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Abstract. The need to segment multiple interacting surfaces is a
common problem in medical imaging and it is often assumed that such
surfaces are continuous within the confines of the region of interest. How-
ever, in some application areas, the surfaces of interest may contain a
shared hole in which the surfaces no longer exist and the exact location
of the hole boundary is not known a priori. The boundary of the neu-
ral canal opening seen in spectral-domain optical coherence tomography
volumes is an example of a “hole” embedded with multiple surround-
ing surfaces. Segmentation approaches that rely on finding the surfaces
alone are prone to failures as deeper structures within the hole can “at-
tract” the surfaces and pull them away from their correct location at the
hole boundary. With this application area in mind, we present a graph-
theoretic approach for segmenting multiple surfaces with a shared hole.
The overall cost function that is optimized consists of both the costs of
the surfaces outside the hole and the cost of boundary of the hole itself.
The constraints utilized were appropriately adapted in order to ensure
the smoothness of the hole boundary in addition to ensuring the smooth-
ness of the non-overlapping surfaces. By using this approach, a significant
improvement was observed over a more traditional two-pass approach in
which the surfaces are segmented first (assuming the presence of no hole)
followed by segmenting the neural canal opening.

1 Introduction

Many medical imaging applications exist for which it is desirable to segment mul-
tiple interacting three-dimensional surfaces. Example approaches for enabling
the optimal segmentation of multiple surfaces include a graph-theoretic ap-
proach [1], which transforms the multiple surface segmentation problem into
that of obtaining a minimum-closure in a constructed graph, and the graph-cut
approach [2] which transforms a multi-object labeling problem (with geometric
constraints) directly into that of obtaining a minimum-cost s-t cut in a con-
structed graph. However, in some applications, a set of interacting surfaces have
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a shared “hole” in which the surfaces do not exist. An example of such an ap-
plication is that of segmenting the neural canal opening (NCO, the boundary
of a “hole”) and the surrounding surfaces within spectral-domain optical coher-
ence tomography (SD-OCT) volumes (Figs. 1(a)-(c)). The NCO is an important
structure relevant to glaucoma [3,4] as it can provide a stable reference by which
to monitor structural changes of the optic nerve head [3].

(a) (b) (c) (d)

Fig. 1. The surfaces and the NCO depicted on (a) a central xz-slice from a human
OCT image and (b) a 3D rendering of the segmented surfaces. (c) The xy-location of
the NCO depicted on a projection image. (d) An example where the segmented surfaces
are “pulled” away from the NCO by deeper structures (indicated by the arrow).

Previously, a Markov model based approach [5] was proposed for the segmen-
tation of the optic disc and cup margins in time-domain OCT images. More
recently, a two-step graph-theoretic approach [4] was proposed for the same in
SD-OCT images. The method began by segmenting the surrounding surfaces
while ignoring the fact that the surfaces do no exist inside the NCO, and subse-
quently segmenting the projected location of the NCO (i.e., projected boundary
of the hole) in a projection image. The fact that the initial multiple-surface seg-
mentation ignored the existence of the hole makes the segmentation more prone
to errors in this region due to a deeper structure (indicated by the red arrow
in Fig. 1(d)) inside of the NCO “pulling” the surfaces away from their actual
locations near the boundary of the hole. Furthermore, they were only able to
quantitatively evaluate their algorithm in the x-y plane using projected manual
tracings of the optic disc, and thus, it is difficult to assess the accuracy of the
neural canal opening points in the z-direction (i.e., depth direction).

In this work, we present an approach for simultaneously segmenting multiple
surfaces with a hole and apply the approach for the segmentation of the NCO
in 3D and the surrounding surfaces from the SD-OCT volumes of glaucoma pa-
tients. This contrasts with prior 3D work which has focused on using a single
two-step approach. In particular, the general framework of our approach reflects
an extension of the graph-theoretic approach [1] proposed for simultaneous seg-
mentation of multiple surfaces (without a hole). The overall cost function was
extended to incorporate the hole boundary and new boundary constraints were
included to ensure the feasibility of the set of surfaces. The proposed method
was also compared to the previously proposed [4] two-step approach, where it
showed a significant improvement (p < 0.001) in the accuracy of the segmenta-
tion of the NCO boundary location. We also demonstrated the ability to measure



Automated 3D Segmentation of Multiple Surfaces with a Shared Hole 741

important parameters such as the minimum rim width (MRW) using these seg-
mentations, where the measurements obtained did not significantly differ from
those obtained using the manual delineations.

2 Method

Formulation of the Surfaces with a Shared Hole Problem. Assume we
have a volume of dimensions X × Y × Z and wish to find n layered surfaces
with a shared hole as illustrated in Fig. 1. The presence of the hole, divides the
volume into three regions (see Fig. 2) namely the outside O, the boundary B
and the inside of the hole H. Intuitively, we will consider a surface set with a
shared hole feasible if 1) individual surface smoothness constraints are satisfied
outside the hole, 2) the surfaces obey minimum and maximum surface distance
constraints outside the hole, 3) the surfaces come together at the hole boundary,
and 4) the hole boundary satisfies its own set of smoothness constraints.

columns outside 
of the hole

columns inside 
of the hole

columns on the 
hole boundary

O
B
H

(a) (b)

Fig. 2. (a) The 2D overview of the division of columns into the three sets: the hole
boundary, the hole itself and the region outside the hole. (b) An example of the 2D
segmentation of the NCO boundary that is used to define set B.

Each of the n surfaces {f1(x, y), . . . , fn(x, y)} are defined over the columns in
O ∪ B, where the smoothness constraint for each surface i is defined by:

|fi(x+ 1, y)− fi(x, y)| ≤ Δxi and |fi(x, y + 1)− fi(x, y)| ≤ Δyi , (1)

where Δxi (Δyi) is the x-smoothness (y-smoothness) parameter for surface i
(see Figs. 3(a) and (b)). For each of the columns in O, each i–(i + 1) pair of
surfaces (where surface i + 1 is directly “above” surface i) is also constrained
by the surface distance constraints, where δli,i+1 ≤ fi+1(x, y)− fi(x, y) ≤ δui,i+1,

where δli,i+1 and δui,i+1 are the minimum and maximum allowed distance between
the surfaces, respectively. Note that these two feasibility constraints are defined
similarly as in the standard multiple surface segmentation problem (without a
hole) [1].

We also require that the x-y projection of the hole boundary be representable
using a function defined in polar coordinates fb(θ) (i.e., having one intersec-
tion per sampled angular ray) and that this projected boundary be sufficiently
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smooth: |fb(θ)−fb(θ+Δθ)| ≤ Δr where Δθ is the angular distance between sam-
pled rays and Δr is the smoothness parameter specifying the maximum change
in radial position between angular rays. Furthermore, for columns in B, we re-
quire that the minimum and maximum distance between all surfaces be equal to
0 (i.e., the surfaces come together at any column on the shared hole boundary),
as depicted in Figs. 3(c) and (d).
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Fig. 3. Illustration of the smoothness constraints within regions (a) O and (b) B, and
the surface-interaction constraints within regions (c) O and (d) B

Cost of a feasible surface set with a shared hole. For the segmentation
of the surfaces and the shared hole, every voxel in the volume will be assigned
n+1 costs: one cost, csurfi(x, y, z) (i = 1, . . . , n), associated with the unlikeliness
of belonging to each of the n surfaces and one cost, cb(x, y, z), associated with
belonging to the boundary of the shared hole. Then, the cost of a feasible surface
set with a shared hole (given O, B) is defined as follows:

CT =
n∑

i=1

∑

(x,y)∈O
csurfi(x, y, fi(x, y)) + λ

∑

(x,y)∈B
cb(x, y, f1(x, y)) , (2)

where the first term is associated with the “on-surface” costs in region O and
the second term is associated with the cost of the shared hole boundary points.

Segmentation of Multiple Surfaces with a Shared Hole. The iterative
approach proposed for the segmentation of surfaces and the NCO is illustrated
in Fig. 4. As an initialization step, the original formulation of the graph-theoretic
approach [1,6] (where the existence of the hole is ignored) is used to segment
the junction of the inner and outer segments (IS/OS line) (marked in blue in
Fig. 1(a)) of the photoreceptors and the Bruch’s membrane (BM) (marked in
yellow in Fig. 1(a)) in the volumetric image. Next, the following two steps (la-
beled Iteration A and Iteration B) are repeated until achieving convergence of
the segmented boundary column-set B. In the first step (Iteration A), we create
a projection image and update our estimate of the projected boundary columns
B of the NCO by finding a minimum-closure in a graph. In the second step
(Iteration B), given this estimate of B, we find the corresponding optimal (see
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Eq. 2) set of feasible surfaces that meet at the hole boundary in the volumet-
ric image by solving another single minimum-closure problem in a constructed
graph. Further details of each step are provided below.

Initial Surface 
Segmentation

Segment NCO 
Boundary  in 2-D 
Projection Image

Create Projection 
Image

Segment ISOS, BM & 
NCO Boundary   

in 3-D OCT Volume

If Iteration=0, or if Set 
B Significantly 

Changed

Adjust Feasibility 
Constraints in 
Column Set B  

Segmented 
Surfaces and NCO 

Location

Fig. 4. Schematic showing the segmentation process

Iteration A: Segmentation of projected hole boundary columns. The
projection image was created by averaging 20 pixels above and below the BM
surface. This projection image was then polar transformed and the NCO was
segmented using a graph-theoretic approach that incorporated shape priors [7].

Iteration B: Simultaneous segmentation of the surfaces and the NCO
shared hole. Before computing the cost functions for the regions B, O and
H, the volumetric image was also polar-transformed with an angular spacing of
1o. In the volumetric images, the NCO can be difficult to identify at the upper
and lower regions of the NCO where the end points get closer together and the
large blood vessels that characterize these regions of the retina also cast large
vessels shadows. However, in the polar-transformed scans, the NCO’s continuity
is maintained, making it easier to visualize and delineate.

The cost function for the regions O and H consisted of on-surface cost terms
derived from Gaussian-derivative filters, while the cost function for B incorpo-
rated textural features learned from a training set. As the NCO boundary can
be modeled as a “corner”, the textural features used to learn the properties of
the NCO boundary points included corner detectors such as Harris and SUSAN
[8] as well as first order steerable Gaussian derivatives at scales σ = {1, 2, 3, 4, 5}
and orientations θ = {0o,±30o,±60o,±90o}, computed in 2D and 3D.

The training set (described further in Section 3) utilized here consisted of 25
radial volumes that each contained 180 slices, where the NCO was identified in
all of the slices. The background samples were limited to a random selection of
five samples near the NCO per slice. A random forest, an ensemble classifier [9],
was then trained to identify the NCO boundary points in the volumetric image.
The individual feature significances were used to select a smaller set of features,
where the final set of 20 features only contained those that contributed at least
2% to the overall feature significance.

Finally, two surfaces, the IS/OS line and Bruch’s membrane, and their shared
hole were segmented simultaneously in the polar coordinate space using the
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above defined feasibility constraints and cost functions. The value of λ was set
to 8 to emphasize the hole boundary cost.

3 Experimental Methods

The data used in this experiment consisted of 44 optic nerve head SD-OCT
scans obtained from 44 patients that presented with varying stages of glaucoma.
The scans were obtained on a Cirrus (Carl Zeiss Meditec, Inc., Dublin, CA)
SD-OCT scanner and were acquired from a region 2mm x 2mm x 6mm and
contained 200 x 200 x 1024 voxels. The volumetric scans were converted into the
polar coordinate space where the slices were 1o apart. Manual delineations were
obtained from an independent expert (trained to detect the NCO boundary in
SD-OCT images) on 10 randomly selected radial slices from each of the 44 scans.
These tracings were then verified by a second independent expert, with a third
and final verification being performed by a glaucoma specialist to give us our
consensus manual tracings. The 25 independent datasets used to train the NCO
classifier were also obtained from human patients on a Cirrus SD-OCT scanner,
using the same imaging protocol described above.

The segmentation accuracy obtained using the proposed method (Approach
III) was statistically compared (using a paired t-test) to results obtained when
using a two-step approach, where the projected location of the NCO was com-
puted using 1) a pixel classification approach (Approach I) [6] and, 2) a graph-
theoretic approach (Approach II) [4]. These two boundary column-set estimates
were then projected down onto the initial segmentation of the Bruch’s membrane
to give us the 3D location of the NCO.

The metrics used to gauge the accuracy of the segmentation consisted of the
unsigned difference between 1) the 2D segmentation in the projection image
and the manual delineations, 2) the z locations of the automated segmentation
and the manual delineations, and 3) the 3D Euclidean distance between the
automated segmentation and the manual delineations.

Additionally, the minimum rim width (MRW) [10], a metric associated with
the progression of glaucoma and defined as the minimum distance from the NCO
to the internal limiting membrane (ILM), was also computed using the proposed
method and statistically compared to values obtained using the manual tracings.

4 Results

Table 1 shows the complete summary of the accuracy assessment conducted
using the three metrics described above. The 3D Euclidean distance (in microns)
between the manual delineations and the segmented NCO for Approaches I, II
and III were found to be 139.67 ± 61.68 μm, 136.77 ± 38.24 μm and 55.29 ±
33.97 μm, respectively. The errors noted in Approaches I and II for all 3 metrics
were found to be significantly larger (p < 0.001) than those obtained using the
proposed method.
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Table 1. Summary of accuracy assessment of the NCO segmentation. The errors are
expressed in microns (and voxels).

2D z 3D

Pixel Classification 128.36 ± 61.23 46.85 ± 30.21 139.67 ± 61.68
(Approach I) (4.28 ± 2.04) (23.99 ± 15.47)

Two-step Graph Method 62.28 ± 26.74 117.21 ± 43.14 136.77 ± 38.24
(Approach II) (2.08 ± 0.89) (60.01 ± 22.09)

Proposed Iterative Method 46.05 ± 28.40 29.58 ± 20.24 55.29 ± 33.97
(Approach III) (1.54 ± 0.95) (15.15 ± 10.36)

(a) (b) (c) (d)

Fig. 5. An example of the segmentation result obtained after the (a) first (blue), (b)
second (green) and (c) third (yellow) iteration. The manual tracings are marked in red.
(d) The 3D location of the segmented NCO and the manual tracings for the location
indicated on (a).

Fig. 5 show the iterative results obtained on a dataset. As shown, the error
in the location of the NCO substantially reduces from iteration to iteration,
until the final result coincides with the manually delineated point. The mean
MRW computed using the manually delineated points was found to be 179 ±
81.46 μm. The MRW computed using Approaches I, II and III were 247.23 ±
74.95 μm, 241.50 ± 103.94 μm and 184.09 ± 84.06 μm, respectively. The MRW
measurements obtained using Approaches I and II were found to significantly (p
< 0.0001) differ from those obtained using the manual tracings, while the MRW
measurements obtained using Approach III was not significantly different (p >
0.05) from those obtained using the manual tracings.

5 Conclusion and Discussion

We have presented an iterative graph-based method for the automated simulta-
neous segmentation of surfaces with a shared hole. A graph-theoretic approach
[1] was reformulated to meet the new requirements of surfaces that meet at a
shared hole boundary, thereby allowing for the boundary of the hole to be de-
tected in 3D. The proposed method was applied to the segmentation of the NCO
in SD-OCT images obtained from patients that presented with varying stages of
glaucoma, where it showed good accuracy in the 2D plane as well as in 3D, as
well as a significant improvement over existing approaches.
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Furthermore, this method allows for the computation of the minimum rim
width in 3D. This provides an objective measure that could be used to aug-
ment the subjective planimetry assessments that are currently used to assess
the progression of the disease.
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