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Abstract. We describe an implementation of the Deformable Parts
Model [1] that operates in a user-defined time-frame. Our implemen-
tation uses a variety of mechanism to trade-off speed against accuracy.
Our implementation can detect all 20 PASCAL 2007 objects simulta-
neously at 30Hz with an mAP of 0.26. At 15Hz, its mAP is 0.30; and
at 100Hz, its mAP is 0.16. By comparison the reference implementation
of [1] runs at 0.07Hz and mAP of 0.33 and a fast GPU implementation
runs at 1Hz. Our technique is over an order of magnitude faster than
the previous fastest DPM implementation. Our implementation exploits
a series of important speedup mechanisms. We use the cascade frame-
work of [3] and the vector quantization technique of [2]. To speed up
feature computation, we compute HOG features at few scales, and apply
many interpolated templates. A hierarchical vector quantization method
is used to compress HOG features for fast template evaluation. An ob-
ject proposal step uses hash-table methods to identify locations where
evaluating templates would be most useful; these locations are inserted
into a priority queue, and processed in a detection phase. Both proposal
and detection phases have an any-time property. Our method applies to
legacy templates, and no retraining is required.

Keywords: Fast Object Detection, Real-time Object Detection, Fast
Deformable Parts Model.

1 Introduction

A major burden in using object detectors in practice is speed. Except for certain
objects including face, pedestrians and certain rigid objects, detectors do not
currently run at video rate. We employ a series of techniques to detect several
objects together at video rate. The architecture we present in this paper can
detect the 20 PASCAL VOC categories simultaneously at 30Hz.

We focus on speeding up DPM [1] because it is a mature and stable technology.
While other detection methods are more accurate, the full potential of these
technologies has not yet been explored, and they will not take their final form
for some time. We believe that our speed-up techniques exploit fundamental
properties of templates and will apply to deep leaning methods.

We build up our detector based on Deformable Parts Model [1] and compare
to its latest implementation [21]. The latest implementation detects 20 PAS-
CAL VOC object categories in about 13 seconds per image from the PASCAL
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Fig. 1. Our fast implementation of Deformable Parts Model can jointly detect 20 PAS-
CAL categories at 30fps or faster. The pipeline consists of four steps that together run
at video rate speed. To achieve this speed we used optimized techniques for each step.
Optimizations for HOG feature computation are discussed in Section 2; Fast Vector
Quantization is discussed in Section 3; The object proposal technique is discussed in
Section 4; and object scoring is discussed in Section 5. For details about the exact
computation time of our implementation please refer to Section 6. Allocation of time
between the proposal and the detection phase can be balanced according to the pro-
cessor architecture, dataset properties and application requirements; time allocation is
discussed in Section 7.

dataset. Several techniques have been developed to speed up DPMs [3][11][2].
These techniques can speed up computation time to about 0.5 seconds (2Hz)
with almost no loss of accuracy. Our techniques obtains a further speed-up to
30Hz with a minor loss of accuracy. Furthermore, our technique allow an explicit
trade-off of accuracy for speed.

Furthermore, our technique can maintain a fixed frame rate at 30.0Hz that
is essential in practical applications. Most speed-up techniques optimize average
speed and cannot guarantee a fixed time per frame.

Our technique consists of four major steps that are illustrated in Figure 1.
Given a query image, we first extract a lightweight version of HOG features
from the image (details in Section 2). We then vector quantize HOG features
according to Section 3. We use a data-structure to obtain object proposal to
identify the promising locations (Section 4). We finally score the proposals by
evaluating the corresponding templates (Section 5).

We employ separate optimization techniques to speed up each of the four main
stages. We implemented a highly optimized code to extract HOG features very
quickly. Our implementation utilize various low-level optimizations including
vector operations, multiple cores and CPU cache management. We also use a
lightweight version of the HOG pyramid that further speeds up the process.
After the HOG features are computed we use a hierarchical clustering process
to vector quantize the HOG features (Section 3).

We use a data-structure to provide cheap object-dependent proposals in Sec-
tion 4. Our proposal stage uses a hashing scheme that allows us to process only a
small fraction of templates at each location. Our object scoring stage (Section 5)
can also operate in a user-defined time-frame. It processes as many locations as
it can within the specified time-frame.

Our implementation is fast and light-weight. The code is implemented in C++
but can be called from MATLAB. Our implementation will be available online
for public use upon paper acceptance. Our algorithm not only can process an
image to detect 20 pascal categories simultaneously at 30fps, it can further trade
off accuracy for time to achieve a detection rate of 100Hz.
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1.1 Prior Work

There is a rich literature of fast object detection built up on the original De-
formable Parts Model [1] algorithm. Several successful speed-up techniques have
been introduced in the last few years.

Cascades speed up evaluation by using rough tests to identify promising lo-
cations to further process using fine tests. For example, Felzenszwalb et al. [3]
evaluate root models, and then evaluate the part scores only in promising loca-
tions. At each iteration their method evaluate the corresponding template only
if the current score of the object is higher than a certain threshold. Sadeghi et
al. [2] follow a similar approach but they use a fast vector quantization technique
that is compatible with cascades to further boost the speed. Pedersoli et al. [12]
estimate the score of a location using a lower resolution version of root templates
and use higher resolution templates in high-scoring locations. Dollar et al. [10]
enable neighbouring locations to communicate when a template is being evalu-
ated. Cascade approach to object detection has been shown to be very successful
for speed-ups.

Transform Methods evaluate templates at all locations simultaneously by
exploiting properties of the Fast Fourier Transform. The advantage of these
methods, pioneered by Dubout et al. [11] is that the computation is fast and exact
at the same time. In comparison, most other techniques involve approximation.
The disadvantage of this approach is that it is not random-access; a large chunk
of the locations are processed in one pass making the algorithm incompatible
with cascade techniques.

Hash Tables exploit locality sensitive hashing [15] to get a system that
can detect many thousands of object categories in a matter of seconds [14]. This
strategy appears effective and achieves a good speed-up with very large numbers
of categories. Dean et al. [14] use a hash table at the core of their technique
that allows them to spend computation for only the high-scoring locations. The
advantage of this technique compared to cascades is that they don’t require any
computation for low chance locations whereas cascade algorithms examine every
location at least once.

Vector Quantization is well-studied for data compression [18]. In the past
few years several algorithms have used vector quantization to speed up compu-
tation. These techniques operate in situations where arithmetic accuracy is not
crucial. Jégou et al. [17] successfully apply vector quantization to approximate
nearest neighbour search. Kokkinos [13], Vedaldi et al. [16] and Sadeghi et al. [2]
apply different variations of this approach to object detection and demonstrate
significant speed-ups.

Hierarchical Classification techniques run detectors in a tree structure
with a depth of O(logC) to be able to cover C categories. Nistér et al. [§]
clusters categories using hierarchical k-means. Bengio et al. [24] use detectors
that are suitable to discriminate between groups of categories. Both techniques
are scalable in terms of C.
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Object Proposals are used in object detection techniques that need to
avoid a dense sliding window search. Some object proposal algorithms produce
category-independent proposals (e.g. Endres et al. [6] and Cheng et al. [7]) while
others [14] provide category-dependent proposals. The main source of speed-
up in these techniques is that they significantly limit the number of locations
to evaluate detectors. Category-dependent proposals are preferred in speed-up
applications as they need to be evaluated by fewer detectors.

GPU Implementation can be used to speed up object detectors as well.
Vanilla DPM [22] is a version of DPM that can harness the power of GPU to
speed-up object detectors.

These techniques have improved the object detection speed so much that
the feature computation stage has became a major bottleneck. Dolldr et al. [4]
present elegant techniques to speed-up features computation. We use a version
of [4] to speed up our feature computation (Section 2).

2 Pyramid of Features vs. Pyramid of Templates

Conventional object detectors operate at various scales to be able to detect
objects with variable sizes. Template based object detectors extract local features
at various scales (e.g. HOG pyramid [5] and histogram of sparse codes [19]) and
evaluate a given template at all scales. In practice ten scales per octave is typical.

Feature computation is a major bottleneck for pedestrian detection. Dollar et
al. [4] present an elegant technique to process features for certain key scales (one
or two per octave) and interpolate for the rest of scales. Their experiments with
pedestrian detection show that this leads to a significant speed-up for feature
computation. Benenson et al. [25] interpolate templates for integral channel fea-
tures. Our approach is similar to Dollér et al. [4]; however, instead of rescaling
features we rescale templates (Figure 2). We rescale each template to several
scales in order to make a Pyramid of Templates. Our experiments show that
this works as accurate as rescaling features while being faster in practice. The
pyramid of templates has two major advantages over the regular pyramid of
features:

1. Because HOG templates are several times smaller in size than HOG features
(2K cells per object category vs. 100K cells per image) processing and storing
HOG features takes much more time than templates. Furthermore, categories
are often fixed for several images while every new image comes with a new
feature. As a result, reducing the number of feature levels per octave directly
limits the space required to store features. In our experiments HOG features
are compressed from 8MB to 1.6MB per image. The benefits include more
efficient caching and more efficient mobile application.

2. Several speed-up techniques are based on having a large number of templates
(e.g. Pirsiavash et al. [9] and Dean et al. [14]). The computational complex-
ity of [14] is claimed to be independent of C' the number of templates. Their
computational complexity depends only on L the number of locations to
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Fig. 2. a: Conventional object detectors run templates on a pyramid of features to
capture a range of scales (ten scales per octave is typical). Dollar et al. [4] compute
two scales per octave then interpolate the rest of the scales to considerably speed up
feature computation at the cost of about 2% loss of average precision. b: Instead of in-
terpolating features we interpolate templates. We show that interpolating templates is
faster and leads to further speed-up techniques. c: We generate new templates by inter-
polating templates to different scales. d: This process introduces some error. The two
scatter plots illustrate original template score versus the score produced by interpolated
features/templates. d: Top: Features are interpolated according to [4]. Bottom: Tem-
plates are interpolated instead of features. Although interpolating templates is faster
than interpolating feature pyramids, the errors are in the same range.

evaluate templates (whereas most algorithms have at least a @(CL) term in
their complexity). Our technique uses 5C' templates and éL locations; there-
fore, it can directly benefit from speed-up techniques presented by Pirsiavash
et al. [9] and Dean et al. [14].

A few technical issues arise when resizing templates for object detection. All
part templates need to be resized as well as deformation costs and part loca-
tions. The interpolation method can affect the quality of the new template. In
order to resize a HOG template we interpolate every layer separately. We com-
pared bilinear and bicubic interpolations and bicubic interpolation appears to
be the best. The interpolated weights are adjusted by a factor to maintain the
mean and the standard deviation of the scores. Our experiments show that this
optimization leads to an mAP loss of about 0.02, compatible to that of [4].

3 Hierarchical Vector Quantization

Several optimization techniques have been employed to speed up Deformable
Parts Model object detectors. The fastest was proposed by Sadeghi and Forsyth
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Fig. 3. a: The method proposed by Sadeghi and Forsyth [2] quantizes each cell into
one of 256 pre-defined clusters. Nearest neighbour search is a significant bottleneck in
their technique. In this paper we use hierarchical clustering instead of flat clustering.
b: each cell is first quantized into one of the 16 clusters. ¢: Depending on the first
level, the cell is clustered into one of 16 clusters in the respective group in c. Note
that hierarchical clustering reduces the number of comparisons from 256 per cell to
two stages of 16 comparisons per cell.

[2]. This is nearly two orders of magnitude faster than the original implemen-
tation of [21]. The key to their success is a vector quantization technique that
decreases the computation demand by a large factor. They vector quantize HOG
features and compute template scores by indexing certain look-up tables and
adding their scores.

We use vector quantization for the same purpose but with a slightly different
approach. The main computation bottleneck in [2] is vector quantization. They
need 70ms per image to quantize HOG features for one image. The high com-
putational demand is due to the fact that each HOG cell needs to be compared
against every one of 256 cluster centers. (Figure 3, a). We use a hierarchical
clustering technique to speed up this process. We first cluster each cell into 16
clusters (Figure 3, b). Then according to the nearest cluster in the first step we
compare against 16 other clusters to find the nearest cluster (Figure 3, c¢). We
pre-compute clusters using k-means algorithm.

Our experiments show that the proposed hierarchical clustering technique
leads to a negligible loss of 0.001 in mAP. In contrast, the speed-up gain is
about 8-fold.

4 Object Proposal Using Hash Table

We cannot evaluate all templates at all locations fast enough. Instead, we use
a hashing technique to identify promising locations and insert them into prior-
ity queues (Figure 4). Proposals will then be processed in the object scoring stage
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Fig. 4. Our proposal generation data-structure. We use a few look-up tables that are
filled with pre-determined proposals. For each location we make a hash code by ob-
serving four pre-specified cells. We index the code into a hash table and obtain a list
of pre-determined category proposals for each location. We store the proposals in cate-
gory specific priority lists and later use them to evaluate the score of each location for
each proposed category.

(Section 5). This architecture means that both the proposal process and the
template evaluation process can be terminated at any time allowing our method
to operate at fixed frame rate and trade-off accuracy for speed.

The cascade framework applied to Deformable Parts Model first evaluates
a rough version of a given root template and then evaluates the correspond-
ing part scores and finally re-estimate the scores by using fine templates (e.g.
Felzenszwalb et al. [3] and Sadeghi et al. [2]). Although cascade methods prune
the majority of locations, they need to at least evaluate all root templates at all
locations (they can prune part templates but not root templates). To process
the 20 PASCAL categories this step takes about 400ms in [3] and about 90ms
in [2]. The two techniques are both too slow for video rate speed.

Several algorithms are introduced to generate object proposals for object de-
tection (e.g. Endres et al. [6] and Cheng et al. [7]). We use a proposal generation
data-structure to limit template evaluation to a sparse set of proposals rather
than dense sliding window search. Our data-structure uses a hash table similar
to Dean et al. [14]. Our hash table is distinguished from [14] in three aspects:

1. Instead of Winner Takes All (WTA) hash we use a hashing scheme compat-
ible to our hierarchical vector quantization (Figure 4).

2. The data-structure used by Dean et al. [14] proposes template ID’s with-
out proposed scores. Our data-structure provides a priority score with each
template ID. The priorities help us later choose which templates to process
further.

3. The data-structure used by Dean et al. [14] uses hundreds or thousands of
hash tables. We instead use 10 hash tables. The fact that we need fewer hash
tables is partly due to our pre-stored priority scores.
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4.1 Hash Codes

In order to generate proposals, we process all locations in an image (sliding
window search) using our data-structure. Since different templates are different
in size, we refer to each location using its top left co-ordinate (Figure 4). At each
location we extract proposals using 10 separate hash tables.

Each hash table is indexed with a distinct 16-bit code. The 16-bit code is gen-
erated by observing four quantized cells and concatenating their corresponding
quantization ID. We use a dictionary of 16 words (4-bits) for each cell that is
equivalent to the first level of hierarchical quantization discussed in Section 3
(Figure 3). Reference cells are randomly determined for each hash table while
initializing the data-structure.

Each cell of the hash tables is linked to a list of proposed templates and their
corresponding priorities. A template can be determined by its category, root
index and scale. For the PASCAL dataset and Deformable Parts Model version
5, there are 20 categories, 6 root templates per category and 5 scales (Figure 2):
a total of 1200 root templates. We store 20 templates for each cell of the hash
table. However, most of the proposals are not used in most cases.

4.2 Priority Lists

For each root template we store a separate priority list (Figure 4). Each list
stores several proposal locations with their corresponding priority scores. The
priority scores are used to determine the priorities between locations given a
root template. Each root template has a limited budget of locations to examine
that are chosen according to priority scores.

We use a simple array to store each priority list. After the lists are populated
with proposals we keep a number of proposals that are expected to complete
within the specified time-frame. We then evaluate root templates on remaining
locations and update their priority score with the actual responses from the root
templates.

The reason we store a separate priority list per template — as opposed to one
joint priority list — is that the scores of different root templates are not directly
comparable. Also the user may need to specify more process time on a certain
template depending on the application. In our experiments we process equal
number of locations per root template. Process allocation could be adjusted
depending on the architecture of processor and the application. We discuss time
allocation in more detail in Section 7.

4.3 Hash Table Initialization

We use 10 parallel hash tables each indexed with a separate 16-bit code. A
hash code is generated by concatenating the quantization ID’s of four cells. We
randomly choose the cells in a 12 x 12 window and build the look up tables
accordingly. For each possible hash code we compute a rough approximation
score using the look-up tables used by Sadeghi and Forsyth [2]. We choose the
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20 top categories according to the approximation scores. We perform a score
adjustment process to make sure all templates are equally likely to be proposed.
We process the 10 hash tables in a sequence to balance proposals among
all locations in case of early termination. If not enough time is available to go
through all hash tables, the tables used will cover image locations fairly.

5 Object Scoring

Our proposal generation process provides a separate priority queue for each
template. Because the number of proposals is often more than what we afford
to process, many proposals cannot be evaluated.

We use a version of Round-Robin algorithm to process priority queues corre-
sponding to different templates. We process one location from each queue in a
circular order, handling all queues with equal priority. As soon as one proposal
from one queue is done we process an example from the next queue. We con-
tinue this process until time is out. Our algorithm is parallelized with OpenMP
to harness the power of all processor cores. Each thread in our process is respon-
sible for an equal number of templates. All threads stop when time is up and
return their detections. The time required for Non-max suppression (NMS) is
also negligible.

We follow the technique presented by Felzenszwalb et al. [3] to process each
location. Given a proposal, we first approximate the score of the root template
using FTVQ [2]. We then add the approximated score of the first part together
with its deformation cost. We continue adding the score of all other parts in a
sequence. After we evaluate a part score we may stop and reject the proposal
according to a pre-trained threshold.

After computing the approximated scores using FTVQ, we replace the ap-
proximated score of the root template and the part templates with their exact
score in the same order. Again we may stop the process in each step according to
a threshold. If the proposal is able to pass all steps we may report it according
to NMS results.

Felzenszwalb et al. [1] and Sadeghi et al. [2] cache part template scores in their
implementation to avoid re-computation. Because we operate in a sparse set of
locations, the chances that a part template score is re-used at a certain location
is small. Therefore we don’t cache any scores. We observed that not caching
scores could improve speed in our implementation as we need to allocate lower
memory so we can utilize hardware cache more effectively.

6 Experimental Results

To evaluate our algorithm we compare it to a set of algorithms that are all based
on Deformable Parts Model [1]. We evaluate our algorithm with three frequency
settings: 15fps, 30fps and 100fps. We compare the techniques on PASCAL VOC
2007 that is established as a standard baseline.
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Table 1. Comparison of different frame rates of our method with two major imple-
mentations of Deformable Parts Model: Fast Template evaluation using Vector Quan-
tization (FTVQ) [2] and Deformable Parts Model (DPM) Version 5 [21]. We report per
category AP that is computed as the average of precisions at 11 recall rates. Frequency
is computed as 1 where ¢ is the time to detect all the 20 PASCAL VOC categories in
one image. This time includes features computation time but excludes the time to load
the image. We compare the algorithms on PASCAL VOC 2007 challenge that is a stan-
dard for benchmarking detection performance. Precision-Recall curves are illustrated
in Figure 5.

Method Ours Ours Ours FTVQ [2] DPM V5 [21]
Frequency 100Hz 30Hz 15Hz 2Hz 0.07Hz
aeroplane 0.1630 0.2695 0.3029 0.3320 0.3318
bicycle 0.3563 0.5735 0.5946 0.5933 0.5878
bird 0.0021 0.0909 0.0909 0.1027 0.1019
boat 0.0303 0.0303 0.1141 0.1568 0.1801
bottle 0.0909 0.1938 0.2425 0.2664 0.2535
bus 0.2989 0.4130 0.4720 0.5129 0.5056
car 0.2505 0.4240 0.4996 0.5373 0.5271
cat 0.1368 0.1725 0.1931 0.2251 0.1904
chair 0.0909 0.0909 0.1053 0.2010 0.2046
cow 0.0909 0.1062 0.1994 0.2432 0.2444
diningtable 0.1743 0.2500 0.2510 0.2685 0.2750
dog 0.0507 0.1159 0.1159 0.1260 0.1238
horse 0.2724 0.4735 0.5539 0.5651 0.5709
motorbike 0.2019 0.3850 0.4399 0.4849 0.4838
person 0.1962 0.3736 0.3971 0.4322 0.4327
pottedplant 0.0909 0.1179 0.1129 0.1345 0.1366
sheep 0.0000 0.0909 0.1702 0.2085 0.2154
sofa 0.1208 0.2860 0.3497 0.3568 0.3633
train 0.2801 0.3962 0.4198 0.4520 0.4651
tvmonitor 0.3075 0.3703 0.3840 0.4216 0.3943
mean AP 0.1603 0.2612 0.3004 0.3310 0.3294

We evaluated our algorithm by looking at the detection time and average
precision (AP) score with respect to our baseline. We use DPM V5 [21] as our
Average Precision baseline that is the most recent and most accurate implemen-
tation of DPM. To evaluate the time we compare to [2] that runs nearly two
orders of magnitude faster than [21] and is the fastest algorithm before this pub-
lication. Our algorithm run on a system with an Intel Xeon E5-1650 processor
and 32GB of RAM. Both our proposed algorithm and the baseline utilize all the
6 cores of the CPU at full load.

Our algorithm runs legacy models from DPM V5 [21] that are trained to have
6 root templates per category and 8 parts per root template. Our algorithm
doesn’t need to train a new model, we build up our model by processing the
pre-trained detectors of DPM V5 [21].

We use a separate optimization techniques to speed up each of the stages
of [2]. We implemented a highly optimized function to extract HOG features very
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Fig. 5. Precision-Recall curves for 9 objects in PASCAL dataset comparing to the
baseline. The black curve (above) corresponds to the accuracy of deformable parts
model at regular speed (Table 1). In the blue curve all 20 PASCAL categories are
detected at once in a time frame of 67ms (15fps). In the red curve all 20 PASCAL
categories are detected at once in a time frame of 33ms (30fps). In the green curve
all 20 PASCAL categories are detected at once in a time frame of 10ms (100fps).
For all precision recall curves a threshold is chosen so each PR curve would cover
precision > 0.05. In practical applications often one working point is chosen in the
high precision area. Note that the gap between the curves in the high precision are
tiny within the red, the blue and the black curves. This means in applications where a
high precision working point is set, the loss is less noticeable. Note that the green curve
fails to produce any detections for bird, boat and sheep categories. More information
about APs can be found in Table 1.

quickly. Our implementation uses AVX vector operations and multiple cores. It
is also optimized to utilizes CPU cache carefully. We also limit the number of
layers to extract HOG features by a factor of 5. These optimizations together
speed up HOG feature computation from 40ms in [2] to an average of 4ms.

We use a hierarchical clustering process to vector quantize HOG features
(Section 3). Our hierarchical algorithm examines two sets of 16 clusters per
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Table 2. Comparison of various versions of DPM [1]. The reported time here is the
time to complete the detection of 20 categories starting from raw image. Performance
is computed on the PASCAL VOC 2007 dataset. Note that our method is three orders
of magnitude faster than that of the original implementation. HSC [19] is slow because
it uses an experimental set of features that is different than HOG. The method by
Yan et al. [23] is not included in the table as its running time (0.22s per category) is
reported on a single core. The methods in this table run 20 categories on six cores.

Method mAP  time Method mAP  time
HSC [19] 0.343 180s FFLD [11] 0.323 1.8s
WTA [14] 0.240 26s DPM Cascade [3] 0.331 1.7s
DPM V5 [21] 0.330 13.3s FTVQ [2] 0.331 0.53s
DPM V4 [20] 0.301 13.2s Ours at 15Hz 0.300 0.07s
DPM V3 [1] 0.268 11.6s Ours at 30Hz 0.261 0.03s
Vedaldi et al. [16] 0.277 7s Ours at 100Hz 0.160 0.01s

HOG cell that is 8 times lower than that of [2] which examines 256 clusters
in one layer. Since we process five times fewer feature layers (as mentioned in
Section2), the average vector quantization load is further reduced. The total
time required for our vector quantization technique is down from 70ms in [2] to
about 5ms on average.

Our object proposal stage (Section 4) allows us to process only a small fraction
of templates at each location. It can terminate early to acomodate time for other
stages. Our object proposal process will terminate in 7ms if it is not terminated
early. Our object scoring stage (Section 5) can also operate in a specified time-
frame. On average it takes about 1.2us to process one location for one category
(including root and part scores). This algorithm processes as many locations as it
affords in the specified time-frame. In the fastest case it can run at 100Hz. In this
speed our algorithm affords to process only one location per root template (For
PASCAL 2007 we have 1200 root templates that is 20 categories X6 components
x5 scales).

Our implementation is very fast and light-weight. The code is implemented
in C++ but can be called from MATLAB. Our algorithm can process an image
to detect 20 pascal categories simultaneously at 30fps or faster. It can further
trade off accuracy for time; it can run at 100Hz while detecting 20 PASCAL
categories in a time frame of 10ms. It also requires less than 10MB of memory
at its peak demand to process an image for 20 categories (PASCAL Images are
mostly 350 x 500 pixels large). This is three orders of magnitude faster than the
original DPM V5 [21] implementation that itself is highly optimized.

Table 1 compares our algorithm with two established baselines. Our algorithm
achieves 30Hz with an mAP of 0.26. At 15Hz, its mAP is 0.30; and at 100 Hz,
its mAP is 0.16. Frequency is computed as 1 where t is the time to detect all the
20 PASCAL VOC categories together in one image. This time includes features
computation time but excludes the time to load image. We exclude the time to
load the image because the time highly depends on the media.
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Fig. 6. Our method operates within a time limit specified by the user. It can jointly
detect the entire set of PASCAL VOC challenge categories in about 10ms, that is about
0.5ms per category. The top-left plot shows the trade-off between operation time-frame
and mean Average Precision (mAP) of the 20 PASCAL categories. In this setting all 20
objects are detected jointly within the time-frame. The rest of the plots show that this
trade-off for detecting a single category. In this setting only one category is detected
within the time-frame. Note that different categories respond differently to the time-
limit. The Sheep detector fails at 100fps while the tvmonitor detector remains robust.
The red dashed line shows DPM V5 [21] baseline while the solid blue curve shows
Average Precision vs. time trade-off.

Precision-Recall curves for our experiments are illustrated in Figure 5. Note
that the gap between the curves in the high precision area in tiny between the red,
the blue and the black curves. This is very important in practical applications
as they often consider false positives costly and work in high precision regimes.

Table 2 compares our algorithm to several variations of DPM in terms of speed
and accuracy. We report running time to detect all 20 PASCAL categories from
raw image. We also compare our mean Average Precision to other techniques.
In this table we compared to only algorithms that run on CPU. The fastest
algorithm on GPU is Vanilla DPM [22] that runs at about 1Hz to detect the 20
PASCAL categories in a 640 x 480 image. It cannot sacrifice accuracy for speed.

Our algorithm can trade off accuracy for speed. Figure 6 illustrates the trade-
off for both detecting all objects jointly and also detecting only a single object.
This figure shows some detectors fail at 100fps while some others remain robust.
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7 Discussion

We believe that there are further improvements available. We expect that speed
could be improved by exploring our hashing process to: (a) interleave image load-
ing and feature computation; and (b) avoid feature computation at some image
blocks. We expect accuracy could be improved by careful tuning of time alloca-
tion (a) between proposal and detection process and (b) between templates.

The trade-offs in Figure 6 shows some detectors fail at 100fps while some
others remain robust. This suggests the optimal time allocation is not to allo-
cate equal time to each category; some categories need more time while some
categories need less.

The optimal time allocation depends on several factors including: processor
architecture, the global time limit, the demand by each category and the ap-
plication defined priorities for detecting different categories. Feature extraction
and quantization require a fixed processing budget. Our design allows the rest of
the budget to be divided between proposal generation and object scoring. The
optimal partition depends on the application.

Our experiments show objects that are harder to detect suffer more with a lim-
ited budget (see Figure 5, boat, bird) whereas categories with higher AP remain
more robust. Furthermore, Certain objects are more likely to appear in groups
(e.g. sheep, person) so they are more sensitive to limiting the number of loca-
tions to process. The study of optimal process allocation in different situations
requires an extensive study that doesn’t fit into the context of this paper.

Our trade-off allows for any speed improvement technique to directly result in
accuracy improvement. The choice of working point in speed-accuracy trade-off
allows for further data such as video or depth to be used for speed or accuracy.
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