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Abstract. This paper addresses the problem of detecting coherent mo-
tions in crowd scenes and subsequently constructing semantic regions for
activity recognition. We first introduce a coarse-to-fine thermal-diffusion-
based approach. It processes input motion fields (e.g., optical flow fields)
and produces a coherent motion filed, named as thermal energy field. The
thermal energy field is able to capture both motion correlation among
particles and the motion trends of individual particles which are help-
ful to discover coherency among them. We further introduce a two-step
clustering process to construct stable semantic regions from the extracted
time-varying coherent motions. Finally, these semantic regions are used
to recognize activities in crowded scenes. Experiments on various videos
demonstrate the effectiveness of our approach.

1 Introduction

Coherent motions, which represent coherent movements of massive individual
particles, are pervasive in natural and social scenarios. Examples include traffic
flows and parades of people (cf. Fig. 1). Since coherent motions can effectively
decompose scenes into meaningful semantic parts and facilitate the analysis of
complex crowd scenes, they are of increasing importance in crowd-scene under-
standing and activity recognition.

In this paper, we focus on: (1) constructing an accurate coherent motion field
to find coherent motions, and (2) finding stable semantic regions based on the
detected coherent motions and recognizing activities in a crowd scene.

First, constructing an accurate coherent motion field is crucial to coherent
motion detection. In Fig. 1, (c) is the input motion field and (d) is the coherent
motion field which is constructed from (c) using the proposed approach. In (c),
the motion vectors of particles at the beginning of the Marathon queue are
far different from those at the end, and there are many inaccurate optical flow
vectors. Due to such variations and input errors, it is difficult to achieve satisfying
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coherent detection results directly from (c). However, by transferring (c) into a
coherent motion field where the coherent motions among particles are suitably
highlighted (i.e., (d)), coherent motion detection is greatly facilitated. However,
although many algorithms have been proposed for coherent motion detection
[2,21,26,27,12], this problem is not yet effectively addressed.We argue that a good
coherent motion field should effectively be able to: (1) encode motion correlation
among particles, such that particles with high correlations can be grouped into
the same coherent region; and, (2) maintain motion information of individual
particles, such that activities in crowd scenes can be effectively parsed by the
extracted coherent motion field. Based on these intuitions, we propose a thermal-
diffusion-based approach, which can extract accurate coherent motion fields.

Second, constructing meaningful semantic regions for describing the activity
patterns in a scene is another important issue. Coherent motions at different
times may vary widely, e.g. in Fig 1(a), changing of traffic lights will lead to
different coherent motions. Coherent motions alone may not effectively describe
the overall semantic patterns in a scene. Therefore, semantic regions need to
be extracted from these time-varying coherent motions to achieve stable and
meaningful semantic patterns. However, most existing works only focus on the
detection of coherent motions at some specific time, while the problem of han-
dling time-varying coherent motions is less studied. We proposed a two-step
custering process for this purpose.

Our contributions to crowd scene understand and activity recognition are:
(1) We propose a coarse-to-fine thermal diffusion process to transfer the input

motion field into a thermal energy field (TEF), i.e., a more accurate coherent
motion field. TEF effectively encodes both motion correlation among particles
and motion trends of individual particles. To our knowledge, this is the first work
that introduces thermal diffusion to detect coherent motions in crowd scenes.
We also introduce a triangulation-based scheme to effectively identify coherent
motion components from the TEF.

(2) We further propose a two-step clustering scheme to find semantic regions
according to the correlations among coherent motions. The found semantic re-
gions can effectively catch activity patterns in a scene. Thus crowd activity
recognition based on these semantic regions can achieve good performance. Be-
sides, the proposed clustering scheme can also effectively handle disconnected-
ness, which is caused by occlusion or low density regions in the crowd (cf. Fig.
1 (a), the yellow regions).

The remainder of this paper is organized as follows. Section 2 reviews related
works. Section 3 describes the framework of the proposed approach. Sections
4-6 describe the details of our proposed thermal diffusion process, triangulation
scheme, and two-step clustering scheme. Section 7 shows the experimental results
and Section 8 concludes the paper.

2 Related Works

Although many works [2,21,26,27,12,17,25,9,5,10] have been proposed on coher-
ent motion detection, due to the complex nature of crowd scenes, they are not
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(a) (b) (c) (d)

Fig. 1. (a) Example time-varying coherent motions; (b) Example frame of a Marathon
video sequence, the red curve is the ground truth coherent motion region; (c) Input
motion vector field of (b); (d) Coherent motion field from (c) using the proposed
approach (Best viewed in color)

yet mature for the accurate detection of coherent motion fields. Cremers and
Soatto [9] and Brox et al. [5] model the intensity variation of optical flow by
an objective functional minimization scheme. However, these methods are only
suitable for motions with simple patterns and cannot effectively analyze complex
crowd patterns such as the circular flow in Fig. 1 (b). Other works introduce ex-
ternal spatial-temporal correlation traits to model the motion coherency among
particles [21,26,27]. Since these methods model particle correlations in more
precise ways, they can achieve more satisfying results. However, most of these
methods only consider short-distance particle motion correlation within a local
region while neglecting long-distance correlation among distant particles, they
will have limitations in handling low-density or disconnected coherent motions
where the long-distance correlation is essential. Furthermore, without the infor-
mation from distant particles, these methods are also less effective in identifying
coherent motion regions in the case when local coherent motion patterns are
close to their neighboring backgrounds. One example of this kind of scenario is
showcased in the region B in Fig. 1 (c).

Besides the works on coherent motion detection, there are also other works
related to motion modeling. One line of related works is advanced optical flow
estimation. These methods try to improve the estimation accuracy of the input
motion field by including global constraints over particles [23,14]. However, the
focus of our approach is different from these methods. In our approach, we
focus on enhancing the correlation among coherent particles to facilitate coherent
motion detection. Thus, the motion vectors of coherent particles will be enhanced
even if their actual motions are small, such as the region B in Fig. 1 (c) and (d).
In contrast, advanced optical flow estimation methods focus on estimating the
actual motion of particles. Thus, they are still less capable of creating precise
results when applied on coherent motion detection.

Another thread of related works is the anisotropic-diffusion-based methods
[18,22,20] used in image segmentation. However, our approach also differs from
these methods. First, our approach not only embeds the motion correlation among
particles, but also suitably maintains the original motion information from the in-
put motion vector field. Comparatively, the anisotropic-diffusion-based methods
are more focused on enhancing the correlation among particles while neglecting
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Fig. 2. The flowchart of the proposed approach (best viewed in color)

the particles original information. As aforementioned, maintaining particle mo-
tion information is important in parsing crowd scenes. More importantly, due to
the complex nature of crowd scenes, many coherent region boundaries are vague,
subtle and unrecognizable. Simply applying the anisotropic-diffusion methods
[18,22,20] cannot identify the ideal boundaries. The proposed thermal diffusion
process can achieve more satisfying results by modeling the motion direction,
strength, and spatial correlation among particles.

Besides coherent motion detection, another important issue is the utilization
of coherent motions to recognize crowd activities. However, most existing co-
herent motion works only focus on the extraction of coherent motions while the
recognition of crowd activities is much less studied. In [2], Ali and Shah detected
instability regions in a scene by comparing with its normal coherent motions.
However, they assume coherent motions to be stable, while in practice, many
coherent motions may vary widely over time, making it difficult to construct
stable normal coherent motions. Furthermore, besides the works on coherent
motion, there are also other works which directly extract global features from
the entire scene to recognize crowd activities [19,24]. However, since they do
not consider the semantic region correlations inside the scene, they have limi-
tations in differentiating subtle differences among activities. Although there are
some works [15,13] which recognize crowd activities by segmenting scenes into
semantic regions, our approach differs from them in that: our approach finds the
semantic regions by first extracting global coherent motion information, while
these methods construct semantic regions from the particles’ local features. As
will be shown in this paper, information from the coherent motions can effec-
tively enhance the correlation among particles, resulting in more meaningful
semantic regions to facilitate activity recognition.

3 Overview of the Approach

Fig. 2 shows framework of the proposed approach. The input motion fields are
first extracted from input videos. In this paper, optical flow fields [2,6] are ex-
tracted, and each pixel in the frame is viewed as a particle. Then, the coarse-
to-fine thermal diffusion process is applied to transfer the input motion fields
into coherent motion fields (i.e., thermal energy fields (TEFs)). After that, the
triangulation-based scheme is applied to identify coherent motions. Finally, the
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two-step clustering scheme is performed to cluster the coherent motions from
multiple TEFs and construct semantic regions for the target scene. With these
semantic regions, we can extract effective features to describe crowd activities
in the scene and perform recognition accordingly. In the following, we will de-
scribe the details of the proposed coarse-to-fine thermal diffusion process, the
triangulation-based scheme, and the two-step clustering scheme, respectively.

4 Coarse-to-Fine Thermal Diffusion

In order to facilitate coherency detection, it is important to construct a coher-
ent motion field to highlight the motion correlation among particles while still
maintaining the original motion information. To achieve this requirement, we
introduce a thermal diffusion process to model particle correlations. Given an
input optical flow field, we view each particle as a “heat source” and it can
diffuse energies to influence other particles. By suitably modeling this thermal
diffusion process, precise correlation among particles can be achieved. Besides,
we also argue that the following intuitions should be satisfied:

(1) Particles farther from heat source should achieve fewer thermal energies.
(2) Particles residing in the motion direction of the heat source particle should

receive more thermal energies.
(3) Heat source particles with larger motions should carry more thermal

energies.

4.1 Thermal Diffusion Process

Based on the above discussions, we borrow the idea from physical thermal prop-
agation [7] and model the thermal diffusion process by Eqn. (1):

∂EP ,l

∂l
= k2

p

(
∂2EP ,l

∂x2
+

∂2EP ,l

∂y2

)
+ FP (1)

where EP ,l = [Ex
P ,l, E

y
P ,l] is the thermal energy for the particle at location

P = (px, py) after performing thermal diffusion for l seconds. FP = [fx
P , fy

P ] is
the input motion vector for particle P , kp is the propagation coefficient.

The first term in Eqn. (1) models the propagation of thermal energies over free
space such that the spatial correlation among particles can be properly enhanced
during thermal diffusion. The second term FP can be viewed as the external
force added on the particle to affect its diffusion behavior, which preserves the
original motion patterns. The inclusion of this term is one of the major differences
between our approach and the anisotropic-diffusion methods [20]. Without the
FP term, Eqn. (1) can be solved by:

EP ,l =
1

wh

∑
Q∈I,Q�=P

eP ,l (Q) (2)

where EP ,l is the final diffused thermal energy for particle P after l seconds, I
is the set of all particles in the frame, w and h are width height of the frame.
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The individual thermal energy eP ,l (Q) = [exP ,l (Q) , eyP ,l (Q)] is diffused from the
heat source particle Q = (qx, qy) to particle P after l seconds, as:

eγP ,l (Q) = uγ
Q · e

−kp
l

||P−Q||2 (3)

where γ ∈ {x, y}, UQ = (ux
Q, uy

Q) is the current motion pattern for the heat
source particle Q and it is initialized by UQ = FQ. ||P − Q|| is the distance
between particles P and Q. In this paper, we fix l to be 1 to eliminate its effect.

However, when F in Eqn. (1) is non-zero, it is difficult to get the exact solution
for Eqn. (1). So we introduce an additional term e−kf |FQ·(P−Q)| to approximate
the influence of FQ where kf is a force propagation factor. Moreover, in order
to prevent unrelated particles from accepting too much heat from Q, we restrict
that only highly correlated particles will propagate energies to each other. The
final individual thermal energy from Q to P is:

eγP ,l (Q) =

{
uγ
Q × e−kp||P−Q||2 × e−kf |FQ·(P−Q)| if cos(FP ,FQ) ≥ θc

0 otherwise
(4)

where FP and FQ are the input motion vectors of the current particle P and the
heat source particle Q, and cos(FP ,FQ) is the cosine similarity, θc is a threshold.

From Eqn. (2), we see that the diffused thermal energy EP is the summation
from all the other particles, which encodes the correlation among P and all
other particles in the frame. Furthermore, in Eqn. (4), the first term preserves
the motion pattern of the heat source. The second term considers the spatial
correlation between source and target particles. And the third term guarantees
that particles along the motion direction of the heat source receives more thermal
energies. Furthermore, the cosine similarity measure cos(FP ,FQ) is introduced
in Eqn. (4) such that particle P will not accept energy from Q if their input
motion vectors are far different (or less-coherent) from each other. That is, Eqn.
(4) successfully satisfies all the intuitions.

Fig. 3 shows one example of the thermal diffusion process, which reveals that:
(1) Comparing Fig. 3 (b) and (a), the original motion information is indeed

preseved in the TEF. Moreover, TEF further strengthens particle motion co-
herency by thermal diffusion, which integrates the influence among particles.
Coherent motions become more recognizable, thus more accurate coherent mo-
tion extraction can be achieved.

(2) From Fig. 3 (c), we can see that the thermal energy for each heat source
particle is propagated in a sector shape. Particles along the motion direction
of the heat source (C and D) receive more energies than particles outside the
motion direction (such as E). In Fig. 3 (d), since particles on the lower side of
the heat source B have small (cosine) motion similarities with B, they do not
accept thermal energies.

4.2 The Coarse-to-Fine Scheme

Although Eqn. (2) can effectively strengthen the coherency among particles, it is
based on a single input motion field, and only short-term motion information is
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(a) (b) (c) (d)

Fig. 3. (a),(b): One input optical flow field and its thermal energy field; (c), (d): Indi-
vidual thermal diffusion result by diffusing from a single heat source particle A and B
to the entire field

considered, which is volatile and noisy. Thus, we propose a coarse-to-fine scheme
to include long-term motion information.

Algorithm 1: Coarse-to-Fine Thermal Diffusion Process
1: T = Tmax.
2: calculate the input motion vector field FP (T ) with T -frame intervals.
3: UP = FP (T ).
4: for n = 0 to Numitr // Numitr is the total iteration time
5: use Eqn. (2) to create the new thermal energy field En

P based on
FP (T ) and UP .

6: normalize the vector magnitudes in En
P .

7: UP = En
P .

8: T = T − Tstep.
9: if T > 0
10: calculate FP (T ) with the new T .
11: end if
12: end for
13: output En

P

The entire coarse-to-fine thermal diffusion process is described in Algorithm
1. The long-term motion vector field with a large frame interval Tmax is first
calculated and used to create the thermal energy field. Then, the TEF is itera-
tively updated with shorter-term motion vector fields, i.e., FP (T ) with smaller
T . Fig. 4 (c)-(d) show the TEF results after different iteration numbers. When
more iterations are performed, more motion information with different intervals
will be included in the thermal diffusion process. Thus, more precise results can
be achieved in the TEF, as in Fig. 4 (d). Fig. 1 (d) shows another TEF result
after the entire coarse-to-fine thermal diffusion scheme. We find that:

(1) TEF is an enhanced version of the input motion where particles’ energy
directions in the TEF are similar to their original motion directions. Besides,
since TEF include both the motion correlation among particles and the short-
/long-term motion information among frames, coherent motions are effectively
strengthened and highlighted in TEF.

(2) As mentioned, input motion vectors may be disordered, e.g., region A in
Fig. 1 (c). However, the thermal energies from other particles can help recognize
these disordered motion vectors and make them coherent, e.g., Fig. 1 (d).
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(a) (b) (c) (d)

Fig. 4. (a),(b): An input video frame and its input motion vector field; (c),(d): TEF
results of Algorithm 1 after 1 and 3 iterations, respectively (Tmax=5 and Tstep=1)

(3) Input motion vectors may be extremely small due to slow motion or oc-
clusion by other objects (region B and C in Fig. 4 (b), respectively.) It is very
difficult to include these particles into the coherent region by traditional methods
[2,21,26,27] because they are close to the background motion vector. However,
TEF can strengthen these small motion vectors by diffusing thermal energies
from distant particles with larger motions.

5 Coherent Motion Extraction through Triangulation

Coherent motion regions can be achieved by performing segmentation on the
TEF. We propose a triangulation-based scheme as follows:

Step 1: Triangulation. In this step, we randomly sample particles from the
entire scene and apply the triangulation process [11] to link the sampled particles.
The block labeled as “triangulation” in Fig. 2 shows one triangulation result,
where red dots are the sampled particles and the lines are links created by the
triangulation process [11].

Step 2: Boundary detection. We first obtain each triangulation link weight
by:

ω (P ,Q) =
||EP −EQ||
||P −Q|| (5)

where P and Q are two connected particles, EP and EQ are the thermal energy
vectors of P and Q in the TEF. A large weight will be assigned if the connected
particles are from different coherent motion regions (i.e., they have different
thermal energy vectors). Thus, by thresholding on the link weights, we can find
links crossing the boundaries. The block labeled as “detected region boundary”
in Fig. 2 shows one boundary detection result after step 2.

Step 3: Coherent motion segmentation. Then, coherent motions can be
easily segmented and we use the watershed algorithm [3]. The final coherent
motions are shown in the block named “detected coherent motions” in Fig. 2.

6 Two-Step Clustering

Since coherent motions may vary over time, it is essential to construct semantic
regions from time-varying coherent motions to catch the stable semantic patterns
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inside a scene, for which we propose a two-step clustering scheme. Assuming that
in total M coherent motions (Cm, m = 1, ...,M) from N TEFs extracted at N
times, the two-step clustering scheme is:

Step 1: Cluster coherent motion regions. The similarity between two co-
herent motions Cm and Ck is computed as:

S(Cm,Ck) = #{(P ,Q)|P ∈ Lm,Q ∈ Lk, cos(EP ,EQ) · e−kp||P−Q||2 > θbp} (6)

where #{·} is the number of elements in a set, and θbp is a threshold. Further-
more, Lm and Lk are the sets of “indicative particles” for Cm and Ck:

{
Lm = {P | cos(EP ,VP ) > θc,P is on the boundary of Cm}
Lk = {Q| cos(EQ,VQ) > θc,Q is on the boundary of Ck} (7)

where VP = [vxP , vyP ] is the outer normal vector at P , i.e., perpendicular to
the boundary and pointing outward the coherent motion region. θc is the same
threshold as in Eqn. (4). That is, only particles which are on the boundaries
of the coherent motion region and whose thermal energy vectors sharply point
outward the region are selected as the indicative particles. Thus, we can avoid
noisy particles and substantially reduce the required computations.

From Eqn. (6), we can see that we first extract the indicative particles, then
only utilize those high-correlation pairs, and the total number of such pairs are
the similarity value between two coherent motions. It should be noted that the
similarity will be calculated between any coherent motion pairs even if they
belong to different TEFs.

Then, we construct a similarity graph for the M coherent motions, and per-
form clustering [16] on this similarity graph with the optimal number of clusters
being determined automatically, the cluster results are grouped coherent regions.

Fig. 5. (a) Step 1: Coherent regions in the three TEFs have been assigned different
cluster labels by Step 1 and are displayed in different colors); (b) Find semantic regions
by clustering the cluster label vectors of the particles (best viewed in color)

Step 2: Cluster to find semantic regions. Each coherent motion is assigned
a cluster label in Step 1, as illustrated in Fig. 5 (a). However, due to the varia-
tion of coherent motions at different time, there exist many ambiguous particles.
For example, in Fig. 5(a), the yellow cross particle belongs to different coher-
ent motion clusters in different TEFs). This makes it difficult to directly use
the clustered coherent motion results to construct reliable semantic regions. In
order to address this problem, we further propose to encode particles in each
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(a) (b)

Fig. 6. (a) Directly segmenting semantic regions according to the particles’ local fea-
tures. (b) Segmenting semantic regions with the guidance of coherent motion clusters.

TEF by the cluster labels of the particles’ affiliated coherent motions. And by
concatenating the cluster labels over different TEFs, we can construct a “cluster
label” vector for each particle, as in Fig. 5(a). And with these label vectors, the
same spectral clustering process as Step 1 [16] can be performed on the particles
to achieve the final semantic regions, as in Fig. 5 (b).

Comparing with previous semantic region segmentation methods [15,13] which
perform clustering using local similarity among particles, our scheme utilizes the
guidance from the global coherent motion clustering results to strengthen the
correlations among particles. For example, in Fig. 6 (a), when directly segment-
ing the particles by their local features, its accuracy may be limited due to
similar distances among particles. However, by utilizing cluster labels to encode
the particles, similarities among particles can be suitably enhanced by the global
coherent cluster information, as in Fig. 6 (b). Thus, more precise segmentation
results can be achieved.

6.1 Activity Recognition

Based on the constructed semantic regions, we are able to recognize activities
in the scene. In this paper, we simply average the TEF vectors in each semantic
region and concatenate these averaged TEF vectors as the final feature vector for
describing the activity patterns in a TEF. Then, a linear support vector machine
(SVM) [8] is utilized to train and recognize activities. Experimental results show
that with accurate TEF and precise semantic regions, we can achieve satisfying
results using this simple method.

6.2 Merging Disconnected Coherent Motions

Since TEF also includes long-distance correlations between distant particles, by
performing our clustering scheme, we also have the advantage of effectively merg-
ing disconnected coherent motions, which may be caused by the occlusion from
other objects or low density of the crowd. For examples, the two disconnected
blue regions in the right-most figure in Fig. 5 (a) are merged into the same
cluster by our approach. Note that this issue is not well studied in the existing
coherent motion research.
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7 Experimental Results

Our algorithm is implemented by Matlab and the optical flow fields [6] are used
as the input motion vector fields while each pixel in the frame is viewed as a
particle. In order to achieve motion vector fields with T -frame intervals (T = 10
in our experiments), the particle advection method [2] is used which tracks the
movement of each particle over T frames. Furthermore, the parameters kp, kf ,
θc, and θbp in Eqns (4) and (6) are set to be 0.2, 0.8, 0.7, and 0.7, respectively.
These values are decided from the experimental statistics.

7.1 Results for Coherent Motion Detection

We perform experiments on a dataset including 30 different crowd videos col-
lected from the UCF dataset [2], the UCSD dataset [1], the CUHK dataset [27],
and our own collected set. This dataset covers various real-world crowd scene sce-
narios with both low- and high-density crowds and both rapid and slow motion
flows. Some example frames of the dataset is shown in Fig. 7.

We compare our approach with four state-of-the-art coherent motion detection
algorithms: The Lagrangian particle dynamics approach [2], the local-translation
domain segmentation approach [21], the coherent-filtering approach [26], and the
collectiveness measuring-based approach [27]. In order to further demonstrate
the effectiveness of our approach, we also include the results of a general motion
segmentation method [4] and an anisotropic-diffusion-based image segmentation
method [22].

Qualitative Comparison on Coherent Motion Detection. Fig. 7 com-
pares the coherent motion detection results for different methods. We include
the manually labeled ground truth results in the first column. From Fig. 7, we
can see that our approach can achieve better coherent motion extraction than
the compared methods. For example, in sequence 1, our approach can effectively
extract the circle-shape coherent motion. Comparatively, the method in [2] can
only detect part of the circle while the methods in [26] and [27] fail to work
since few reliable key points are extracted from this over-crowded scene. For
sequences 2 and 4 where multiple complex motion flows exist, our approach can
still precisely detect the small and less differentiable coherent motions, such as
the pink region on the bottom and the blue region on the top in sequence 2 (a).
The compared methods have low effectiveness in identifying these regions due
to the interference from the neighboring motion regions. In sequences 3 and 6,
since motions on the top of the frame are extremely small and close to the back-
ground, the compared methods fail to include these particles into the coherent
motion region. However, in our approach, these small motions can be suitably
strengthened and included through the thermal diffusion process. Furthermore,
the methods in [4] and [22] do not show satisfying results, e.g., in sequences 5
and 6. This is because: (1) the crowd scenes are extremely complicated such
that the extracted particle flows or trajectories become unreliable, thus making
the general motion segmentation methods [4] difficult to create precise results;
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Fig. 7. Coherent motion extraction results. (a): Ground Truth, (b): Results of our
approach, (c): Results of [2], (d): Results of [21], (e): Results of [26], (f): Results of
[27], (g): Results of [4], (h): Results of [22]. (Best viewed in color).

(2) Since many coherent region boundaries in the crowd motion fields are rather
vague and unrecognizable, good boundaries cannot be easily achieved without
suitably utilizing the characteristics of the motion vector fields. Thus, simply
applying the existing anisotropic-diffusion segmentation methods [22] cannot
achieve satisfying results.

Table 1. Average PER and CNE for all sequences in the dataset

Methods Proposed [2] [21] [26] [27] [4] [22]
Average PER (%) 7.8 32.5 19.5 25.6 24.1 66.4 21.4
Average CNE 0.14 1.24 0.93 1.05 0.96 1.78 0.84

Capability to Handle Disconnected Coherent Motions. Sequences 5-8
in Fig. 7 compare the algorithms’ capability in handling disconnected coherent
motions. In sequence 7, we manually block one part of the coherent motion
region while in sequences 5, 6, and 8, the red or green coherent motion regions
are disconnected due to occlusion by other objects or low density. Since the
disconnected regions are separated far from each other, most compared methods
wrongly segment them into different coherent motion regions. However, with our
thermal diffusion process and two-step clustering scheme, these regions can be
successfully merged into one coherent region.
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(a) VP (b) BT (c) HR (d) HL

Fig. 8. Example frames of the activities in the crossroad dataset

Quantitative Comparison. Table 1 compares the quantitative results for dif-
ferent methods. In Table 1, the average Particle Error Rates (PERs) and the
average Coherent Number Error (CNE) for all the sequences in our dataset are
compared to measure the overall accuracy of coherent motion detection. PER is
calculated by PER = # of Wrong Particles / Total # of Particles.

CNE is calculated by CNE =

∑
i
|Numd(i) − Numgt(i)|

Σi1
where Numd(i) and

Numgt(i) are the number of detected and ground-truth coherent regions for
sequence i, respectively. And Σi1 is the total number of sequences.

Table 1 further demonstrate the effectiveness of our approach. In Table 1, we
can see that: (1) Our approach can achieve smaller coherent detection error rates
than the other methods. (2) Our approach can accurately obtain the coherent
region numbers (close to the ground truth) while other methods often over-
segment or under-segment the coherent regions.

7.2 Results for Semantic Region Construction and Activity
Recognition

We perform experiments on a dataset of a crowd crossroad scene. This dataset
includes 400 video clips with each clip includes 20 frames. There are totally four
crowd activities in the dataset: vertical pass (VP), both turn (BT), horizontal
pass and right turn (HR), and horizontal pass and left turn (HL), as in Fig. 8.
This is a challenging dataset in that: (1) the crowd density in the scene varies
frequently including both high density as Fig. 8 (a) and low density clips as
Fig. 8 (b); (2) The motion patterns are varying for different activities, making
it difficult to construct meaningful and stable semantic regions; (3) There are
large numbers of irregular motions that disturb the normal motion patterns
(e.g., people running the red lights or bicycle following irregular paths); (4)
The number of clips in the dataset is small, which increases the difficulty of
constructing reliable semantic regions.

Accuracy on Semantic Region Construction.We randomly select 200 video
clips to construct semantic regions. Fig. 9 compares the results of four methods:
(1) Our approach (“Our”), (2) Directly cluster regions based on the particles’
TEF vectors (“Direct”, note that our approach differs from this method by
clustering over the cluster label vectors), (3) Use [21] to achieve coherent motion
regions and then apply our two-step clustering scheme to construct semantic
regions (“[21]+Two-Step”, we choose to show the results of [21] because from
our experiments, [21] has the best semantic region construction results among
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the compared methods in Table 1), (4) The activity-based scene segmentation
method in [15] (“[15]”). We also show original scene images and plot all major
activity flows to ease the comparison (“original scene”).

Fig. 9 shows that the methods utilizing “coherent motion cluster label” infor-
mation (“our” and “[21]+two-step”) create more meaningful semantic regions
than the other methods (e.g., successfully identifying the horizontal motion re-
gions in the middle of the scene). This shows that our cluster label features
can effectively strengthen the correlation among particles to facilitate semantic
region construction. Furthermore, comparing our approach with the “[21]+Two-
Step” method, it is obvious that the semantic regions by our approach are more
accurate (e.g., more precise semantic region boundaries and more meaningful
segmentations in the scene). This further shows that more precise coherent mo-
tion detection results can result in more accurate semantic region results.

Original Scene Our Direct [21]+Two-Step [15]

Fig. 9. Constructed semantic regions of different methods. (Best viewed in color).

Table 2. Recognition accuracy of different methods

Methods Our Our+OF Direct [21]+Two-Step [15] [19]
Accuracy 92.2% 87.75% 77.0% 89.5% 79.2% 67.0%

Performances on Activity Recognition. We randomly select 200 video clips
and construct semantic regions by the methods in Fig. 9. After that, we de-
rive features from the TEF and train SVM classifiers by the method in Section
6.1. Finally, we perform recognition on the other 200 video clips. Besides, we
also include the results of two additional methods: (1) a state-of-the-art dense-
trajectory-based recognition method [19] (“Dense-Traj”); (2) the method which
uses our semantic regions but uses the input motion field (i.e., the optical flows)
to derive the motion features in each semantic region (“Our+OF”). From the
recognition accuracy shown in Table 2, we observe that:

(1) Methods using more meaningful semantic regions (“our”, “our+OF”, and
“[21]+Two step”) achieve better results than other methods. This shows that
suitable semantic region construction can greatly facilitate activity recognition.

(2) Approaches using TEF (“Our”) achieve better results than those using
the input motion field (“Our+OF”). This demonstrates that compared with
the input motion filed, our TEF can effectively improve the effectiveness in
representing the semantic regions’ motion patterns.

(3) The dense-trajectory method [19] which extracts global features does not
achieve satisfying results. This is because the global features still have limitations
in differentiating the subtle differences among activities. This further implies the
usefulness of semantic region decomposition in analyzing crowd scenes.
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8 Conclusion

In this paper, we study the problem of coherent motion detection and semantic
region construction in crowd scenes, and introduce a thermal-diffusion-based
algorithm together with a two-step clustering scheme, which can achieve more
meaningful coherent motion and semantic region results. Experiments on various
videos show that our approach achieves the state-of-the-art performance.
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