crowded scenes is extremely difficult due to occlusions and size variation. Also, once
a person is found, it is still difficult to identify his/her pose and location. Moreover,
given noisy detections but an unknown number of groups, the number of group assign-
ments grows exponentially large. Finally, structured groups change their geometry and
appearance because of viewpoint changes and other topological transformations.

To address these challenges, we contribute a method to segment people into seman-
tically meaningful groups. We propose to use discriminative interaction patterns to en-
code the relationships between people in 3D. Capturing the relative poses and positions
in 3D makes the approach viewpoint invariant. Importantly, the interaction patterns do
not need to be supervised during training. As a key contribution, we propose an effi-
cient iterative augmentation algorithm for solving the challenging inference problem. A
nice byproduct of the inference scheme is an approximate 3D layout estimate of the
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Fig. 2. The structured groups. Squares represent standing people, the circles are people sitting on
chairs, and the triangles are people sitting on the ground. Arrows indicate individuals’ orienta-
tions. See Sec. 2 for details.

structured groups in the scene. Finally, we contribute an extremely challenging new
dataset that contains images each showing multiple people performing multiple
activities.

1.1 Related Work

In the last decade, significant effort has been put toward understanding human activities
at different levels of granularity. Several approaches have been proposed for classifying
the activity of a single person, including [21,9,24,23]. Unfortunately, the activity of a
single person in isolation is a poor indicator of the activity of a group of people.

Additional work has looked at the interactions between pairs of people [28,36,26,35],
and the collective activities of larger groups [6,5,19,29,16]. However most of these
approaches perform image (or video) classification, assuming that there is only one
activity. They do not localize the activities and hence have difficulty identifying multiple
activities in the same scene. Recently, Desai and Ramanan [8] proposed a relational
phraselet to model the relationship between two people (or generally two objects) and
identify the poses, but the model is limited to a pair of people. Eichner and Ferrari [10]
focus on human pose estimation in a group context, but they assume only a single group
in the image. Pellegrini et al. [27] consider the problem of tracking people in crowded
scenes. Using short tracks extracted from video data they jointly cluster people into
groups and derive their longer trajectories. Leal-Taixe et al. [22] extend this idea further
to incorporate more generalized interactions between people.

Recently, a number of methods were proposed to detect single person activities in
video sequences [4,13,12]. Although they can localize multiple activities in the tempo-
ral direction, only one activity can be identified in one time slice. Odashima et al. [25]
and Amer et al. [1] proposed methods to localize multiple collective activities, but they
either leverage naive holistic models or evaluated only on datasets which contain limited
view point and intraclass variability.

There is a long list of works addressing the problem of image segmentation [30,32,18].
These works take either individual pixels or superpixels as the basic unit, and segment
the images into coherent regions. Unlike traditional bottom-up 2D pixel-based segmen-
tation problems, the basic units in our work are human detections.

In this paper, we focus on discovering structured groups of people in images. These
groups form the building blocks for detecting and classifying higher-level activities.
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C1 = {c1 = facing-each-other-sitting, 
          H1 = [1, 1, 1, … 0]}
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Fig. 3. An illustration of our model. Image I is represented by a set of individual detections
X. A group Ci (green bounding box) is represented by class ci (sitting facing each other) and
participating individuals (shown as solid black nodes in (a) and solid red bounding boxes in (b))
who are set to 1 in Hi. Individuals who are not group members are shown as dashed black nodes
in (a) and white bounding boxes in (b). The group configuration potential is measured by the
individual properties xi and interaction yi,j between all participating individuals. (We model a
fully connected graph, but omit edges in the figure for clarity.)

As a contribution, we introduce the concept of discriminative interaction patterns that
capture the characteristics of pairwise configurations. Unlike [26,35,5], which have a
predefined set of pairwise interaction classes, we automatically discover an expressive
dictionary of discriminative interactions. In Sec. 2, we describe our model represen-
tation that ties together structured groups, individuals and image observations. Sec. 3
explains our feature representation as well as the discriminative interactions. Secs. 4 and
5 describe how we solve the inference problem and learn the model parameters.

2 Model

The purpose of our model is to group together individual hypotheses into structured
groups as they are observed in images (Fig. 3). We aim to localize and segment people
into 7 different types of structured groups. The categories are defined based on geometric
relationships between participants. The first type is “queuing” (Q), a linear configura-
tion of people, most of whom are facing the principal direction of the distribution. The
second type is “standing facing-each-other” (SF), which is defined by a set of peo-
ple in close proximity facing into a central point. Similarly, we define “sitting facing-
each-other” (OF) and “sitting on the ground facing-each-other” (GF). Additionally,
we define “standing side-by-side” (SS) that is characterized by a linear distribution of
people with view point perpendicular to their distribution. Similarly, we introduce “sit-
ting side-by-side” (OS) and “sitting on the ground side-by-side” (GS). Theses primitive
types of structured groups provide useful information to understand social interaction
among people. Examples of the structured groups are given in Fig. 2.

Let us define the set of individuals in an image I as X = {x1, x2, ..., xn}. Each
xi encodes the properties of an individual. In this work we assume that a detector is
available that can estimate each individual’s detection confidence, their pose, and their
location in the image. The feature representation will be explained in detail in Section 3.
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(a) intra-group interactions (attraction) (b) inter-group interactions (repulsion)

Fig. 4. A set of interactions examples learned from training data. The (a) and (b) show interactions
learned from intra-group and inter-group pairs, respectively. Each row shows the 3D configuration
of interactions from top view and the associated pairs in the training data. The pair examples
show that our learned interactions are view-point invariant.

Notice that the detector can be noisy and produce false alarm or missed detections, as
well as poor localization and erroneous pose classification results.

Given a set of bounding boxes corresponding to person detections, we wish to iden-
tify the structured groups C = {C1, C2, ..., Cm} in the image. Examples of structured
groups are shown in Fig.2. Each group description, Ck, consists of a binary member-
ship vector Hk = {hk1 , hk2 , ..., hkn} indicating which individuals are in the group, and a
class label ck taking one of C group labels. We also define a background group B that
consists of the binary membership vector HB indicating individuals that do not belong
to any group. We assume that one individual can belong to at most one group, that is
∀i, ∑k h

k
i + hBi = 1.

As an intermediate step between the individual detections and the group interactions,
we model the interactions between pairs of people. During training, the detections, lo-
cations and poses of the people are given, however the interactions between pairs of
people are not given and must be learned. Some examples of these learned interactions
are presented in Fig. 4. Let Y = {y1,2, ..., yn−1,n} be the interaction variables that en-
code the relationships between pairs. Each y can have Y discrete interaction labels that
are learned from training data, as described in Sec. 3.4. These interaction labels en-
code different types of interactions that tend to occur within the same group instances
(attraction interaction) or that tend to occur across different group instances (repulsion
interactions) (See Fig. 4).

We now want to use this model to discover structured groups. Discovery is formulated
in an energy minimization framework as follows:

Ĉ = argmin
C

E(C,X, I) (1)

where Ĉ denotes the optimal set of structured groups and E(·) is an energy function. In
order to capture both the characteristic pattern of each group as well as the compatibility
between different groups, we define the energy function using a compositional model
as follows (hereafter, we drop I for clarity):

E(C,X) = min
Y

(ΨXY (X,Y) +
∑

i

ΨCXY (Ci,X,Y) + ΨBX (B,X) + ΨRY (C,Y)) (2)
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The first term ΨXY encodes the compatibility between interactions and individuals’
properties, which is bottom-up information (Sec. 2.1). For example, in Fig. 1, two of
the women sitting on the bench should be associated with an interaction like A2 in Fig.
4, but not A1. The second term ΨCXY represents the intragroup potential which mea-
sures the compatibility of a set of individuals with a given structured group (Sec. 2.1).
For instance, a “queuing” group (G1) should be composed of individual detections with
“standing” poses rather than “sitting” pose, and pairs of interactions similar to A3 in Fig.
4 (attractive interaction). The third potential is the background potential which measures
the probability of a solitary person, while the last potential is the intergroup potential
that measures the probability of two people begin in different groups (repulsive interac-
tion). In the following subsections, we describe each potential function. We then discuss
the details of the feature representation in Sec. 3.

2.1 Potentials

Bottom-up Interaction Potential The first potential encodes the compatibility between
the properties of pairs of individuals (xi, xj) and the interaction variable yi,j :

ΨXY (X,Y) =
∑

i<j

w�
xyψxy(xi, xj , yi,j) (3)

where the feature vector ψxy(·) encodes the observed interaction patterns between two
people, and model parameters wxy measure the compatibility between interaction pat-
terns and a specific type of interaction (Sec. 3.4 and Fig. 5).

Intragroup Potential The second term encodes the intragroup potential. This reflects
the characteristic patterns of each structured group as a function of individuals’ appear-
ances (Sec. 3.3) and their interaction variables. Ψ(Ck,Y,X) is designed to maximize
the compatibility of individual’s appearances and the relational patterns between indi-
viduals with a given type of structured group.

ΨCXY (Ck,Y,X) =
∑

i

hk
iw

�
xcψxc(xi, ck) +

∑

i<j

hk
i h

k
jw

�
ycψyc(yi,j , ck) (4)

where wxc and wyc are model parameters, ψxc(·) encodes a person’s appearance in-
formation (Sec. 3.3), and ψyc(·) is a feature vector encoding the co-occurrence of an
interaction label and group label. The co-occurrence feature is a vectorized two dimen-
sional matrix where only the specified elements have a value of 1, and others are 0.

Background Potential This potential captures individuals that do not belong to any
group (background).

ΨBX (B,X) =
∑

i

hB
i w

�
xbψxb(xi) (5)

where wxb is the parameter and ψxb(·) encodes a person’s appearance (Sec. 3.3).
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Intergroup Potential This potential captures interactions of individuals belonging to
different groups (repulsive interaction). ΨRY (C,Y) is formulated similarly to the intra-
group potential.

ΨRY (C,Y) =
∑

i<j

(1−
∑

k

hk
i h

k
j )w

�
yrψyr(yi,j) (6)

where wyr are the model parameters and ψyr(·) is a feature vector encoding the oc-
currence of a repulsive interaction label. Notice that unlike the intragroup potential, we
accumulate all ungrouped pairs in Eq.6 that do not contribute to any intragroup poten-
tial in Eq.4. In turn, all the interaction labels either contribute to one group’s intragroup
potential (if attractive) or intergroup potential (if repulsive).

2.2 Model Characteristics

Our model has a number of favorable characteristics for discovering structured groups
in images. First, it permits an arbitrary number of groups C = {C1, ...Cm} in each
image and provides a principled measurement of the groups’ compatibility using both
individuals’ and interaction information. Secondly, it explicitly models whether an indi-
vidual is a member of a group, so we can identify how people are clustered. Notice that
we can even segment individuals participating in different instances of the same group
type, which is very challenging when using distance-based clustering. This is enabled
by the attractive and repulsive interaction model through the intragroup and intergroup
potentials. Thirdly, our model also identifies which person detections are valid, which
in turn improves the robustness of the group discovery despite noisy bottom-up detec-
tion results. Finally, the interaction variables yi,j enable us to share interaction patterns
across different structured group categories, which would not be possible if the features
were directly connected to the class C without regard to Y.

3 Feature Representation

In the previous section we described the potential functions that make up our model.
Each of these potential functions relies on one or more feature representations. Here,
we describe the details of those representations. For each image, we detect people and
represent each detection with a pose confidence and the corresponding location of the
person in 3D. Using this information, we encode the pairwise relationships using inter-
action features (Sec. 3.4) and the individuals’ contextual information using the unary
group feature (Sec. 3.3).

3.1 Individual Pose Feature

Given an image, we first detect individual people using the Poselet detector [2]. We
represent each detection hypothesis bounding box using a combination of the Poselet
activation vector, MDP activation vector [33] and HOG descriptor [7]. Instead of using
such a high dimensional vector directly to encode individual properties, we train SVM
classifiers [3] equipped with histogram intersection kernel for individual pose classes
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and assign the confidence vector (probabilistic estimation) to individual feature pi (e.g.
we train person v.s. no person, standing v.s. sitting on an object v.s. sitting on the ground,
and 8 viewpoints × 3 poses classifiers). These individual pose vectors are used to rep-
resent the unary and interaction features.

3.2 3D Estimation

In order to robustly encode the relationship between people in images, we propose to
estimate each person in 3D using a technique similar to [14]. Each person zi is
parametrized by their 3D location, height, and pose. The camera Θ is represented by
its focal length, pitch angle, and height (we assume zero yaw and roll angles). With the
assumption that every person is located on the same ground plane, the camera parameter
Θ and the presented humanZ = {z1, . . . , zn} are estimated by optimizing the function:

E(Θ,Z, I) = ωΘIΨ(Θ, I) + ωΘZΨ(Θ,Z) + ωZIΨ(Z, I) + ωΘΨ(Θ). (7)

The first term captures the compatibility between the camera parameterΘ and the image
feature. The second term captures how well the humans in configuration H fit into the
scene given the camera parameter Θ. The third term captures how likely the human
configurationH is given the observed image. The last term accounts for the prior onΘ.
Given the function E, we solve Θ and Z in a two-step fashion. We first solve Θ using
the RANSAC algorithm, which iterates between 1) sampling three people and their pose
from the detection set and 2) computing the sample score E by optimizingΘ given the
sampled people. Once we generate enough samples, the optimized camera parameterΘ
is obtained from the sample with the highest scoreE. Finally, we computeZ (locations,
heights, and poses of all human) by maximizing E given Θ.

3.3 Individual Unary Feature

Inspired by [6,20], we represent an individual’s “appearance” information with a con-
textual descriptor that captures the relative distribution of other people in the scene.
Similarly to [6], we discretize the space around the individual into multiple radial and
angular bins and pool the pose confidence vectors of other detections. In order to make
the descriptor robust under noisy detections, two nearest bin centers are obtained for
each dimension (angular and radial) and the pose confidence vectors are assigned with
linear interpolation weights. We use 8 angular bin centers and 3 radial bin centers.

Given the contextual descriptor for each individual, we represent the unary feature
φx(xi) using the confidence value of SVM classifier trained on the group categories.
In order to deal with outliers (NA) and false positive (FP) detections, we add two more
categories to the category set. With φx(xi), ψxc(xi, ck) (Eq. 4) are obtained by shifting
|C| ∗ ck dimensions to make it compatible with the parameters in wxc, where C is the
set of structured group categories including NA and FP.

3.4 Pair Interaction Feature

The interaction pattern between two individuals is encoded by a spatial descriptor with
view invariant relative pose encoding. Given the 3D locations of two individual detec-
tions zi, zj and two pose features pi, pj , we represent the pairwise relationship using
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Fig. 5. We obtain the interaction feature via 1) view normalization, 2) pose co-occurrence en-
coding, 3) semantic compression and 4) spatial histogram. Given the 3D coordinates of two
detections, the location of individuals are transformed to a canonical view and the correspond-
ing pose features are shifted accordingly. Subsequently, the co-occurrence pattern is encoded by
taking minimum of the transformed pose confidence values. The elements that deliver the same
semantic concepts are accumulated to reduce the feature dimension and provide semantic invari-
ance. Finally, the compressed representation is assigned to the spatial bin corresponding to the
distance between the two individuals.

view normalization, pose co-occurrence encoding, semantic compression and a spatial
histogram (see Fig. 5 for illustration).

The view normalization is performed by rotating the two people in 3D space by θ
with respect to their midpoint, making their connecting line perpendicular to the cam-
era view point. In this step, the pose features are also shifted accordingly (e.g. if θ = 45‘,
shift 1 dimension with a cycle). Then, the co-occurrence feature is obtained by building
a 2-dimensional matrix in which each element (r, c) corresponds to min(pi(r), pj(c)).
Although the feature is view invariant, there are still elements in the matrix that deliver
the same semantic concepts (e.g. left-left and right-right). To reduce such unnecessary
variance and obtain a compact representation, we perform another transformation by
multiplying a semantic compression matrix Sc to the vector form of the co-occurrence
feature. The matrix Sc is learned offline by enumerating all possible configurations of
view points and grouping the pairs that are equivalent when rotated by 180 degrees.
Finally, we obtain the pair interaction descriptor by building a spatial histogram based
on the 3D distance between the two (bin centers at 0.2, 0.6, 2.0 and 6.5 m). Here, we
use linear interpolation similarly to contextual feature in Sec. 3.3. Given the interac-
tion descriptor for each pair, we represent the interaction feature φxx(xi, xj) using the
confidence value from an SVM classifier trained on a dictionary of interaction labels Y .

Each interaction label is defined as a characteristic 3D spatial relationship between
a pair of people. The key property is that each interaction label must be view-invariant,
so that we can propagate a view invariant signal to the group model using ψyc(yi,j , ck).
To achieve view invariance, we obtain a set of interaction labels by agglomeratively
clustering all possible pairs of individuals using a similarity metric S defined below.
Given 3D location as well as poses of a pair zi, zj , we first align each of them by rotating
along the center, so the θ = 0. The similarity metric S between (zi, zj) and (zk, zl) is
defined as follows:

S((zi, zj), (zk, zl)) = λ(dij − dkl)
2 + γ[Δ(θi, θk)

2 +Δ(θj , θl)
2] (8)

where dij is the distance between zi and zj and θi is the individual pose angles of zi
after the alignment. Δ(θi, θk) computes the difference between θi and θk. The weights
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Iteration 1 Iteration 2 Iteration 3 Iteration 4
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e:−139.04

Fig. 6. Illustration of the iterative augmentation algorithm. We show the different groups dis-
covered in each iteration with different colored bounding boxes. The number on top-left corner
shows overall energy value given the configuration and numbers on bottom-left corner of each
group shows the energy contribution of each group. Notice that the algorithm tends to group
larger people in one iteration since a larger incorrect group minimizes overall objective value
better than a smaller but correct group. Our algorithm is capable of fixing such mistakes made
in earlier iterations and arrives at an optimal solution in a few iterations.

λ and γ are empirically set to 2.5 and 1. Any clusters containing more than T instances
are kept as possible interaction labels. In practice, we set T = 10. In order to learn both
intragroup and intergroup interaction labels, we perform the dictionary learning sepa-
rately for the pairs observed in the same groups and the pairs observed across different
groups. Some examples of learned interaction labels are shown in Fig. 4.

Given the SVM interaction classifier confidences vector φxx , the ψxy(xi, xj , yi,j)
(Eq.3) are obtained by taking the confidence value of the interaction label yi,j .

4 Inference

Given the potentials and features defined thus far, we can model the interactions between
people in an image. To find the optimal set of groups Ĉ that minimize equation 1, we
need to perform inference on this model. The inference problem, however, is very chal-
lenging since there are an unknown number of groups C with different group types in a
scene. To cope with the challenges, we propose the iterative-augmentation algorithm.

Let us define the group augmentation operator ⊕ as Ck⊕Cnew = C
−
k ∪Cnew where

∀i, k, hk−i = 0 if hnewi = 1, hk−i = hki otherwise (hki represents the membership of in-
dividuals to a group, Sec. 2). Clearly, the operator is not commutative and gives priority
for the new group to include individuals as participants while keeping the assignment
constraint

∑
h h

k
i + hBi = 1.

The iterative augmentation algorithm starts the inference with an empty set of groups
Ĉ0 = ∅. Then, in each iteration we find a single group that minimize the function:

�Ψ(Ck; Ĉk−1,X,Y) = Ψ(Ĉk−1 ⊕ Ck,X,Y)− Ψ(Ĉk−1,X,Y) (9)

The new group Ĉk is obtained by Ĉk−1⊕Ck. The key property of this algorithm is that
it can fix mistakes made in early iterations (see Fig. 6) and can find the optimal solution
if it finds optimal Ck for Eq. 9. We optimize Eq. 9 by applying a variational method on
each group type ĉ. Fixing the group type ĉ, the optimization space can be represented
by the membership vector Ĥk. With a slight abuse of notation, we can reformulate the
optimization problem with a fully connected conditional random field (CRF) as:

�Ψ(Ĥk) =
∑

i

ψu(ĥ
k
i ) +

∑

i<j

ψp(ĥ
k
i , ĥ

k
j ) (10)
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Since this CRF is fully connected and contains high order cliques, it is not possible
to obtain globally optimal solution in an efficient way. Instead, the energy function is
approximated with a mean field distribution Q(Ĥk) =

∏
iQ(ĥki ) that minimizes the

KL divergence between Q and P (Ĥk) = 1
Z exp(−�Ψ(Ĥk)) using mean-field mes-

sage passing (MFMP) [17]. Given the approximate distributionQ, the optimal solution
is found by taking the maximizing state of each variable in the marginal distribution.
Please see the supplemental material for details of the reformulation and the derivation
of the mean-field message passing algorithm. In practice, we run both the MFMP al-
gorithm and the greedy algorithm and take the solution gives better objective value. 1

Although the interaction labels Y could be optimized jointly in this algorithm by incor-
porating a high order potential, in practice we obtain Y separately using the bottom-up
signal for computational reasons. Computing the joint model efficiently is future work.

5 Model Learning

To train our model, we need to learn the parameters w that maximize its discriminative
power. We learn these from training data that contains supervised annotations of 1)
bounding boxes around individual people, 2) pose labels for individual people, and
3) the group annotations. Group annotations are done by labeling each person to his
associated group instances, or to not belonging to any groups. For instance, in Fig. 1
(right), the man in the gray jacket and the women in front of him belong to a “sitting-
facing-each-other” group while the others are belong to different instances of the same
group type.

Given the interaction dictionary Y (Sec. 3.4) and a set of training images {Xi,Ci}i,
the model parameters are learned using the structured support vector machine frame-
work [15]. In order to obtain the group association Ci and interaction labels Yi, we find
the optimal association between detections Xi and ground truth human annotations by
computing the intersection-over-union (IOU) between the two. If the IOU is larger than
0.5, we transfer the ground truth group association and interaction labels to the corre-
sponding detections and pairs of detections. If not, we assign a false positive group and
a false positive interaction label to any pair that is connected to the detection. Then, us-
ing the complete set of information {Xi,Yi,Ci}i, we obtain the corresponding model
parameters w using the following structural SVM formulation:

min
w,ξ

1

2
‖w‖2 +C

∑

i

ξi, s.t. ΨY,w(C,Xi,Yi)− ΨY,w(Ci,Xi,Yi) ≤ ξi − δ(C,Ci), ∀i,C
(11)

whereC is a hyper parameter in an SVM and ξi are slack variables. δ(C,Ci) represents
the loss function of a discovered group C. More details of the learning procedure can
be found in the supplemental materials.

1 We observe that two algorithms are complementary to each other in the experiments. Among
all the experiments, MFMP achieves a better solution (with smaller objective values) for 41%
of the times, while greedy win for 33% of the times.
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Table 1. Classification accuracy of input features. Poselet detections are used in this experiment.
We show both average per class accuracy and overall accuracy as the data is unbalanced.

Pose Interaction Group Context
# classes 2 4 25 59 9

Train 83.1 / 83.6 78.0 / 77.7 42.5 / 47.6 34.1 / 48.1 52.6 / 66.7
Test 79.6 / 80.5 71.0 / 66.9 41.7 / 33.6 28.8 / 35.2 43.0 / 52.7

6 Experimental Evaluation

Dataset: We test our algorithm on a newly proposed challenging dataset, Structured
Group Dataset (SGD)2. The dataset is contains 588 images with 5,415 human anno-
tations and 1,719 groups (excluding outliers). We mirror all the images to get 1,176
images with 10,830 humans and 3,438 groups. The groups are categorized into 7 dif-
ferent types of structured groups. Examples of the structured groups are shown in the
Fig. 2. We contribute supervised annotations of individual person properties - bounding
boxes, individual poses (standing, sitting on an object, sitting on the floor), and 8 dif-
ferent view points (front, front-left, ..., back-right). We also provide annotations of all
groups. Please see the supplemental material for examples and statistics.

Experimental Setup: In order to provide an extensive evaluation of the method, we
run 5 fold training and testing over the entire dataset. In each split, we learn the pose
classifier, the interaction dictionary and classifier, and contextual group classifier in se-
quential order. To prevent overfitting we train each low level classifier using 10 fold
cross validation over the training set and assign the classifier output in each fold sep-
arately. The cross-validated confidence values are used as features for model learning.
The entire training data are used to provide features for the testing data. Please see the
Tab. 1 for the classification accuracies for the first set of training and testing splits.

Evaluation Metric: Evaluating structured groups is complex. To evaluate whether a
group is correct we first need to determine if the individuals were detected correctly and
if they were, whether they belong in the same group. Assigning individual detections to
ground truth detections must be done carefully to provide a fair evaluation. For exam-
ple, there could be many detection boxes overlapping with a ground truth annotation.
Evaluating the grouping is also complex as accidentally dividing or merging clusters
can vastly affect the outcome [34].

In the following experiments, we report two metrics. First, we report the precision,
recall, and corresponding F1-measure (2PR/(P + R)) value of our solution. Group
detections are evaluated using the intersection over union ratio of the group partici-
pants. This is computed by dividing the number of individuals that are both included in
a ground truth group and a discovered group (intersection) by the number of individuals
that are either participating in the ground truth group or the discovered group (union).

2 The dataset and our code are available at http://cvgl.stanford.edu/projects/
groupdiscovery/.

http://cvgl.stanford.edu/projects/groupdiscovery/
http://cvgl.stanford.edu/projects/groupdiscovery/
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GT detections Poselet detections
Avg Per−Class Accuracy: 53.6% / Total Avg: 53.6%

Classified class
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40.4% 25.9% 0.1% 0.0% 22.0% 1.3% 0.0% 10.4%

26.3% 46.4% 0.2% 0.2% 17.6% 0.1% 0.0% 9.1%

0.3% 0.2% 71.5% 0.2% 0.4% 19.4% 0.2% 7.8%

0.0% 0.0% 0.0% 73.8% 0.3% 1.0% 21.3% 3.5%

29.7% 20.1% 0.2% 0.1% 36.6% 0.6% 0.0% 12.7%

0.2% 0.5% 30.7% 0.5% 0.9% 53.1% 0.8% 13.4%

0.0% 0.0% 0.9% 23.7% 0.0% 7.4% 60.2% 7.8%

11.7% 9.4% 10.5% 3.4% 8.7% 7.6% 2.0% 46.7%
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Avg Per−Class Accuracy: 61.7% / Total Avg: 64.9%
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0.7% 0.7% 22.0% 0.5% 1.0% 66.9% 0.5% 7.6%

0.0% 0.0% 2.0% 18.0% 0.0% 15.7% 57.6% 6.7%

4.0% 15.1% 10.7% 2.1% 5.7% 8.7% 2.6% 51.1%
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Avg Per−Class Accuracy: 43.4% / Total Avg: 44.4%
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Avg Per−Class Accuracy: 48.0% / Total Avg: 52.6%
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Fig. 7. Confusion tables for group category classification with GT and poselet detections. We
compare the accuracy of the output of context feature alone (Sec. 3.3 and the final output of our
model. In both GT and poselet detection experiments, we observe significant improvements.

If the ratio is larger than 0.5, we declare the discovered group a true positive. Following
the PASCAL evaluation convention [11], only one group is associated with a ground
truth group. This measure can evaluate the segmentation accuracy of individuals into
groups as well as the categorization accuracy of each discovered group. When evaluat-
ing the group discovery with poselet detections, we ignore the ground truth annotations
that do not match with any detection hypothesis to separate the error caused by detector
itself. Second, we show the individual person labeling accuracy in a confusion table to
evaluate the assignment of individuals to semantic groups.

Baseline Method: As a baseline for our evaluation, we propose to group objects based
on proximity. A similarity matrix is constructed based on the estimated 3D distance
between people and Normalized Cuts [31] is used to cluster the people into k groups.
NCuts requires k to be given (denoting NCut+K), so we provide the correct ground
truth number of groups in each image (including groups for outliers and false positive
detections). This is a very important piece of information that our system does not
have, so this baseline is very strong. The group category label is assigned by taking the
votes of individual contextual classifier outputs (Sec. 3.3) and no interaction labels are
considered here.

Component Evaluations: To better understand the contributions of the components of
our system, we also compare against multiple reduced versions of our model as follows.

– (w/out interactions) We exclude the intragroup and intergroup interactions by re-
placing the pairwise edges in our graph with conventional distance-based edges.
Interaction labels are replaced by 4 distance labels corresponding to the distance
bins used in the pair interaction feature (Sec. 3.4).

– (w/out 3D) We use only 2D information instead of the estimated 3D information
when computing the interaction feature. The distance between people is normalized
by their average width.

We also provide all results on both detected persons as given by the Poselet detec-
tor [2] (Poselet) and on the ground truth person detections (GT) to separate the system
performance from the performance of the person detection algorithm used.
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Results and Analysis: We start with the precision, recall, and F1 measure comparison.
Table 2 (top) summarizes the results for all of the baseline and reduced methods given
ground truth human annotation person detections. Table 2 (bottom) gives the same
results given the Poselet human detections.

We observe that there is a large gap between the group discovery results obtained
using GT and poselet detections. Actual detection outputs are often noisy in terms
of localization, missing detections and false positives. This makes high-level reason-
ing extremely challenging. Nevertheless, our algorithm shows robust results as seen in
qualitative examples shown in Fig. 8 and the quantitative metrics shown in the Tab. 2.

We also notice that conventional clustering (NCuts) does not perform well even
though the ground truth number of clusters are given and the same unary features are
provided for the categorization. This confirms that the data set is extremely difficult and
a more complex approach is required.

Let us consider the partial models. The partial model without pairwise interactions
does not perform as well as the full model. This implies that reasoning about the inter-
action between pairs of people is critical for finding groups.

The 2D-based model achieves much lower accuracy than the 3D-based model. This
is not surprising given that the 2D model is not view or distance invariant.

Our experiments also show that the algorithm can effectively estimate the number
of groups present in the scene. We found that the mean absolute error of the predicted
number of groups per image is 0.59when GT detections are used, and 0.71when poselet
detections are used. The mean true number of groups is 4.25 for entire test set.

OS
OS

GF

SF

SF
SF

OF

SS

OS

Q
OS

OS

OS

Fig. 8. Qualitative examples of the results obtained using our full model with poselet detections.
We show the image configuration of groups on the left and corresponding 3D configuration on the
right. Different colors represent different groups, the type of each structured group is overlayed
on the bottom-left of one participant. In 3D visualization, squares represent standing people, cir-
cles represent people sitting on an object, and triangles represent people sitting on the ground.
The view point of each individual is shown with a line. The gray triangle is the camera posi-
tion. The poses are obtained by using the individual pose classification output for visualization
purposes. The figures show that our algorithm is capable of correctly associating individuals
into multiple different groups while estimating the type of each group. Notice that our algorithm
can successfully segment different instances of the same group type that appear in proximity. A
distance-based clustering method would not be able to differentiate them. The last figure shows a
typical failure case due to only reasoning about people while ignoring objects (such as the tables).
Detections that are not assigned to outlier (NA), false positive (FP) or background are not shown
to avoid clutter.
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Table 2. Precision, recall, and F1 measure given ground truth detections (top) and Poselet detec-
tions (bottom). Each column shows the precision and recall for each structured group category.
Our model shows clear improvement over the baseline NCut+K and partial models. In some cases
NCut+K does better than our model, but note that we provided the ground truth number of groups
to NCut algorithm that is not available in practice. The best numbers in each column are bold.

Method P/R Q SF OF GF SS OS GS Avg

Group Discovery with Ground Truth Detections

NCuts+K
Prec 12.29 47.80 50.13 43.55 25.94 47.25 43.03 38.57

Recall 35.50 40.91 76.73 76.00 25.23 39.21 30.87 46.35
F1 18.26 44.09 60.64 55.37 25.58 42.86 35.95 42.10

w/o interactions
Prec 6.76 39.48 44.88 56.34 21.68 40.08 21.89 33.01

Recall 1.91 55.06 56.52 60.00 14.22 38.96 19.13 35.11
F1 2.98 45.99 50.03 58.11 17.17 39.51 20.42 34.03

w/o 3D
Prec 32.29 44.96 46.98 52.23 36.51 38.18 26.63 39.68

Recall 11.83 57.92 52.66 58.50 15.83 36.29 19.57 36.09
F1 17.32 50.62 49.66 55.19 22.08 37.21 22.56 37.80

full model
Prec 41.86 55.78 62.48 60.19 39.08 53.85 37.65 50.13

Recall 27.48 64.55 65.56 65.00 21.33 40.86 26.52 44.47
F1 33.18 59.85 63.98 62.50 27.60 46.46 31.12 47.13

Group Discovery with Poselet Detections

NCuts+K
Prec 6.47 11.81 16.58 19.38 13.52 18.00 8.39 13.45

Recall 29.03 34.96 34.19 53.39 24.37 44.95 12.00 33.27
F1 10.58 17.66 22.33 28.44 17.39 25.71 9.88 19.16

w/o interactions
Prec 9.32 18.25 20.49 29.80 16.37 20.72 11.11 18.01

Recall 8.87 30.49 36.25 50.00 14.21 39.63 10.00 27.06
F1 9.09 22.83 26.18 37.34 15.21 27.21 10.53 21.63

w/o 3D
Prec 16.95 21.13 26.97 34.90 25.14 20.77 9.84 22.24

Recall 16.13 28.86 43.19 56.78 22.34 37.50 6.00 30.11
F1 16.53 24.40 33.21 43.23 23.66 26.73 7.45 25.58

full model
Prec 25.74 26.40 30.61 36.21 30.57 23.01 13.19 26.53

Recall 28.23 42.28 50.13 53.39 24.37 33.78 12.00 34.88
F1 26.93 32.50 38.01 43.15 27.12 27.37 12.57 30.14

Finally we study the accuracy of classifying the group category for each individual,
with results in the confusion tables in Fig. 7. For each individual, the category label is
derived from the label of its group. The result suggest that reasoning with the full model
improves individual classification over the baseline unary classifier that only looks at
local context. We show results for both ground truth and detected persons.

7 Conclusion

In this paper, we tackled a new challenging problem, group discovery in images. As a
key contribution, we introduced the concept of discriminative interaction patterns and
proposed a view invariant interaction feature to robustly encode the patterns.
The interaction patterns enabled us to segment different instances of groups properly.
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Our iterative augmentation algorithm effectively found the number of structured groups
in images and identified their participants. We demonstrated the effectiveness of our al-
gorithm using both quantitative and qualitative experimental results on a new and diffi-
cult dataset. This approach is now ready to be used as a step toward higher-level activity
understanding.

Acknowledgement. The work is partially supported by an ONR award N0001411
10389.
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