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Abstract. To model Euclidean spaces in computerized geometric calcu-
lations, the Geometric Algebra framework is becoming popular in com-
puter vision, image analysis, etc. Focusing on the Conformal Geometric
Algebra, the claim of the paper is that this framework is useful in digital
geometry too. To illustrate this, this paper shows how the Conformal Ge-
ometric Algebra allow to simplify the description of digital objects, such
as k-dimensional circles in any n-dimensional discrete space. Moreover,
the notion of duality is an inherent part of the Geometric Algebra. This
is particularly useful since many algorithms are based on this notion in
digital geometry. We illustrate this important aspect with the definition
of k-dimensional spheres.

Keywords: Digital Geometry, Geometric Algebra, Conformal Model,
Digital Object.

1 Introduction

The purpose of this paper is to introduce the computational and mathematical
framework of Geometric Algebra (GA) in digital geometry. GA form a power-
ful mathematical language for expressing and representing geometric objects,
transformations or even for working in dual spaces [10,17,6]. GA are becoming
popular in various computer imagery sub-fields such as computer vision or image
analysis, and even more largely in fields like physics and engineering [15,5,7]. The
reason for such a popularity is that the mathematical framework of GA is well
adapted for handling geometric data of any dimension in a very intuitive way.

GA represent a natural extension of complex numbers and quaternions in
arbitrary dimension. Each instance of GA is an associative algebra (known as
Clifford algebra) of a real vector space equipped with a given quadratic form.
In this paper, we consider the Conformal Geometric Algebra (CGA), defined
over the Minkowski space R

n+1,1. It offers a very natural representation for
circles and spheres (points, lines and planes are simply particular cases of the
former) and extension of these geometric primitives in any dimension. CGA also
provides a way to represent transformations such as translations, reflections or
rotations.
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In Section 2, we present the conformal geometric algebra and some general
results on geometric algebra. This is intended as an introduction to CGA for the
readers that are not familiar with GA. In Section 3, we apply CGA to define
discrete primitives in any dimension. First, based on a previous work [4], discrete
hyperspheres and hyperplanes are presented as they often play a special role in
algorithms and definitions. The more general case of discrete k-sphere (discrete
spheres of dimension k in a n-dimensional space) is also introduced. Discrete
lines, planes and more generally discrete k-flats are particular cases of discrete
k-spheres. Finally, Section 4 proposes a conclusion and some perspectives: One
of the hopes in the future, is that generation and recognition algorithms of circles
and lines can be somewhat unified in such a general framework.

2 An Overview of Geometric Algebra

The basic idea of GA is to use vector subspaces which can be geometrically in-
terpreted as Euclidean geometric primitives, and manipulated with some trans-
formations. Thus, in any dimension, geometric primitives (lines, circles, planes,
spheres) and their transformations are represented by vector subspaces.

In this paper we use the conformal model of GA, usually denoted as Conformal
Geometric Algebra. The following presentation is mainly based on the book of
L. Dorst et al. [6] which provides an accessible and deep description of GA. For
a shorter introduction, the reader can consult [12].

2.1 Building the Conformal Geometric Algebra

The Vector Space Structure. The starting point to build the CGA is a
Euclidean space R

n of dimension n with an orthonormal basis {e1, e2, . . . , en}.
This Euclidean space is naturally equipped with a scalar product such that
e2i = 1 for i ∈ {1, 2, . . . , n}.

This Euclidean space is extended with two extra basis vectors e+ and e−
such that e+

2 = 1 and e2− = −1, and such that {e1, e2, . . . , en, e+, e−} is an
orthogonal basis. This gives the conformal space R

n+1,1. Due to its particular
scalar product, this space has a particular metric, which is a key point to obtain
an interpretation of its vector subspaces as geometric primitives and geometric
transformations.

In the rest of this paper, for simplicity, we use the basis {no, e1, e2, . . . , en, n∞}
where no = 1

2 (e+ + e−) and n∞ = e− − e+.

Introducing the Outer Product. Starting from this conformal space, the
CGA is built using the Grassmann or exterior or outer product, denoted by
“∧”. Among others properties, the outer product is anticommutative, meaning
that for two vector a and b, we have a ∧ b = −b ∧ a and a ∧ a = 0. This
product generates new elements from the vectors of R

n+1,1. For example, the
outer product a ∧ b of two independent vectors a and b is a new element, called
a 2-vector, which lies in a new vector space. The outer product a∧ b∧ c of three
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independent vectors a, b and c generates again a vector in a new vector space,
and so on until the (n+ 2)-vector space.

Considering the linear combinations of such elements1, we obtain the algebra
of vector subspaces of Rn+1,1. This algebra

∧(
R

n+1,1
)

is a graded algebra:

∧(
R

n+1,1
)
=

∧0 (
R

n+1,1
)⊕∧1 (

R
n+1,1

)⊕ · · · ⊕∧n+2 (
R

n+1,1
)

where
∧k (

R
n+1,1

)
is the vector space of k-vectors. The dimension of each of

such subspaces is
(
n+2
k

)
, and then the dimension of the algebra is 2n+2. The

space
∧0 (

R
n+1,1

)
is of dimension 1 and corresponds to the space of the scalars.

The space
∧n+2 (

R
n+1,1

)
is the space of pseudo-scalars; it is also a space of

dimension 1 spanned by the pseudo-scalar In+1,1 = no∧In∧n∞ where In = e1∧
· · · ∧ en is called the Euclidean pseudo-scalar. Hence, by duality,

∧n+2 (
R

n+1,1
)

is isomorphic to the scalar space. This principle is extended to each k-vector
space, which is by duality isomorphic to the (n+ 2− k)-vector space.

Elements of the k-vector space
∧k (

R
n+1,1

)
are called multivectors. For a

multivector A, the part in
∧k (

R
n+1,1

)
is denoted by 〈A〉k and is called the part

of grade k of A.
Elements that can be written as a product a1 ∧ a2 ∧ · · · ∧ ak of 1-vectors

are called k-blades2 and are of special interest because they can be interpreted
as geometric primitives. These elements represent the vector subspaces of the
conformal space R

n+1,1, since the outer product of k independent vectors spans
a k-dimensional vector subspace. Hence, for a particular vector subspace A of
dimension k, generated by a k-blade A = a1 ∧ · · · ∧ ak, we can determine a
k-blade I such that A = λI. The real coefficient λ is the (relative) weight of A
to the chosen k-blade I. The attitude of A is the equivalence class λA for any
λ ∈ R and the (relative) orientation of A is the sign of λ. These three quantities
are well known for a vector line; for any vector line defined by a vector a we can
define a (unit) vector i such that a = λi. In that case the attitude corresponds
to the direction of the line.

Introducing the Geometric Product. The geometric product is first defined
for two vectors a and b, ab = a ·b+a∧b where “ ·” is the scalar product of Rn+1,1.
The geometric product has no symbol to denote it. This product is then linearly
extended to any algebra element using the following properties for all scalars α
and multivectors A,B and C:

1A = A1 = A, A(B + C) = AB +AC, (B + C)A = BA+ CA,
(AB)C = A(BC), (αA)B = A(αB) = α(AB).

1 Recall that an algebra is a vector subspace equipped with a product. Hence, addi-
tion of vector subspaces and scalar multiplication of vector subspaces are available
operations.

2 In some textbooks, they are also called decomposable k-vectors.
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This product is the fundamental product of the Geometric Algebra, the other
products can be defined from it. The definitions of the previous outer product
and the left contraction used below from the geometric product are:
outer product : Ak ∧Bl = 〈AkBl〉k+l left contraction : Ak�Bl = 〈AkBl〉l−k

where the indexes denote the grade of the multivectors A and B.
The most important notion introduced by the geometric product is the possi-

bility to compute an inverse of a k-blade that has nonzero norm. For example, the
inverse of In+1,1 is given by I−1

n+1,1 = no∧I−1
n ∧n∞ where I−1

n = (−1)n(n−1)/2In.
This lets us define the dual of a multivector A as A∗ = AI−1

n+1,1, or equivalently
A∗ = A�I−1

n+1,1. If Ak is a k-blade then A∗
k is an (n+2−k)-blade which represents

the orthogonal complement3 of the k-blade Ak.

Euclidean Point Representation in CGA. Any Euclidean point p of Rn is
represented by a vector p of the conformal space R

n+1,1 by:

p = F (p) = no + p+
1

2
p2n∞.

This vector p is normalized as the coefficient of no is 1. Else, it can be normalized
using p

−n∞·p . In a general setting, the coefficient of no is the weight of the vector
p and, using no · n∞ = −1, is equal to −n∞ · p.

The dot product of two vectors p and q representing two Euclidean points p
and q is directly linked to their Euclidean distance d2(p,q):

p · q = −1

2
(p− q)2. (1)

Hence, for a vector p ∈ R
n+1,1 representing a Euclidean point p, it follows

p · p = 0 and −n∞ · p �= 0; so, Euclidean points are represented by null vectors
(i.e. vectors that square to zero). Moreover, the normalization condition and
the equality n∞ · n∞ = 0 tell us that n∞ is a point and can be geometrically
interpreted as the point at infinity. The vector no is also a null vector, so it
represents a point and can be geometrically interpreted as the point at the origin
in the chosen representation4 of Euclidean points in the conformal space.

2.2 Representing Geometric Elements

Hyperspheres and Hyperplanes. The equation (1) immediately gives us the
equation of a hypersphere with the Euclidean point c as center and radius ρ. For
a Euclidean point x of the hypersphere we have:

x · c = −1

2
ρ2

3 This orthogonality notion refers to the particular metric we have defined on R
n+1,1.

4 Actually any other finite point p can be chosen as point at origin. Since the normal-
ization condition imposes −n∞ · p = 1, it has the same relation with n∞ as no.
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where x and c are the vectors representing the points c and x. This last equation
is equivalent to:

x · (c− 1

2
ρ2n∞) = 0 (2)

by using the normalizing condition −n∞ · x = 1. The vector σ = c − 1
2ρ

2n∞
represents the hypersphere with center c and radius ρ.

As the defining equation of a hypersphere is x ·σ = 0, we say that the vector σ
dually represents the hypersphere. From this, a direct representation of a hyper-
sphere can be deduced (see [6]). In brief, in dual representation a hypersphere is
represented by a vector which is a 1-dimension vector subspace. Then, taking the
dual in R

n+1,1 of this vector in leads to a vector subspace Σ of dimension n+1.
This vector subspace is spanned by n + 1 vectors that can be chosen as repre-
senting vectors of n+1 Euclidean points. So we can write Σ = p1∧p2∧· · ·∧pn+1

and Σ∗ = σ. This means that a Euclidean hypersphere in R
n is defined by n+1

Euclidean points.
Considering equation (2) for a Euclidean point x not on the hypersphere

represented by σ gives

x · σ = x · (c− 1

2
ρ2n∞) = −1

2
((x− c)2 − ρ2) (3)

then x·σ > 0 if the point x is inside the hypersphere and x·σ < 0 if the point x is
outside the hypersphere. This gives us a way to determine the relative positions
of a point and a hypersphere in any dimension.

In these settings a hyperplane Π is a hypersphere with a point at infinity,
hence Π = p1 ∧ · · · ∧ pn ∧ n∞. A Euclidean hyperplane is thus defined with n
Euclidean points. It is dually represented by the vector Π∗ = π = n + δn∞
where n is the normal to the hyperplane and δ the distance to the origin along
n. Hence for a point x of the hyperplane represented by π we have

x · π = x · n− δ = 0

which is the usual (i.e. in linear algebra setting) equation for an hyperplane of
normal vector n and distance δ to the origin along n. Thus, for a point x not
on the hyperplane, we can determine the relative positions of x and π using the
sign of x · π.

Flats. Flats (k-flats) are offsets of k-dimensional subspaces of R
n (i.e. lines,

planes, etc). In the CGA framework they are represented by algebra elements of
the direct form: p ∧Ak ∧ n∞, where Ak is a Euclidean blade (i.e. a blade with
no vector no or n∞ as factor) and the vector p represents the Euclidean point p
the flat is passing through. Dualizing this expression leads to the dual form of a
k-flat: −p�(A�

k n∞), where A�
k = AkI

−1
n is the Euclidean dual of Ak.

Rounds. Rounds are geometric algebra elements representing k-spheres. They
can be defined using the outer product of k+2 independent vectors representing
Euclidean points: Σ = p1 ∧ · · · ∧ pk+2.
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Hence a circle (i.e a 1-sphere) is defined by three points and a 2-sphere is
defined by four points. The minimum number of points to obtain a round is 2,
this corresponds to a 0-sphere which is a point pair. This is easily explained if we
use an alternate definition of a k-sphere as the intersection of a hypersphere with
a (k + 1)-flat. So the intersection of a hypersphere with a line gives a 0-sphere
which is the two points of intersection.

In the CGA framework the intersection of an hypersphere Σ∗ = σ and a flat
Π∗ = π in dual form is easily computed by:

σ ∧ π = Σ∗ ∧Π∗

using the formula5 (Σ ∩Π)∗ = Σ∗ ∧Π∗ (see [6]). This leads to the dual form of
a round with center c and radius ρ:

Σ∗ = σ = (c− 1

2
ρ2n∞) ∧ (−c�((−1)(n−k)A�

k n∞))

where the change of sign is to maintain coherent orientation. Dualizing this
expression leads to another direct form of a round:

Σ = (c+
1

2
ρ2n∞) ∧ (−c�((−1)kAk n∞))

with center c and radius ρ.

Imaginary Hyperspheres and Imaginary Rounds. In this last expression
the algebra element (c + 1

2ρ
2n∞) has a particular meaning. For a Euclidean

point x, considering the equation x.(c + 1
2ρ

2n∞) = 0 leads to (x − c)2 = −ρ2.
This means that the squared distance of all Euclidean points satisfying x.(c +
1
2ρ

2n∞) = 0 must be negative. By analogy we say that the vector (c+ 1
2ρ

2n∞)
represents an imaginary hypersphere.

If such an imaginary hypersphere is used in the definition of the dual form
of a round given above, we obtain the dual form of an imaginary round. As
only squared distances enter in algebra computations, complex numbers are not
needed.

Those elements occur naturally as results of intersections when a real solution
does not exist (see figure 1).

3 Discrete Geometric Primitives

Basic discrete primitives such as discrete straight lines, discrete hyperplanes
and discrete hyperspheres [2,1,14] have been defined as all the discrete points

5 This formula corresponding to the dual of an intersection, called the plunge, is valid
because the union of Σ and Π is the whole space. Otherwise, the same formula can
be used but the dual must be taken wrt. the union of Σ and Π (more details can be
found in [6] chap. 14).
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(a) Intersection: imaginary case. (b) Intersection: real case.

Fig. 1. The intersection of hypersphere Sp,ρ (the sphere) and a 1-sphere S1 (the circle).
(1a) When there is no intersection the expression S∗

p,ρ�S1 is an imaginary round (dashed
point pair) and the expression S∗

p,ρ ∧ S∗
1 is a real round (red circle). (1b) When there

is an intersection, real (blue points) and imaginary (dashed circle) are interchanged.

verifying a set of inequalities in the classical linear algebra framework. There is
however no direct way to define discrete rounds or flats in such a way. A more
recent approach proposed a morphological based digitization scheme [16] defined
as the intersection of the discrete space and the Minkowski sum of a structuring
element and the object points. For a structuring element corresponding to a ball
for a given distance, it is equivalent to considering all the discrete points that
are at the ball radius distance of the Euclidean primitive.

For instance in nD space, considering the ballB2

(
c, 1

2

)
=
{
x ∈ R

n|d2(x, c) ≤ 1
2

}

as structuring element, then the discretisationD(F ) of a Euclidean object F is de-
fined by:

D(F ) =

(

B2

(

x ∈ F,
1

2

)

⊕ F

)

∩ Z
n

where ⊕ is the Minkowski sum operator. This can also be interpreted as

D(F ) =

{

X ∈ Z
n | d2(X,F ) ≤ 1

2

}

.

The problem is to test efficiently the inequality d2(X,F ) ≤ 1/2. For instance,
let us consider a round R of dimension k defined by

R =
{
v ∈ R

n
∣
∣
∣|c− v|2 = ρ2

}
∩
{
v ∈ R

n
∣
∣
∣v =

∑
λiui

}

where {ui} are k linearly independent vectors. There is no simple immediate
expression for the distance d2(x,R) between a point x and the k-dimensional
round R in dimension n.

In the following subsections, we are going to examine how discrete hyper-
spheres, hyperplanes, k-spheres and k-flats can be described within the CGA
framework (see also [4]). The interest of those expressions is that they can di-
rectly be computed.
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3.1 Discrete Hyperspheres and Discrete Hyperplanes in CGA

Using the Euclidean distance, a discrete hypersphere centered at the point c
with radius ρ is defined as:

{
p ∈ Z

n| (ρ− d)
2 ≤ |c− p|2 < (ρ+ d)

2
}

where the width d is a positive real number smaller than ρ. This is the set of
discrete points close to the Euclidean hypersphere.

Hence, a point lies in the discrete hypersphere if it is inside the Euclidean
hypersphere of radius ρ+ d, and outside the hypersphere of radius ρ− d.

In the CGA framework these two hyperspheres are defined in dual form as:

σc,ρ+d = c− 1
2 (ρ+ d)2 n∞ and σc,ρ−d = c− 1

2 (ρ− d)2 n∞.

Now, using equation (3) and a discrete point p ∈ Z
n, distances to the hyper-

spheres σc,ρ+d and σc,ρ−d are checked with the following expressions:

p · σc,ρ+d =
1

2

(
(ρ+ d)

2 − (p− c)
2
)

(4)

p · σc,ρ−d =
1

2

(
(ρ− d)2 − (p− c)2

)
(5)

expression (4) must be positive and expression (5) must be negative.
Hence, in any dimension, a discrete hypersphere centered at c with radius ρ

is defined as:
{p ∈ Z

n | p · σc,ρ−d < 0 and p · σc,ρ+d ≥ 0} .
The figure 2 shows an example of a discrete hypersphere drawn with this
definition.

Using the same development, a discrete hyperplane can be defined as the set
of discrete points close to the Euclidean hyperplane πn,δ = n+δn∞ and we must
find the discrete points enclosed between two hyperplanes. To do this, we define
two hyperplanes πn,δ−d = n+(δ−d)n∞ and πn,δ+d = n+(δ+d)n∞ translated for

(a) (b) (c)

Fig. 2. Example of a discrete hypersphere. (2a) Drawn with the “centers” of the voxels.
(2b) Drawn with voxels. (2c) Partial view.
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a width d along the normal of the first one. Hence, in any dimension, a discrete
hyperplane with normal n at distance δ to the origin along n is defined as:

{p ∈ Z
n | p · πn,δ−d < 0 and p · πn,δ+d ≥ 0}

which is basically the same definition as for the discrete hypersphere.
To conclude this section, in the CGA framework discrete hyperspheres and

discrete hyperplanes are the same objects, and their definition works in any
dimension. It simply consists in checking the signs of two vector dot product
expressions.

3.2 Discrete Rounds and Discrete Flats in CGA

In this section we define discrete rounds (i.e. discrete k-spheres) using the struc-
turing element approach. In our case, we use a hypersphere as structuring el-
ement. So, we have to check if a given point p lies into the discrete round by
verifying that the hypersphere centered on p intersects the k-sphere.

Two cases must be distinguished depending on the form of the given round to
digitize. If it is in direct form, we use an expression involving the left contraction
product. Otherwise, if the round is in dual form, an expression with the outer
product is used. In both cases, it is easier to consider the hypersphere in its dual
form. This situation is usual in the CGA framework as duality is fully integrated.
Once we have the expressions, either mode (direct or dual) is easy to work with,
it just depends on the way the data have been given.

Rounds in Direct From. Let Sk be a k-sphere and Sp,ρ a hypersphere with
center p and radius ρ. Let Σk be a round in direct form representing Sk. The
intersection of Sk and Sp,ρ is given by the formula S∗

p,ρ�Σk where S∗
p,ρ is the

algebra element representing Sp,ρ in dual form (see [6]).
Hence, as S∗

p,ρ is a blade of grade 1 and Σk is a blade of grade k, the intersec-
tion must be a blade of grade k− 1. This is coherent with the usual result when
intersecting a k-sphere with a hypersphere we obtain a (k − 1)-sphere.

Moreover, if no intersection exists, the obtained (k−1)-sphere is an imaginary
round (see figure 1).

For a round Σk in direct form, its squared radius is given by the formula

ρ2 = (−1)k
Σ2

k

(n∞�Σk)2
.

So, to test if a discrete point p ∈ Z
n is in a discrete round we only have to

test the sign of the expression

(−1)k−1

(

(p− 1

2
ρ2n∞)�Σk

)2

.

This gives us the definition of a discrete round in direct form
{

p ∈ Z
n | (−1)k−1

(

(p− 1

2
ρ2n∞)�Σk

)2

≥ 0

}

.
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Rounds in Dual Form. Let Sk be a k-sphere and Sp,ρ an hypersphere with
center p and radius ρ. Let σk be a round in dual form representing Sk. The dual
of the intersection of σk and Sp,ρ is given by the formula (Sk∩Sp,ρ)

∗ = S∗
p,ρ∧σk

where S∗
p,ρ is the algebra element representing Sp,ρ in dual form (see [6]).

As before, S∗
p,ρ is a blade of grade 1 and σk is a blade of grade n+2− k thus

the dual of the intersection is a blade of grade n+3− k so its dual is a blade of
grade (k − 1). Expression S∗

p,ρ ∧ σk corresponds to a (k − 1)-sphere represented
by a round in dual form.

The squared radius of a round σk in dual form is given by the formula

ρ2 = (−1)n+1−k σ2
k

(n∞�σk)2
.

So, to test if a discrete point p ∈ Z
n is in a discrete round we only have to

test the sign of the expression

(−1)n−k

(

(p− 1

2
ρ2n∞) ∧ σk

)2

.

This gives us the definition of a discrete round in dual form
{

p ∈ Z
n | (−1)n−k

(

(p− 1

2
ρ2n∞) ∧ σk

)2

≥ 0

}

(a) (b) (c)

Fig. 3. Examples of discrete k-spheres. (3a) Using a hypersphere as structuring el-
ement. The points are the “centers” of the voxels defining a discrete circle. (3b) A
discrete circle. (3c) A discrete line generated in the same way as the discrete circle.

To conclude this section about discrete rounds, we have seen that discrete
rounds can be defined from rounds either in direct form or dual form. The
structure of the definitions is the same, the only difference is in the involved
product.

Moreover, as k-flats can be seen as particular rounds passing through infinity,
from those definitions, discrete circles, lines and so on can easily be defined in
any dimension.
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4 Conclusion and Future Works

In this paper, definitions of discrete hyperspheres, hyperplanes and rounds (i.e.
circles, lines, spheres, flats in any dimension) have been proposed in the Confor-
mal Geometric Algebra formalism. These definitions are valid in any dimension.
The expressions are simple and can be directly used in computations contrary to
equivalent definitions in a classical framework. They also propose a unified ap-
proach for such discrete objects as k-flats are a special case of k-spheres. One of
the hopes, beyond the definitions in dimension n, is that generation and recogni-
tion algorithms of k-spheres and flats can be somewhat unified in a more general
framework.

However, efficient implementation of the Conformal Geometric Algebra is not
an easy task [6,11,13,9] and future work is needed to have a specialized imple-
mentation for discrete geometry. For this article, we have used GAviewer [8] and
the Mathematica package [3].

First experimentation has been conducted about discrete rotations. In Con-
formal Geometric Algebra, plane rotations are defined in a simple way as:

R = ba = b · a+ b ∧ a = cos(φ/2)− sin(φ/2)I

where a and b are two purely Euclidean vectors (i.e. without no and n∞) φ is
the rotation angle (i.e. φ/2 is the angle from a to b) and I is the unit bivector
for the plane a ∧ b (i.e. I is such that a ∧ b = βI with β > 0). Then RpR−1

is the rotation of a point represented by the vector p and R−1 = cos(φ/2) +
sin(φ/2)I.

If one wants to define a plane rotation using only integer numbers, we use the
expression

R = α− βI

where α and β are integer numbers. This corresponds to the use of two vectors
a′ and b′ with angle φ/2 but with integer coordinates. In that case a coefficient
appears in the expression of R−1 because R is not of norm 1. Thus

R−1 =
1

α2 + β2
(α + βI)

Now, if the vector p represents a point p with integer coordinates, its rotation
is computed by (α2 + β2)RpR−1. In dimension 2 this means that we have to
consider the rotation as a function from Z

2 to Z
2 and define a grid (α2 + β2)

times smaller for the image space. Such phenomenon provides a good explanation
of why a discrete rotation is not a one-to-one application. Further investigations
need to be conducted taking into account not only rotations but also translations
in order to be able to handle rigid transforms for example.
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