
Efficient Neighbourhood Computing for Discrete Rigid
Transformation Graph Search�

Yukiko Kenmochi1, Phuc Ngo2, Hugues Talbot1, and Nicolas Passat3

1 Université Paris-Est, LIGM, CNRS, France
2 CEA LIST – DIGITEO Labs, France

3 Université de Reims Champagne-Ardenne, CReSTIC, France

Abstract. Rigid transformations are involved in a wide variety of image pro-
cessing applications, including image registration. In this context, we recently
proposed to deal with the associated optimization problem from a purely discrete
point of view, using the notion of discrete rigid transformation (DRT) graph. In
particular, a local search scheme within the DRT graph to compute a locally opti-
mal solution without any numerical approximation was formerly proposed. In this
article, we extend this study, with the purpose to reduce the algorithmic complex-
ity of the proposed optimization scheme. To this end, we propose a novel algo-
rithmic framework for just-in-time computation of sub-graphs of interest within
the DRT graph. Experimental results illustrate the potential usefulness of our ap-
proach for image registration.

Keywords: image registration, discrete rigid transformation, discrete optimiza-
tion, DRT graph.

1 Introduction

1.1 Discrete Rotations and Discrete Rigid Transformations

In continuous spaces (i.e., Rn), rotations are some of the simplest geometric transfor-
mations. However, in the discrete spaces (i.e., Zn), their analogues, namely discrete
rotations, are more complex. The induced challenges are not simply due to high-
dimensionality: indeed, even in Z2, discrete rotations raise many difficulties, deriving
mainly from their non-necessary bijectivity [1]. In this context, discrete rotations – and
the closely related discrete rigid tansformations – have been widely investigated.

From a combinatorial point of view, discrete rotations have been carefully studied
[2–4], in particular to shed light on remarkable configurations induced by the periodicity
of rotations with respect to the discrete grid. At the frontier between combinatorics and
algorithmics, the problem of 2D pattern matching under discrete rotations has also been
explored [5, 6].

From an algorithmic point of view, efforts have been devoted to effectively com-
pute discrete rotations. In particular, the quasi-shear rotations [7, 8] were introduced to
preserve bijectivity, by decomposing rotations into successive quasi-shears.

� The research leading to these results has received funding from the French Agence Nationale
de la Recherche (Grant Agreement ANR-2010-BLAN-0205).

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 99–110, 2014.
c© Springer International Publishing Switzerland 2014

100 Y. Kenmochi et al.

Finally, from an applicative point of view, discrete rotations have been used for im-
age/signal processing purposes [9, 10]. Other strategies have also been proposed to
pre-process 2D images in order to guarantee the preservation of topological properties
under discrete rigid transformations [11].

Recently, we proposed a new paradigm to deal with discrete rotations, and more gen-
erally rigid transformations. This paradigm relies on a combinatorial structure, called
discrete rigid transformation graph (DRT graph, for short) [12]. This structure describes
the quantification of the parameter space of rigid transformations, in the framework of
hinge angles, pioneered in [13–15].

The DRT graph has already allowed us to contribute to the state of the art on rigid
transformations from a combinatorial point of view, by establishing the complexity of
“free” [12] and “constrained” [16] discrete rigid transformations. From an algorithmic
point of view, it has been used to characterise topological defects in transformed images
[17]. Finally, we recently started to explore the applicative possibilities offered by the
DRT graph. In particular, we have considered its potential usefulness in the context of
image registration [18].

1.2 Registration Issues

In the context of image processing, geometric transformations are often considered for
registration purposes [19]. Registration is indeed a complex, often ill-posed problem,
that consists of defining the transformation that is required to correctly map a source
image onto a target image.

Registration is mandatory in various application fields, from remote sensing [20] to
medical imaging [21]. According to the specificities of these fields, registration can
implicate different types of images (2D, 3D) and transformations, both rigid and non-
rigid. However, the problem remains almost the same in all applications. Given two
images A and B, we aim at finding a transformation T ∗ within a given transformation
space T. This transformation minimizes a given distance d between the image A and the
transformed image T (B) of the image B by T , i.e.

T ∗ = arg min
T∈T

d(A, T (B)) (1)

In recent works [18], we investigated how to use the DRT graph in order to solve this
problem in the case of rigid registration of 2D images. The novelty of this approach,
with respect to the state of the art, was to provide exact transformation fields, so as to
avoid any interpolation process and numerical approximations.

In this context, a preliminary algorithm was proposed for computing a local min-
imum for Eq. (1), thus providing a solution in a neighbourhood of depth k ≥ 1, to
the above registration problem. This algorithm strongly relies on the DRT graph, and
consists of exploring a sub-graph defined around a given vertex, modeling an initial
transformation. Its time complexity was O(mkN2), which is linear with respect to the
image size, but exponential with respect to the neighbourhood depth (with m the size of
the 1-depth neighbourhood).

Efficient Neighbourhood Computing for DRT Graph Search 101

1.3 Contribution

We propose an improved algorithm (Sec. 3), which dramatically reduces the exponential
complexity of that developed in [18]. Indeed, we show that the k-depth neighbourhood
of a DRT graph can be computed with a time complexityO(kN2) (Sec. 4). Experiments
emphasise the methodological interest of the proposed approach (Sec. 5).

2 Introduction to Discrete Rigid Transformation Graphs

2.1 Rigid Transformation Space

In the continuous space R2, a rigid transformation is a bijection T : R2 → R2, defined,
for any x = (x, y) ∈ R2, by

T (x) =

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
+

(
a1

a2

)
(2)

where a1, a2 ∈ R and θ ∈ [0, 2π[(T is sometimes noted Ta1a2θ). In order to apply such
rigid transformations on Z2, a post-processing digitization is required. More precisely, a
digitized rigid transformation T : Z2 → Z2 is defined as T = D ◦T where D : R2 → Z2

is a rounding function. In other words, for any p = (p, q) ∈ Z2, we have

T (p) =

(
p′

q′

)
= D ◦ T (p) =

(
[p cos θ − q sin θ + a1]
[p sin θ + q cos θ + a2]

)
(3)

The use of the rounding function D implies that digitized rigid transformations are
not continuous within the 3D parameter space induced by a1, a2 and θ. The transfor-
mations leading to such discontinuities are called critical transformations. In the space
(a1, a2, θ), the subspace of critical transformations is composed of 2D surfaces Φpqp′

and Ψpqq′ , analytically defined, for any p = (p, q) ∈ Z2 and any vertical (resp. horizon-
tal) pixel boundary x = p′ + 1

2 (resp. y = q′ + 1
2) with p′ ∈ Z (resp. q′ ∈ Z), by

Φpqp′ : p cos θ − q sin θ + a1 = p′ +
1
2

(4)

Ψpqq′ : p sin θ + q cos θ + a2 = q′ +
1
2

(5)

For a given triplet (p, q, p′) (resp. (p, q, q′)),Φpqp′ (resp.Ψpqq′) is called a vertical (resp.
horizontal) tipping surface in the parameter space (a1, a2, θ), and a vertical (resp. hori-
zontal) tipping curve in the 2D plane (a1, θ) (resp. (a2, θ)).

For an image of size N × N, Φpqp′ and Ψpqq′ verify p, q ∈ [[0,N − 1]] and p′, q′ ∈
[[0,N]]. Examples of tipping surfaces and curves are illustrated in Fig. 1.

2.2 Discrete Rigid Transformation Graph

A set of tipping surfaces induces a subdivision of the (a1, a2, θ) space into classes, each
consisting of transformations Ta1a2θ such that (a1, a2, θ) 	→ T = D ◦ Ta1a2θ is con-
stant. These classes – called discrete rigid transformations (DRTs) – indeed form 3D

102 Y. Kenmochi et al.

a1 a2

(a)

a2a1

(b)

Fig. 1. (a) Tipping surfaces in the space (a1, a2, θ), and (b) their tipping curves [16]

a2

a1

(a)

a1

a2

(b)

Fig. 2. (a) Subdivision of the (a1, a2, θ) parameter space into 3D cells by tipping surfaces, and (b)
the associated DRT graph [17]

cells, bounded by tipping surfaces that correspond to discontinuities. By mapping each
cell onto a vertex, and each tipping surface piece onto an edge, in a Voronoi/Delaunay
paradigm, we can model this subdivided parameter space as a graph, called the DRT
graph, as illustrated in Fig. 2.

Definition 1 ([12]). A DRT graph G = (V, E) is defined such that (i) each vertex v ∈ V
models a DRT; and (ii) each labelled edge e = (v,w, f) ∈ E, where f is either Φpqp′ or
Ψpqq′ , connects two vertices v,w ∈ V sharing the tipping surface f as boundary.

For a given image I, each vertex is associated with a unique transformed image,
induced by the DRT corresponding to the vertex. The existence of an edge between two
vertices indicates a “neighbouring” relation between the two associated DRTs. More
precisely the two transformed images differ by at most one over the N2 pixels of I; the
edge label f provides this information. This allows us to use the DRT graph to produce
all the transformed images via successive elementary (i.e., single-pixel) modifications.

2.3 Discrete Rigid Transformation Graph and Image Registration

The registration problem formalised in Eq. (1) consists of finding the transformation
that best maps a source image onto a target image, with respect to a given distance.

Efficient Neighbourhood Computing for DRT Graph Search 103

In the discrete framework, the number of transformations is actually finite. In par-
ticular, in the case of rigid registration, the solution(s) to Eq. (1) can be found within
the DRTs exhaustively modeled by the DRT graph. In other words, by considering a
brute-force search, a solution, i.e., a global optimum, can be determined. However, the
DRT graph G of an image of size N × N, has a high space complexity O(N9) [12] that
induces the same time complexity both for its construction and exhaustive search.

This limits exploration of the whole structure to relatively small images. Neverthe-
less, as already discussed in [18], it is possible to perform a local search on G in order
to determine a local optimum.

2.4 Local Search on a Discrete Rigid Transformation Graph

To find such an optimum, a local search begins at a given transformation, i.e., a chosen
vertex v of G. Then, it moves towards a better solution in its neighbourhood – following
a gradient descent – as long as an improved solution can be found. Beyond the choice
of the initial vertex – often guided by the application context – the most critical issue is
the choice of a “good” search area around this vertex, i.e., a depth of its neighbourhood.
In particular, the trade-off is time efficiency versus exhaustiveness.

The neighbourhood of depth 1, notedN1(v), actually corresponds to the set N(v) of
vertices adjacent to v in G. More generally, neighbourhoods of depth k ≥ 1, also called
k-neighbourhoods, are then recursively obtained as

Nk(v) = Nk−1(v) ∪
⋃

u∈Nk−1(v)

N(u) (6)

whereN0(v) = {v}.
Our initial algorithm [18] was directly mapped on this recursive definition. As a con-

sequence, this approach led to a high time complexityO(mkN2), that is exponential with
respect to the depth k of the neighbourhood with vertex degree m, which is supposed
to be constant in average (Sec. 4.2). In the next section, we propose a more efficient
algorithm, that removes this exponential cost.

3 k-Neighbourhood Construction Algorithm

We now propose an algorithm that efficiently computes the part of a DRT graph that
models the neighbourhood of depth k around a given vertex. To this end, we need to
handle the analytical representation of the cells associated to the DRT graph vertices,
inside the subdivided parameter space of (a1, a2, θ) (Sec. 3.1). Then, we develop a con-
struction strategy that relies on a sweeping plane technique introduced in [12] (Sec. 3.2).
The final algorithm is described and formalized in Sec. 3.3.

3.1 Tipping Surfaces Associated to a Discrete Rigid Transformation

A vertex v of a DRT graph G corresponds to one discrete rigid transformation, that
induces a unique transformed image Iv obtained by applying this transformation on an

104 Y. Kenmochi et al.

initial image I. In other words, for each pixel (pi, qi) of Iv, we know which pixel (p′i , q
′
i)

of I transfers its value to (pi, qi). This correspondence is modeled by the following
inequalities deriving from Eq. (3)

p′i −
1
2
< pi cos θ − qi sin θ + a1 < p′i +

1
2

(7)

q′i −
1
2
< pi sin θ + qi cos θ + a2 < q′i +

1
2

(8)

For an image I of size N × N, each of the N2 pixels generates 4 such inequalities. In
the parameter space of (a1, a2, θ), the obtained 4N2 inequalities then define a 3D cell,
denoted by Rv, which gathers all the parameter triplets associated to the discrete rigid
transformation corresponding to the vertex v.

When interpreting these inequalities in terms of tipping surfaces/curves (see Eqs. (4–
5)), it appears that for each pixel of Iv, Eqs. (7–8) define a region of the parameter space
that is bounded by two offset vertical (resp. horizontal) tipping surfaces/curves Φpiqi p′i
and Φpiqi p′i−1 (resp. Ψpiqiq′i

and Ψpiqiq′i−1). For any i ∈ [[1,N2]], Φpiqi p′i
(resp. Ψpiqiq′i

) is
called an upper tipping surface/curve, while Φpiqi p′i−1 (resp. Ψpiqiq′i−1) is called a lower
tipping surface/curve. The sets composed by these surfaces/curves, for all i ∈ [[1,N2]],
are denoted S+1 (Iv) and S−1 (Iv) (resp. S+2 (Iv) and S−2 (Iv)).

We derive from Eqs. (7–8), that any cell Rv is directionally convex along the a�-axes
[16]. This implies that for any θ value where it is defined, Rv is bounded by at least
one upper (resp. lower) tipping surface, which constitutes the upper (resp. lower) part
of its boundary in each a�-direction. This property can be used for constructing a DRT
graph locally, or for obtaining topological information from a DRT graph such as a
neighbourhood. One may notice that it is sufficient to consider only tipping surfaces of⋃

(S+�(Iv) ∪ S−�(Iv)) in order to obtain the k-neighbourhood of v, if k < N.

3.2 Sweeping Plane Algorithm for DRT Sub-graph Construction

In our new algorithm, the purpose is to build a k-neighbourhood “similarly” to the con-
struction of a 1-neighbourhood in our previous version [18], that is by using a sweeping
plane technique from one value θv within Rv, to both the left-hand and right-hand sides
along the θ-axis in the space (a1, a2, θ).

The differences between this new algorithm and the former are twofold. On the one
hand, the range of the considered θ values is wider. Indeed, the sweep must be carried
out inside Rv but also outside. On the other hand, a larger number of tipping surfaces
are considered around Rv, while only immediate neighbours were previously involved.

To ease the understanding of this algorithm, we first recall the general idea of the
sweeping plane technique.

Given a set S of s1 vertical and s2 horizontal tipping surfaces, we aim to construct
the DRT sub-graph G corresponding to a given range [θstart, θend]. By comparison to
[12], the plane is then swept from θstart to θend, instead of 0 to 2π. From the very def-
inition of tipping surfaces, this plane is subdivided into (s1 + 1) × (s2 + 1) 2D rectan-
gular cells, generated by its intersection with the tipping surfaces of S. More precisely,
we have (s� + 1) divisions in each a�-direction, except at the intersection of tipping

Efficient Neighbourhood Computing for DRT Graph Search 105

(a) (b)

Fig. 3. DRT graph construction by the sweeping plane algorithm, with 2 vertical (blue, cyan) and
2 horizontal (red, magenta) tipping surfaces. (a) 3 × 3 rectangular cells generated by the tipping
surfaces in each sweeping plane. (b) The associated DRT graph in each plane (in green: new
vertices and edges in the second and third planes).

surfaces, where a rectangle disappears while a new appears. By observing these rect-
angle updates during the plane sweeping from θstart to θend, we can construct the DRT
sub-graph, where each rectangle corresponds to a vertex while each tipping surface be-
tween two rectangles corresponds to an edge. In other words, at each intersection of
tipping surfaces, s� new vertices and their associated (3s� + 2) edges are generated, as
illustrated in Fig. 3. (The reader is referred to [12] for more details.)

Our modified algorithm consists of using a topological sweep [22] in order to find
the next closest intersection of tipping surfaces for updating the planar division. We
consider at most |S| − 2 intersections at each update, by considering only the intersec-
tions of consecutive tipping surfaces in their ordered structure in the sweeping plane
along each a�-axis, and find the closest one among them. After each update, the mod-
ifications of such intersections can be performed in constant time. We can also ignore
the intersections that are not in the range between θstart and θend. In particular, since we
have |θend −θstart| � 2π, the number of intersections can be considered a small constant.

Hereafter, we denote this specific procedure by S weep(S, θstart, θend), and we write
G = S weep(S, θstart, θend) for the output DRT sub-graph.

3.3 k-Neighbourhood Construction

Finding the neighbouring vertices and edges of a given vertex v with depth k, is actu-
ally equivalent to constructing the DRT sub-graph containing those vertices and edges
around v. Here, we assume to know a value θv lying into Rv, and we use it as initial
value of the sweeping algorithm. The plane is thus swept twice, in the space (a1, a2, θ),
along the two directions of the θ-axis.

The key-point is how to limit the construction of the DRT sub-graph. For this purpose
we verify, for each generated vertex u, its neighbourhood depth tv(u) with respect to v.
If tv(u) > k for all vertices in the current sweeping plane, the process ends.

106 Y. Kenmochi et al.

Algorithm 1. k-neighbourhood computation (in the left-hand side along the θ-axis)

Input: A DRT v (or its associated image Iv); a positive integer k.
Output: The DRT sub-graph F = (V, E) containing the k-neighbours of v.

1 for � = 1, 2 do
2 Determine the tipping surfaces associated to v: S+�(Iv), S−�(Iv) (Sec. 3.1).
3 In S+�(Iv) (resp. S−�(Iv)), find the (k + 1)-th lowest (resp. uppermost) tipping surface f +�

(resp. f −�), that intersects the initial plane at θv.
4 Find and sort the k + 1 tipping surfaces that are lower (resp. upper) or equal to f +�

(resp. f −�), and put them in an ordered set S�.

5 Initialize V = ∅, E = ∅
6 Initialize θprev = θv
7 repeat
8 for � = 1, 2 do
9 Find the next left intersection θ+� of f +� (resp. θ−� of f −�) with the other surface in

S� for θ < θprev.

10 θnext = min{θ+1 , θ−1 , θ+2 , θ−2 } − ε with ε � 1
11 ΔF = S weep(S1 ∪ S2, θprev, θnext)
12 if ∃u ∈ ΔV, tv(u) ≤ k then
13 F = F ∪ ΔF, θprev = θnext

14 if the next intersecting surface with f +� (or f −�) is in S� then
15 Exchange their order in S�.
16 else
17 Replace f +� (or f −�) in S� with the new intersecting surface.

18 until ∀u ∈ ΔV, tv(u) > k;

When a vertex u is created, its depth tv(u) depends on that of the two vertices w1 and
w2 to which it is adjacent in the a�-direction of the tipping surface intersection. We then
have tv(u) = 1 + min{tv(w1), tv(w2)}. (An iterative backtracking process is also needed
to update the depth of w� and its successive neighbours, whenever tv(w�) > tv(u) + 1.)

In each a�-direction, by considering the (k + 1) closest tipping surfaces around Rv,
we can obtain all the vertices u such that tv(u) ≤ k. In the θ-direction, we need to check
if tv(u) > k for all vertices u in the current sweeping plane; if so, the sweeping ends.

The global process is described in Alg. 1. (Note that the algorithm describes only
the k-neighbourhood construction in the left-hand side along the θ-axis, but the right-
hand side can be constructed similarly.) The first loop (Lines 1–4) initializes the set
of tipping surfaces that are needed to generate the k-neighbours of a given DRT v. We
obtain 2(k + 1) vertical (resp. horizontal) tipping surfaces close to Rv at θ = θv, and sort
and store them in the lists S�. In the second loop (Line 7), we first verify how long we
can keep the same tipping surface sets S� (Lines 9–10), and then build a DRT sub-graph
by using the S weep algorithm for this verified θ interval (Line 11). After verifying if
there still exists a generated vertex whose neighbourhood depth is ≤ k (Line 12), we
update the tipping surface sets S� for the next interval (Lines 14–17).

Obviously, F is not the smallest sub-graph G including the k-neighbours of v. To
obtain G from F, we simply keep vertices whose neighbourhood depth is ≤ k.

Efficient Neighbourhood Computing for DRT Graph Search 107

2.
0

2.
5

3.
0

3.
5

4.
0

Image size

A
ve

ra
ge

 d
eg

re
e

va
lu

es
 o

f v
er

tic
es

1 3 4 5 6 7 8 92

(a)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Degrees of the vertices

N
um

be
r o

f v
er

tic
es

Image size 9x9
Image size 8x8
Image size 7x7
Image size 6x6
Image size 5x5
Image size 4x4
Image size 3x3
Image size 2x2

0 1 2 3 4 5 6 7 8 9

(b)

Fig. 4. (a) Average vertex degree in a 2D DRT graph. (b) Normalised vertex degree distribution
in a 2D DRT graph.

4 Complexity Analysis

4.1 Time Complexity of k-Neighbourhood Construction Algorithm

In order to obtain the initial 2(k + 1) vertical (resp. horizontal) tipping surfaces of S�,
the time complexity is O(N2) for Line 2; O(N2) for Line 3 on the average case if we
use Hoare’s FIND algorithm [23]; and O(N2) and O(k log k) for finding and sorting the
tipping surfaces in Line 4, respectively. Then, we carry out the plane sweep for each
updated S1 ∪S2. For each iteration in the loop, the most costly parts are Lines 9 and 11,
which require O(N2) and O(k2), respectively.

The next question concerns the number of updates for S1 ∪ S2. If m is the degree of
any vertex u of a DRT graph, this update number can be estimated as m(2k + 1), since
the union of Ru for all u in the k-neighbourhood of a given vertex v contains at most
2k + 1 adjacent Ru in the θ-direction. Therefore, the time complexity is O(mkN2) for
this iterative plane sweep loop.

The time complexity of Alg. 1 is thus O(mkN2), which is significantly lower than
that of our previous algorithm [18], namely O(mkN2). We observe, in the next section,
that m can be estimated as a low constant value, leading to a final complexity ofO(kN2).

4.2 Average Degree of DRT Graphs

The DRT graph space complexity for an image of size N ×N is O(N9), both for vertices
and edges [12]. In other words, the number of vertices and that of edges grow at the
same rate. We can then infer that m is actually bounded, independently of N.

By analogy, let us imagine that we divide a 2D plane with straight lines defined
randomly. Three lines will almost never intersect at a same point, and for a number of
lines sufficiently large, the cells of the induced subdivision will be mostly triangles.

Following this analogy, we may infer that the degree of the vertices of the 2D DRT
graphs in the planes (a1, θ) and (a2, θ) is close to 3, in average. However, this analogy
has some limits. Indeed, the considered tipping curves are not straight lines, while their
very regular structure implies that many curves often intersect at a same point.

108 Y. Kenmochi et al.

0
1

2
3

4
5

6

Fig. 5. Degree distribution in a 2D DRT graph, viewed in the dual subdivision of the parameter
space. Each colour represents a given degree, that corresponds here to the number of curves
bounding each cell (3: red, 4: green, 5: blue; 6: yellow).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Input images and results of the iterated local search for image registration. (a) Refer-
ence image, (b) target image, and (c) the initial transformed image of (b) with (a1, a2, θ) =
(0.365,−0.045, 0.1423). (d–h) Local optima obtained from (c) by using k-neighbours for
k = 1, 3, 5, 10, 15 respectively. Note that in (c–h), pixels are coloured if they are different from
those in (a); yellow (resp. red) pixels are white (resp. black) in (c–h) and black (resp. white) in (a).

Nevertheless, we can assimilate a 2D DRT graph (which is the projection of a 3D
DRT graph onto the (a�, θ) plane) to a planar graph whenever N is sufficiently large.
Under such assumption, the Euler formula is valid, i.e., we have v−e+ f = 2, where v, e
and f are the number of (0D) vertices, (1D) edges and induced (2D) cells, respectively.
From the very definition of the DRT graph, we have 4 f ≤ 2e. It then comes that 2e/v ≤
4 − 8/v. As v � 8 in DRT graphs, we have 2e/v < 4, where 2e/v is indeed the average
degree of the 2D DRT graph. It follows that the average degree m of the 3D DRT graph
(obtained by Cartesian product of two 2D DRT graphs) is lower than 2 × 4 = 8. This is
confirmed by the experimental analysis, illustrated in Fig. 4(a).

In practice, the maximal degree of the vertices within a DRT graph also remains
close to this average value. Indeed, the histograms depicted in Fig. 4(b) show that the

Efficient Neighbourhood Computing for DRT Graph Search 109

Fig. 7. Distance evolution during iterations of local search for the inputs in Fig. 6 (a) and (b),
from the initial transformation in Fig. 6 (c), with respect to different depths k

2D DRT vertex degrees converge rapidly to a stable distribution that contains mainly
degrees of value 3 and 4 (with a maximal value experimentally identified at 8). More
qualitatively, Fig. 5 illustrates the distribution of these degrees of a 2D DRT graph.

5 Experiments

Iterated local search was applied to image registration. In this section we validate Alg. 1
in practice, and we observe its local behaviour when varying k. For simplicity, we use
the same experimental settings as in [18], i.e., two input binary images and a signed
distance [24] for Eq. (1). In order to find an initial transformation, we use the first
and second order central moments of a binary shape [25]. Experiments are carried out
with different neighbourhood sizes, k = 1, 3, 5, 10, 15 on binary images of size 53 × 53
from the initial transformation, as illustrated in Fig. 6. We can observe in Fig. 7 that
the locally optimal distance improves when we use a larger neighborhood, which is
coherent in a gradient descent paradigm.

6 Conclusion

We have significantly improved the time complexity of the process of computing a
neighbourhood of given depth within a DRT graph, without requiring the computation
of the whole graph. This time complexity may be reduced in some cases, in particular
if the image is binary by dealing only with the pixels that compose the binary object
border. The proposed applications only validate our approach as a proof of concept.
Nevertheless, an exact – i.e., numerical error-free – strategy is novel in the field of
image registration and may open the way to new image processing paradigms. In future
work we will explore the notion of DRT graph in Z3.

References

1. Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In: Klette, R.,
Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)

110 Y. Kenmochi et al.

2. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasi-
periodicity properties. Discrete Appl. Math. 147, 325–343 (2005)

3. Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theor. Comput. Sci. 380,
276–285 (2007)

4. Nouvel, B.: Self-similar discrete rotation configurations and interlaced Sturmian words. In:
Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp.
250–261. Springer, Heidelberg (2008)

5. Jacob, M.A., Andres, E.: On discrete rotations. In: Proc. DGCI, pp. 161–174 (1995)
6. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations.

Theor. Comput. Sci. 368, 196–204 (2006)
7. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’État,

Université Strasbourg 1 (1991)
8. Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI

1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)
9. Richman, M.S.: Understanding discrete rotations. In: Proc. ICASSP, vol. 3, pp. 2057–2060.

IEEE (1997)
10. Andres, E., Fernandez-Maloigne, C.: Discrete rotation for directional orthogonal wavelet

packets. In: Proc. ICIP, vol. 2, pp. 257–260. IEEE (2001)
11. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of

2D digital images. IEEE T. Image Process. 23, 885–897 (2014)
12. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transforma-

tions in 2D digital images. Comput. Vis. Image Und. 117, 393–408 (2013)
13. Nouvel, B.: Rotations discrètes et automates cellulaires. PhD thesis, École Normale

Supérieure de Lyon (2006)
14. Nouvel, B., Rémila, É.: Incremental and transitive discrete rotations. In: Reulke, R., Eckardt,

U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 199–213.
Springer, Heidelberg (2006)

15. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation
angles from digital images. Pattern Recogn. 42, 1708–1717 (2009)

16. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: On 2D constrained discrete rigid transforma-
tions. Ann. Math. Artif. Intell. (in press), doi:10.1007/s10472-014-9406-x

17. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital
images under rigid transformations. J. Math. Imaging Vis. 49, 418–433 (2014)

18. Ngo, P., Sugimoto, A., Kenmochi, Y., Passat, N., Talbot, H.: Discrete rigid transformation
graph search for 2D image registration. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2013.
LNCS, vol. 8334, pp. 228–239. Springer, Heidelberg (2014)

19. Zitová, B., Flusser, J.: Image registration methods: A survey. Image Vision Comput. 21,
977–1000 (2003)

20. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn.
Elsevier Academic Press (2007)

21. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: Recalage d’images médicales. Tech Ing
(MED910) (2014)

22. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal Comput.
Syst. Sci. 38, 165–194 (1989); Corrig. 42, 249–251 (1991)

23. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4, 321–322 (1961)
24. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolu-

tion PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS,
vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

25. Flusser, J., Zitová, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition.
Wiley (2009)

	Efficient Neighbourhood Computing for Discrete Rigid Transformation Graph Search
	1 Introduction
	1.1 Discrete Rotations and Discrete Rigid Transformations
	1.2 Registration Issues
	1.3 Contribution

	2 Introduction to Discrete Rigid Transformation Graphs
	2.1 Rigid Transformation Space
	2.2 Discrete Rigid Transformation Graph
	2.3 Discrete Rigid Transformation Graph and Image Registration
	2.4 Local Search on a Discrete Rigid Transformation Graph

	k-Neighbourhood Construction Algorithm
	3.1 Tipping Surfaces Associated to a Discrete Rigid Transformation
	3.2 Sweeping Plane Algorithm for DRT Sub-graph Construction
	3.3 k-Neighbourhood Construction

	4 Complexity Analysis
	4.1 Time Complexity of k-Neighbourhood Construction Algorithm
	4.2 Average Degree of DRT Graphs

	5 Experiments
	6 Conclusion
	References

