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Abstract. Metastases to the lung are a therapeutic challenge because
some are fast-evolving while others evolve slowly. Any insight that can
be provided for which nodule has to be treated first would help clini-
cians. In this work, we evaluate the aggressiveness but also the response
to treatment of these nodules using a calibrated mathematical model.
This model is a macroscopic model describing tumoral growth through
a set of nonlinear partial differential equations. It has to be calibrated
to a specific patient and a specific nodule using a temporal sequence of
CT scans. To this end, a new optimization technique based on a reduced
order method is developed. Finally, results on two clinical cases are pre-
sented that give satisfactory numerical prognosis of the evolution of a
nodule during different phases: growth, treatment and post-treatment
relapse.
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1 Introduction

The behavior of metastases to the lung is difficult to assess by clinicians. Some
may grow rapidly while some stay stationary for years. This variation makes it
difficult to decide when to treat especially when elderly and weak patients are
concerned. In those cases, physicians try to restrict treatment to nodules that
may become malignant. A numerical tool improving the prognosis of each nodule
would be invaluable in this case.

Related Works. Currently, most applications of mathematical models in clini-
cal oncology are somehow limited to models that neglect the spatial aspect of the
cancer growth like [3]. These models cannot exploit all the information provided
by medical imaging devices and must be used with statistical approaches. This
prevents their applications for a specific patient as they only provide ”average”
answers. Furthermore, these mathematical models are not able to reproduce the
observed evolution of a nodule just by using two or three measurements. As this
is typically the number of images available for each patient, they are not relevant
here. Newer works like [1,4,9] use image data with tumor growth models. They
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are mostly targeting brain tumors, are simpler from a biological point of view
and the way they are calibrated on patient data uses some very specific features
of the model and can not be extended to our case. We built a spatial model in
order to use, in a more relevant way, the information available from anatomical
imaging. Here, we are concerned with metastases to the lung of a distant tu-
mor. The metastases are not infiltrative and diffusion-type models are not well
adapted. We introduce a system of nonlinear PDEs based on populations of cells,
without diffusion, but including a micro model of angiogenesis, process by which
the tumor drives the emergence of its own neo-vasculature.

Once an accurate model describing tumor growth is derived, its parameters
have to be recovered for any patient-specific prognosis. This complex task is
usually done by solving an inverse problem using medical images [1,2]. In this
work, this calibration is solved using classical approaches combining stochastic
and deterministic methods. This algorithm is neither model specific, contrary to
the calibration method used in [4], nor computationally expensive like solving
adjoint problems [2,9].

2 Mathematical Model

The model we use in this work is derived from the one described in [5]. We
consider here only one kind of cancer cells. The tumor microenvironment, and
in particular the quantity of nutrients available, is essential to explain its evo-
lution. Consequently, instead of directly modeling the nutrient density, we use
a very simplified angiogenesis model to take into account the process by which
the tumor escapes the avascular stage.

Cell Behavior. The tumor cell density is denoted by P and evolves by

∂P

∂t
+∇ · (vP ) = (γ+ − γ−)P, (1)

where v is the velocity corresponding to the growth of volume created by the
cellular division. Coefficients for proliferation and death by hypoxia, γ+ and γ−,
are detailed in (2) and depend on the local vascularization denoted by M . Above
a given threshold of nutrient supply Mth, cancer cells tend to proliferate whereas,
below this threshold, they starve to death. The hyperbolic tangent in both γ+
and γ− expressions is used to smooth and regularize the threshold functions,
and K is a fixed smoothing constant. These functions are given by:

γ+,−(M) = γ0,1
1± tanh(K(M −Mth))

2
, (2)

where γ0 is the proliferation rate of non hypoxic tumor cells and γ1 is the death
by hypoxia rate. We consider that the tissue is saturated, which gives us (see
[8]) an equation on v (3)

∇ · v = (γ+ − γ−)P. (3)
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To close the system of equations (see [8]), we consider that the velocity v is
obtained through a Darcy law in Eq.(4): v is derived from a pressure or potential
π in the tissue.

v = −∇π. (4)

Angiogenesis. At the end of the avascular stage, the tumor reaches such a
size that its direct environment is not able to supply enough nutrients to allow
it to keep on growing. At this point, cancer cells emit chemical signals which
may result in the emergence of a neo-vasculature [6]. It is described by the
equations (5) and (6). The scalar variable ξ describes the total amount of pro-
angiogenic agents which are produced by quiescent cells (given by the expression∫
Ω(1− γ+

γ0
)Pdω, Ω being the computing domain), and eventually metabolized.

∂ξ

∂t
= α

∫

Ω

(1− γ+
γ0

)Pdω − λξ. (5)

As we assume that the quantity of nutrient is proportional to the density of
blood vessels in the tissue, we collect these two notions in one variable M that
we shall call ”vasculature”. The vasculature M is damaged by tumor cells and
produced where the quiescent cells are located proportionally to ξ by the term
βξ(1 − γ+

γ0
)P .

∂M

∂t
= −ηPM + βξ(1− γ+

γ0
)P. (6)

Taking Therapeutical Effects into Account. The model architecture makes
it easy to include different types of treatment. Chemotherapy effects can be
simulated adding a death term −δP on Eq.(1) which gives:

∂P

∂t
+∇ · (vP ) = (γ+ − γ−)P − δP. (7)

To fulfill the saturation assumption Eq.(3) is modified as follows:

∇ · v = (γ+ − γ− − δ)P. (8)

3 Calibration Method

As shown previously, the mathematical model has many parameters, namely α,
β, γ0, γ1, η, λ and Mth, that must be determined through a complex inverse
problem. Most of these parameters have no physical or biological meaning and
cannot be recovered by experimental measurements. Furthermore, the medical
images (CT scans) have to be processed to be used with this model.

Segmentation, Registration. Lung metastases are particularly interesting
from a mathematical and technical point of view because of the quality of the
imagery. Indeed, in CT scans of the lung, the tumor appears as white while
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healthy tissue (full of air) is mainly black. Delineating the tumor is therefore
relatively easy and requires little intervention from clinicians. In practice, the
segmentation is manually performed by the oncologist who choses a representa-
tive slice of the tumor. For each exam, this same slice of the tumor is segmented
by the clinician. The slice is localized using physiological details such as blood
vessels or bronchi. The patient is not in the same exact position for every exam.
The targeted nodule is relocated to have a stationary center of gravity between
scans. We made the reasonable assumption that the tumor is solid and its vol-
ume is not affected by patient’s breath. The rotation of the abdomen between
scans is also taken into account.

Formulation of the Inverse Problem. Given a sequence of medical images or
snapshots of the tumor, we aim at finding a parameter set able to reproduce its
observed behavior. Our approach is to use an objective function, which basically
quantifies the difference between the observable data and the model simulation,
and try to minimize it. There are different ways to measure this error and as
a criterion we chose a combination of the comparison of the mass and the L2

norm of the images. Mass is measured by integrating the cellular density P .
We need at least two images of the metastasis at different times to have a

chance to personalize the model: the first one at t1 = 0 is the initial condition
for the tumor cell density and the other is used to parameterize the model.
Whatever the minimization method, it is necessary to estimate many times the
value of the objective function, and so to simulate the model for lots of parameter
sets which could be quite expensive.

To make the calibration faster, we have developed a strategy based on a re-
duced order method called Proper Orthogonal Decomposition (POD).

Building a Reduced Order Model to Speed Up Computations. POD res-
olution method for dynamic systems consists in approaching partial differential
equation systems with ordinary differential equations by decoupling efficiently
the time and space variables (see [7]). The initial infinite dimension problem is
thus replaced by a finite dimension problem.

Let us describe the POD use on the tumor cell density variable P . As we want
to decouple space and time variables, we use the following representation for P
(or any variable of interest): P (X, t) =

∑d
i=1 a

P
i (t)Φ

P
i (X)+ε(X, t), where aPi are

scalar functions depending on time and ΦP
i are spatial functions called modes

and represent the geometry of the variable P . The dimension of the reduced
problem is denoted by d. The approximation error is denoted by ε(t,X). The
goal of POD is to provide us with the best basis of spatial functions ΦP

i to
minimize the error.

These functions ΦP
i are extracted from a database of admissible behaviors of

P . To generate this database, we sample the parameter space using a cartesian
grid, simulate the direct model for each parameter set thus obtained and keep
several snapshots (SP

k )k of the variable P . If the sample is correctly chosen,
we have a representative set of geometrical configurations for the tumor cell



Patient Specific Image Driven Evaluation 557

density. Then we look for the functions ΦP
i in the d-dimensional vectorial space

generated by the snapshots from the database. They are, in other words, linear
combinations of the snapshots. These functions are taken as an orthonormal
basis minimizing the truncation error of the projection which allows us to use
a few modes without losing too much precision. The POD approach is used on
both the tumor cell density P and the pressure field π which are the two fields
driven by PDEs in our system. Finally, the system of equations is projected
along these modes and so approximated by an ODE system on the coefficients
(aPi (t))i and a linear system on the coefficients (aπi (t))i.

Complete Algorithm Used for the Inverse Problem. Replacing PDEs by
ODEs makes the problem simpler and faster to solve so we use this reduced
model for the inverse problem. Moreover, the modes, and the spatial derivatives
associated, are computed once for all. Then we use a classical optimization strat-
egy to minimize the distance between the model simulations and the observable.
The first step is to find a reasonable parameter set via a particle swarm algo-
rithm. A sensitivity analysis was performed on the model that shows the low
influence of parameters α and β. Therefore, these two parameters are fixed and
a gradient algorithm is used to refine the set of parameters.

4 Results and Discussions

4.1 Trying Our Method on a First Complete Test Case

Here is a typical case of a patient with lung nodules from a primary bladder
tumor.

The method described previously is used on this first test case. Six CT scans
are available (the first two of which are presented in Fig.1). The first three
correspond to the tumor growth. Then the nodule reached a critical volume
and the clinicians decided to treat it with a chemotherapy. The two following

Fig. 1. Extract from a time sequence of CT scans showing the evolution of one nodule
marked in red between 2008/06/07 (on the left) and 2008/09/22 (on the right)
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Fig. 2. Evolution of the tumoral masses as computed by our model after recovering its
parameters during the growth (on the left) and after the beginning of the treatment
(on the right). Tumoral masses measured on the CT scans by the clinicians are plotted
with +, the reduced model simulation with dotted line and the direct model simulation
with full line.

scans were used to control the response of the tumor to the treatment. Finally,
a last control scan was planned after the end of the chemotherapy that showed
a relapse as the tumor started growing again.

First, we use the first two scans (see Fig.1) to calibrate the model on the
growth phase. Then the model is simulated up to the third scan date to see
if the prediction is accurate. The tumor mass thus obtained by the model is
compared to the medical data in Fig.2a.

As the model provides spatial information on the cells distribution, it is
also interesting to evaluate the accuracy in shape of the results obtained with
our method. For this, we used shape indicators such as the Volume Concor-

dance (given by the expression V C = 100× (1 − |Pmodel−Pdata|
|Pdata| )) and the DICE

(DICE = 100×(2∗|Pmodel

⋂
Pdata|

|Pmodel|+|Pdata| )). We also compute a reference DICE between

the first scan which is the initial condition of our system and the current scan.
This represents the hypothesis of a non evolving tumor and gives a value of com-
parison. Moreover, the temporal prediction error is another significant indicator.
If we denote by ti the time of the ith exam and t′i the time when the simulated
tumor reaches the size of the real tumor at the ith exam; it is relevant to look
at the delay between the simulation and the real case ti − t′i and the normalized

delay 100× ti−t′i
ti−t0

, i = 1, 2. These four indicators are given on Table 1.
Then, we tried to calibrate the treatment parameter δ to see if the response

to the chemotherapy is predictable with our tool. Here only one parameter has
to be determined which makes this second inverse problem easier than the first
one. The initial condition we used for P is the last scan before treatment on
2008/12/10 and we used the first control scan during chemotherapy to calibrate
the treatment parameter. The evolution of the tumor mass during the treatment
provides a good insight into the therapeutical efficacy. It is given in Fig.2b and
we can see that here again the model is predictive for this case and provides a
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Table 1. Scalar indicators for the tumor growth of the first clinical case: DICE, Volume
Concordance and delays

Date 2008/09/22 2008/12/10

DICE 90.96% 87.21%

reference DICE 54.94% 10.25%

Volume Concordance 82.54% 77.76%

Delay (days) 0 -6.7

Normalized Delay 0% -3.6%

Table 2. Scalar indicators for the tumor under chemotherapy and rebound of the first
clinical case: DICE, Volume Concordance and delays

Date 2009/03/21 2009/05/27 2009/07/27

DICE 92.26% 87.44% 84.79

reference DICE 57.63% 37.71% 52.78

Volume Concordance 84.4% 74.56% 69.9

Delay (days) 0.3 0.6 -6.4

Normalized Delay 0.1 % 0.2 % -2.8%

Table 3. Scalar indicators for the tumor growth of the second test case: DICE, Volume
Concordance and delays

Date 2010/03/11 2010/07/16

DICE 85.41% 88.69%

reference DICE 65.93% 38.09%

Volume Concordance 70.59% 76.45%

Delay (days) 0 5.6

Normalized Delay 0% 2.3%

good estimation of the response of the patient to this chemotherapy. Moreover,
after the end of the treatment, the tumor started growing again and this relapse
is also well predicted by the model. The same indicators that were used for
the growth are given in Table 2. For the last exam, on 2009/07/27, the shape
indicators are not relevant as the relapse is located at the periphery of the initial
nodule and so the shape and location can not be predicted accurately.

4.2 A Second Test Case

The whole calibration method described previously is used on another case of
tumoral growth. Here again, we use two scans at different time points to calibrate
the model and a third image to quantify the accuracy of the prediction. The
indicators are given in Table 3.
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In this case, the growth is slower than in the previous one and the model is
able to reproduce such a kind of dynamics. Indeed, the time error in prediction
is about 6.4 days which, at the time scale we used and considering the tumor
registration uncertainties, is a good result.

In each case, we always considered the same slice of the tumor. The same
technique can be applied on the whole 3D volume reconstructed from the medical
images which would enable us not to choose a particular slice. The complete
method thus developed was successful to provide us with a relevant prognosis on
the evolution of lung nodules for several clinical cases. A larger study on about
20 patients is ongoing to evaluate the quality of the prognosis on a larger scale.
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