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Abstract. One overarching challenge of clinical magnetic resonance
imaging (MRI) is to quantify tissue structure at the cellular scale of
micrometers, based on an MRI acquisition with a millimeter resolution.
Diffusion MRI (dMRI) provides the strongest sensitivity to the cellu-
lar structure. However, interpreting dMRI measurements has remained
a highly ill-posed inverse problem. Here we propose a framework that
resolves the above challenge for human white matter fibers, by unifying
intra-voxel mesoscopic modeling with global fiber tractography. Our algo-
rithm is based on a Simulated Annealing approach which simultaneously
optimizes diffusion parameters and fiber locations. Each fiber carries its
individual set of diffusion parameters which allows to link them by their
structural relationships.

1 Introduction

Diffusion MRI (dMRI) has become an essential tool for noninvasive mapping
of brain tissue [5]. A unique advantage of dMRI originates from the diffusion
length, a typical displacement of water molecules, being of a few μm in a clin-
ical scan, which is commensurate with cell dimensions. Hence, in addition to
the millimeter-level anatomical MRI resolution, dMRI is sensitive to the tissue
structure on the mesoscopic scale — an intermediate length scale between the
molecular level where the NMR signal originates, and the macroscopic imaging
voxel size. Mesoscopic brain tissue modeling attempts to quantify cellular-level
tissue organization [2,1,4,8] in each voxel. However, determining the μm-scale pa-
rameters, such as axonal dimensions, water fraction and myelin thickness from a
dMRI signal acquired at a 100–1000 times lower resolution, is a difficult problem
riddled by unstable model fitting and sensitivity to noise. Fiber tractography,
on the other hand, focuses on characterizing the structural connectome and in-
ferring the interregional relationships of the human brain. It delineates white
matter tracts based on the empirical anisotropy of the dMRI signal, and does
not attempt to quantify the mesoscopic structure. Tractography algorithms come
in many varieties, divided into deterministic streamline-based, probabilistic and
global [7,9] approaches. Recently, the concept of tractometry [3] was developed,
which projects mesostructural properties on top of already tracked fiber bundles.
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This idea combines both fields above, however it is just a rather a retrospective
’combination’ of outcomes of conceptually different approaches.

In contrast, this work tries to merge both fields into one framework such
that both problems can benefit from each other. There are a few attempts that
try similar approaches [6,10], but from an different perspective. The proposed
algorithm performs a global tracking and local modeling simultanously. Instead
of fitting the parameters independently in a voxel-by-voxel manner we treat the
problem as one global optimization problem. On the one hand, we are able to link
voxels by their structural relationships. On the other hand, the presence of fibers
is purely driven by the fact that they correctly explain the observed signal and no
further assumptions about topology are made. To make the optimization of this
difficult, non-convex problem tractable we propose an efficient approximation of
the data likelihood. A full brain reconstruction of the human brain takes about
12 hours on a standard Desktop PC.

2 The Fiber Model

The fiber model is built of small segments X ∈ X . Each segment contributes
to the predicted MR-signal M(X ) with a small signal contribution. Each seg-
ment carries its individual diffusion parameters that define this contribution.
The segments can connect and polymerize to form long chains, called fibers.
The set of edges connecting the segments is denoted by E . The complete model
F = (X , E , v) consists of the set of segments, their edges between them and
the volume fractions v. Our mesoscopic model M(r,q) is composed of axially-
symmetric Gaussian diffusion signals of the form

m
D‖,D⊥
n (q) = e−D‖t(q·n)2−D⊥t(|q|2−(q·n)2)

from different white matter compartments (here t is a fixed diffusion time and
the b-value [5] b = |q|2t). The parameter n denotes the bundle direction, D‖ and
D⊥ denote axial and radial diffusivities. The signal model is composed of the
sum of two such tensor models, where for one of those the perpendicular diffusion
is zero, and an additional constant reflecting non-diffusing water molecules. So,
the signal from the ith segment is:

Mi(r,q) = vr(r) +m
Di

‖,0
ni (q)va(r) +m

Di
‖,D

i
⊥

ni (q)(1 − va(r) − vr(r)). (1)

where vr is the volume fraction of completely restricted water, va the intra-axonal
fraction and ve = (1− va − vr) the extra-axonal fraction. While empirically this
model captures the signal from a straight fiber bundle quite well, it currently has
a limitation of setting the intra- and extra-axonal diffusivities to be the same.
In general, these parameters seem not to be equal. The total expected signal is
composed of a sum over all segments: M(r,q) =

∑
Xi∈X wi I(r, ri)Mi(q), where

I is an indicator function giving contributions if r and ri is in same voxel. Each
segment carries 5 variables Xi = (ri,ni, D

i
‖, D

i
⊥, wi), the position, direction,

the axial diffusivity along the fiber, the perpendicular diffusivity and its overall
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weight. Note that the volume fractions vr(r), va(r) and ve(r) = 1− va(r)− vr(r)
are not properties of the segment but of the position. This is, on the one hand,
conceptually quite natural and, on the other hand, a way to avoid the ambiguities
of the model. To increase the number of segments (to get a higher number of
fibers) the voxels may be divided into subvoxels which all share the same signal.

The cost functional, or energies as called in the following, consist of two
parts: the data-likelihood and the prior that regularize the problem and con-
trol the connections between the segments. For optimization we use, like in [9],
a simulated annealing approach. The idea is to simulate the Gibbs distribution
P (F) = 1

Z exp(−(Edata(M(X , v)) + Eprior(F))/T ) while lowering the tempera-
ture T . For lower temperature it gets more and more likely that we sample from
minimum of the energy. The simulation principle is based on a Reversible Jump
Monte Carlo Markov Chain (RJMCMC).

2.1 The Energy: Data Likelihood and Priors

The data term consists of a simple quadratic difference between signal and model,
that is, we falsely assume a Gaussian data likelihood, which might cause a sub-
stantial bias on the parameters. However, we found in the numerical experiments
that the Rician noise floor is mostly disrupting the vr-fraction leaving the rest
of the parameters nearly unbiased.

The priors control the number of segments, their connections, foster smooth-
ness of the variables along fibers. Due to the freedom of the diffusion parameters
we need a prior to prevent the fiber model to build unreasonable, non fiber like
configurations, therefore we introduced an additional term Eguide similar to orig-
inal data-likelihood, but each segment has a fixed diffusion model. We found that
very sharp diffusion models, i.e. no extra-axonal compartment and high parallel
diffusion, help to resolve sharp crossings. The second prior controls the number
of particles and the third the number of connections. To each particle a cost is
assigned, called chemical potential Echem(X ) = μ|X | where μ is strength of the
prior, or equivalently the cost of one particle. The prior controlling the connec-
tion is similar to [9], but with one important extension. Each segment X has to
two ports that can make connections with other segments. The location of the
port is r ± �n. If two segments are connected an additional potential is turned
on which controls, the curvature and the similarity of the diffusion parameters.
Let the segments X1 and X2 be connected, then we have the additional energy

Ucon(X
α1
1 , Xα2

2 ) = λd

∑

P∈{D‖,D⊥,v}
(P 1 − P 2)2 + Ubend(X

α1
1 , Xα2

2 ),

where α1, α2 specify the ports. For a detailed description of the second termUbend

consult [9]. The first term gives an additional penalty on differences between the
diffusion parameters, i.e. it drives the diffusion parameters to be similar along
connected segments.
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2.2 Approximation of Q-Space Correlations

The RJMCMC algorithm needs to compute energy differences like Edata(M +
Mmod)−Edata(M). The computation is dominated by correlations of the current
model M with the newly added or modified segment Mmod, and the correlation
of segment Mmod with the signal. The spatial part of these correlations is trivial,
however the q-space part is quite costly as it involves the evaluation of the expo-
nential model. To compute these correlations efficiently we found a power series
approximations that can speed up the computation by an order of magnitude.
The approximations are of type

〈mD‖,D⊥
n , S〉Q =

1

Q

Q∑

k=1

m
D‖,D⊥
n (qk) S(qk) ≈

M∑

l,m=1

blm(n)

(κ+D‖)l(κ+D⊥)m
(2)

where the blm(n) can be found by a least squares minimization and the parameter
κ is fixed and has to be found empirically to obtain good fits. The form is
reminiscent of the Laplace transformation of exponential-type functions. For the
two-shell scheme (a b=1000 and b=2000 shell) considered in the experiments
we found κ = 4 to work well. We found values M > 6 do not improve fitting
accuracy.

3 The Algorithm

As already stated the optimization of the proposed energies is accomplished by
an RJMCMC-type algorithm together with a cooling process. The idea behind
the RJMCMC-algorithm is to repeatedly make random distortions to the current
state F . The distortion, called F ′, usually depends on the previous state and
follows some distribution Pprop(F �→ F ′), which can be arbitrarily chosen by the
algorithm designer. The only condition is that the reverse transition has to be
possible, i.e. Pprop(F ′ �→ F) > 0. The algorithm needs usually a certain number
of initial iterations such that the sequence of generated states follows the desired
distribution and is in equilibrium. Once equilibrium is reached (which can be
checked by statistics of the energy differences), the system is slowly cooled down.
In the following we present the different proposals used in our implementation.

Segment Birth:A segmentX = (r,n, D‖, D⊥, w) is proposed by choosing all
parameters uniformly. Then, the energy difference regarding the data-likelihood
is computed according to ΔEdata = −2〈MX , S(r)〉Q + 2

∑
k〈MX ,Mk〉Q +

〈MX ,MX〉Q, where the sum over k ranges over all segments that lie within
the voxel containing the new segment. For the efficient computation of such
correlation the approximation (2) is used. The computation ΔEguide is simi-
lar. Finally, the Gibbs ratio is R = N0 exp(−(ΔEdata + ΔEguide)/T )/(N + 1),
where N is the number of segments currently present and N0 the expected
number of segments of the underlying Poisson process. Segment death: A
segment X is randomly chosen. The energy differences that have to be com-
puted are just the negated differences from the birth proposal. The Gibbs ratio
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is R = N exp(−(ΔEdata + ΔEguide)/T )/(N0). Segment move A segment X
is randomly chosen. The position and orientation is distorted by normally dis-
tributed random numbers, r′ := r+σsη and n′ := n+σnη. The Gibbs ratio is just
R = exp(−(ΔEdata +ΔEguide +ΔEcon)/T ). Change of segment’s diffusion
parameter A segment X is randomly chosen. The current diffusion parame-
ters are distorted by normally distributed random numbers, where the variance
is proportional to the current temperature. The energy difference is computed
in the same way like for the move proposal. Change of volume fraction A
random voxel is chosen. Let us call EM the data energy before the parameter
change, then: EM =

∑
k,j〈Mk,Mj〉Q − 2

∑
k〈Mk, S(r)〉Q, where the sum runs

over all segments within the voxel. And correspondingly EM ′ after the change,
then ΔEdata = EM ′ −EM . In the same way like for the diffusion parameters the
new volume fraction is proposed by distorting the old one by a normal distribu-
tion with a variance proportional to the current temperature. Dis/Connecting
segments For the connection of segments follows the same principle as proposed
in [9].

Parameters: The segment parameters are chosen similar to [9]. The length
� is chosen to be 2mm and the potential of connection is L = 0.5 (see [9] for
notations). The chemical potential of a segment is chosen proportional to the
number of measurement in q-space. We found μ = 0.005 Q to be a good choice.
That is, if a segment explains on average more than 0.005 of the variance of the
signal, the segment is probably kept. For the strength of Eguide we found λguide =
15T/Tstart to work well. For the strength of the connection priors we found that
values of λc = 1 and λd = 1 work already quite well. The temperature schedule
starts at Tstart = 0.3 and cools down to Tend = 0.0025, which corresponds to a
SNR level of 1/

√
Tend = 20.

4 Experiments

We consider a 2-shell scheme at b-values of 1000 and 2000 acquired with 60 di-
rections per shell. The in vivo diffusion measurement was acquired on a Siemens
3T TIM Trio using an SE EPI sequence, with a TE of 107 ms. A healthy male
volunteer (aged 36) was scanned at an isotropic resolution of 2.5mm. Addition-
ally, a T1 data set was acquired which was segmented into white matter (WM),
gray matter (GM), and CSF using SPM. White matter was thresholded at a
probability of 0.5 to determine the area of reconstruction.

First, to understand the importance of our approximation we did a brute
force search on a synthetic data. By sweeping through the 3-parameter space of
D‖, D⊥ and vi we found that our approximation speeds up the likelihood com-
putation by a factor of 20 compared to an ordinary implementation. To validate
the accuracy of the approximation we simulated a simple crossing/bending con-
figuration (see Figure 1) consisting of three bundles. The central crossing has
a crossing angle of 50◦. The phantom is simulated on 24 × 24 × 9 grid with
a isotropic voxel size of 2mm. Each of the three bundles has the same axonal
volume fraction of 0.4, extra-axonal fraction of 0.6 and different diffusion param-
eters (D‖, D⊥). Bundle a) has (1, 0.5), bundle b) (1.5, 0.5) and bundle c) (2, 1).
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Fig. 1. Results for the phantom. Top: histograms of the diffusion parameters, volume
fractions and signal weights/magnitudes. Bottom: Tracking result in direction coloring
and coloring by their diffusion coefficients.

Rician noise was added with σ = 0.05 corresponding to a SNR of 20. Figure
1 shows histograms of our tracking results: fitted diffusion parameters, volume
fractions, weight parameters and the tractogram. The reconstructed tracts are
shown in three different coloring, one by directions, one by parallel diffusion D‖
and one by perpendicular diffusion D⊥. One can observe that all parameters
are nearly unbiased. While the intra axonal volume fraction va shows a small
underestimation, the vr fractions and the diffusion coefficients show a small over-
estimation. For the in vivo dataset a voxel was subdivided into 33 = 27 subvoxels
to get a sufficient number of segments/fibers. For this setting the running time
of the complete tracking procedure took about 10 hours on a Intel I7 (16GB)
with four threads in parallel. The reconstruction contains 1.5 million particles
forming about 50000 fibers longer than 10 segments.

In Figure 2 we show the results: Parametric brain maps of the diffusion pa-
rameters (Fig.2a), first and second order statistics (Fig.2b) of all parameters
including tortuosity t = D‖/D⊥. The diagonal of the plot matrix shows ordi-
nary histograms, the off-diagonal plots joint histograms of all parameter pairs.
We also show histograms of the w parameter, the predicted signal at b = 0
and number of segments per voxels. Further, we selected several tracts (Fig. 2c)
and d)) by two ROIs, namely, Cingulum (CG), Arcquate Fascicle (AF), Cortical
Spinal Tract (CST), left Optic Radiation (OR), Fronto Occipital Fascicle (IFO)
and callosal fibers to the precentral gyrus (CC). Finally, Figure 2e) shows fibers
sliced coronally and colored by D‖.
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Fig. 2. In vivo-results for a 2-shell scheme (at b=1000,2000) at resolution of 2.5mm3



208 M. Reisert et al.

5 Discussion and Conclusion

We proposed a novel algorithm that unifies tractography and mesoscopic mod-
eling to simultaneously reconstruct the human brain fiber bundle network and
derives fiber specific diffusion parameters. The in vivo experiments show that the
derived parameters go in-line with the current literature [4]. However, for the
first time, we provide whole brain maps of the parameters including crossing re-
gions. For single fiber voxel populations (like the Corpus Callosum) the putative
axonal volume fraction (va) is in a range of about 40 to 50 percent, while D‖ ≈ 2
and D⊥ ≈ 1 which is similar to [4], where these parameters where derived via
kurtosis imaging. The inferred parameters from multi fiber voxels differ, one can
observe reduced va and D‖ while an increase in D⊥. The source of the restricted
fraction vr is not yet clear. There is definitely a certain amount caused by the
Rician noise. The generated tract bundles show similar appearance like [9], but
they additionally carry individual diffusion parameters.
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