
A New GCC Plugin-Based Compiler Pass
to Add Support for Thread-Level Speculation

into OpenMP

Sergio Aldea, Alvaro Estebanez,
Diego R. Llanos, and Arturo Gonzalez-Escribano

Dpto. Informática, Universidad de Valladolid
Campus Miguel Delibes, 47011 Valladolid, Spain
{sergio,alvaro,diego,arturo}@infor.uva.es

Abstract. In this paper we propose a compile-time system that adds
support for Thread-Level Speculation (TLS) into OpenMP. Our solution
augments the original user code with calls to a TLS library that handles
the speculative parallel execution of a given loop, with the help of a new
OpenMP speculative clause for variable usage classification. To sup-
port it, we have developed a plugin-based compiler pass for GCC that
augments the code of the loop. With this approach, we only need one
additional code line to speculatively parallelize the code, compared with
the tens or hundreds of changes needed (depending on the number of
accesses to speculative variables) to manually apply the required trans-
formations. Moreover, the plugin leads to a faster performance than the
manual parallelization.

Keywords: Thread-Level Speculation, TLS, OpenMP, Source code gen-
eration, GCC plugin.

1 Introduction

The availability of multicore architectures allows users not only to run several ap-
plications at the same time, but also to run parallel code. However, the manual
development of parallel versions of existent, sequential applications is an ex-
tremely difficult task because it needs (a) an in-depth knowledge of the problem
to be solved, (b) understanding of the underlying architecture, and (c) knowl-
edge of the parallel programming model to be used. Many parallel languages
and parallel extensions to sequential languages have been proposed to exploit
the capabilities of modern multicore system. The most successful proposal in
the domain of shared memory system is OpenMP [1], a directive-based parallel
extension to sequential languages as Fortran, C, or C++, that allows the par-
allelization of user-defined code regions. OpenMP does not ensure the correct
execution of the code according to sequential semantics, making the program-
mer responsible for such tasks. Possible dependence violations that may occur
between iterations during execution need to be addressed by the programmers.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 234–245, 2014.
c© Springer International Publishing Switzerland 2014

A New GCC Plugin to Support TLS into OpenMP 235

On the other hand, automatic parallelization offered by compilers only ex-
tracts parallelism from loops when the compiler can assure that there is no risk
of a dependence violation at runtime. Only a small fraction of loops falls into
this category, leaving many potentially parallel loops unexploited. Thread-Level
Speculation (TLS) techniques allow the extraction parallelism from fragments
of code that can not be analyzed at compile time, namely, the compiler can
not ensure that the loop can be safely run in parallel. TLS can deal with those
situations in which dependence violations may occur, leading the parallel loop
to correctly finalize its execution. The main problem of these techniques is that
the code needs to be manually augmented in order to handle the speculative
execution and monitor the possible dependences. Programmers have to modify
those accesses to variables that may lead to a dependence violation, also known
as speculative variables.

In our prior work [2], we proposed the idea of extending OpenMP to allow the
user to mark variables as speculative, and a compile-time system that enables the
automatic transformation of the code to support its execution by a TLS runtime
library. The transformations proposed are transparent to programmers, who do
not need to know anything about the TLS parallel model. These key aspects of
our proposal solve the problems stated above. Programmers only have to classify
variables depending on their accesses, letting our solution perform all the changes
needed in the source code. To do so, we have proposed a new OpenMP clause
(speculative) to handle those variables whose use may lead to any dependence
violation.

In this paper we present the development of a GCC plugin-based compiler pass
to give support to the new clause speculative into GCC OpenMP implementa-
tion. This pass transforms the loop with the corresponding omp parallel for
directive, inserting the runtime TLS calls needed to (a) distribute blocks of itera-
tions among processors, (b) perform speculative loads and stores of speculative
variables (pointed out using the new clause), and (c) perform partial commits of
the correct results calculated so far. The TLS runtime library used [3] is based
on the same design principles as the speculative parallelization library developed
by Cintra and Llanos [4,5].

Our experimental comparison between manual and automatic transformation
of the user code shows that the runtime performance of the code generated by our
compilation system is even faster than the performance returned by a manually-
transformed code. Besides, the number of lines that should be changed by the
programmer to speculatively parallelize a loop is reduced to only one, instead of
the significant amount of lines needed in a manual intervention, which depends
on the number of accesses to speculative variables inside the loop.

2 Thread-Level Speculation in a Nutshell

Speculative parallelization (SP), also called Thread-Level Speculation (TLS) or
Optimistic Parallelization [6] assumes that sequential code can be optimistically
executed in parallel, and relies on a runtime monitor to ensure that no depen-
dence violations are produced. A dependence violation appears when a given

236 S. Aldea et al.

t5

t8

t10

LocalVar1 = SV[x]

SV[x] = LocalVar2

t6
t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

t2

t4

t6

LocalVar1 = SV[x]

SV[x] = LocalVar2

t0

t1

t3 SV[x] = LocalVar2

LocalVar1 = SV[x]

Thread 1 (non spec)
(iteration 1, x = 1) (iteration 2, x = 1)

Thread 2
(iteration 3, x = 2)

Thread 3 Thread 4 (most−spec)
(iteration 4, x = 2)

Reference
copy of

sv[2]

(Time t4: Thread 2 forwards updated value for sv[1] from thread 1)

(Time t3: thread 1 detects no dependence violations)

(Time t6: thread 1 detects no dependence violations)

(Time t8: Thread 3 forwards value of sv[2] from reference copy)

(Time t7: Thread 4 forwards value of sv[2] from reference copy)

(Time t10: Thread 3 detects violation: thread 4 squashed)

(b) Speculative loads with most−recent value forwarding

(a) Speculative stores plus detection of dependence violations

Time

(c) In−order commit of data from successfully−finished threads

Fig. 1. Example of speculative execution of a loop and summary of operations carried
out by a runtime TLS library

thread generates a datum that has already been consumed by a successor in the
original sequential order. In this case, the results calculated so far by the suc-
cessor (called the offending thread) are not valid and should be discarded. Early
proposals [7,8] stop the parallel execution and restart the loop serially. Other
proposals stop the offending thread and all its successors, re-executing them in
parallel [4,9,10,11].

Figure 1 shows an example of thread-level speculation. The figure represents
four threads executing four consecutive iterations, and the sequence of events
when the loop is executed in parallel. The value of x was not known at compile
time, so the compiler was not able to ensure that accesses to the SV structure do
not lead to dependence violations when executing them in parallel. Note that,
at runtime, the actual indexes of SV[x] are known.

Speculative parallelization works as follows. Each thread maintains a version
copy of the entire SV vector, called the speculative data structure. At compile
time, all reads to SV are replaced by a function that performs a speculative load.
This function obtains the most up-to-date value of the element being accessed.
This operation is called forwarding. If a predecessor (that is, a thread executing
an earlier iteration) has already defined or used that element then the value is
forwarded (as Thread 2 does in Fig. 1). If not, then the function obtains the
value from the main copy of the vector (as Thread 3 does in the figure).

Regarding modifications to the shared structure, all write operations should be
replaced at compile time by a speculative store function. This function writes the
datum in the version copy of the current processor, and ensures that no thread
executing a subsequent iteration has already consumed an outdated value for this
structure element, a situation called “dependence violation”. If such a violation
is detected, the offending thread and its successors are stopped and restarted.

If no dependence violation arises for a given thread, it should commit all the
data stored in its version copy to the main copy of the speculative structure.
Note that commits should be done in order, to ensure that the most up-to-date

A New GCC Plugin to Support TLS into OpenMP 237

#pragma omp parallel for default(none) private(i, Q, aux) speculative(a)
for (i = 0; i < MAX; i++) {

Q = i % (MAX) + 1;
aux = a[Q-1];

Q = (4 * aux) % (MAX) + 1;
a[Q-1] = aux;

}

Fig. 2. Example of FOR loop annotated with the speculative clause

values are stored. After performing the commit operation, a thread can receive
a new iteration or block of iterations to continue the parallel work.

Finally, the original loop to be speculatively parallelized should be augmented
with a scheduling method that assigns to each free thread the following chunk
of iterations to be executed. If a thread has successfully finished a chunk, it will
receive a brand new chunk not executed yet. Otherwise, the scheduling method
may assign to that thread the same chunk whose execution had failed, in order
to improve locality and cache reutilization.

In short, at compile time TLS requires that the original code be augmented to
perform speculative loads, speculative stores, and in-order commits. In addition,
it also requires that the loop structure be rearranged in order to follow the re-
execution of squashed operations. Without computational support, this is a task
that programmers have to carry out manually. Our plugin solves this limitation,
automatically performing all these changes required by the TLS runtime library
that gives support. Programmers just need to use the new OpenMP clause we
have proposed to point out which variables may lead to a dependence violation.

3 New OpenMP Clause: speculative

The new OpenMP clause we defined [2] is called speculative, and it needs to
be used as part of a parallel for directive. The new clause is used as follows,
where list contains variables that may lead to any dependence violation:

#pragma omp parallel for speculative (list)
for-loop

With this extension, programmers are able to write OpenMP programs as
usual, but annotating those variables that could lead to a dependence violation
as speculative. With this method, programmers do not have to take care of
handling these violations, being the speculative engine the responsible of such
task. Once a programmer annotates each variable to its type, the plugin aug-
ments the code to add support for the TLS runtime library.

Figure 2 shows an example of the use of the proposed clause. Variable i is
private, since it is the variable that controls the iterations of the FOR loop.
Variables Q and aux are private, because they are always written before being
read in the context of an iteration. Finally, variable a is speculative, because

238 S. Aldea et al.

Fig. 3. GCC Compiler Architecture [12,13] simplified. The main OpenMP related com-
ponents, highlighted in grey, are the C, C++ and Fortran parsers, and the GIMPLE
IR level. The black box represents the location of our plugin pass.

accesses to this variable can lead to dependence violations. Eventually, a partic-
ular iteration will read from a a non-updated value and therefore the execution
will be incorrect. As we have seen in Sect. 2, a speculative scheme would allow
this loop to finish correctly.

4 Parsing the New speculative Clause

Although the plugin mechanism enables us to perform all the changes needed
by the TLS runtime library, plugins do not allow the extension of the parsed
language. Therefore, adding a new OpenMP clause recognized by GCC requires
not only the creation of a plugin, but also modifying the GCC code itself. In
order to parse the new clause speculative, we have extended the GNU OpenMP
(GOMP), an OpenMP implementation for GCC. The main parts of the GCC
architecture related within OpenMP are highlighted in grey in Fig. 3. GOMP has
four main components [14]: parser, intermediate representation, code generation,
and the runtime library called libGOMP. In relation to GOMP, we have focused
on modifying its parsing phase and the intermediate representation (IR). The
generation of new code to support TLS is located in the plugin developed, and
mainly this new code consists of calls to the TLS library functions needed for
the speculative execution.

The parser identifies OpenMP directives and clauses, and emits the corre-
sponding GENERIC representation. We have modified the C parser and the
IR to add support for the new clause speculative. First, we have created the
GENERIC representation of the new clause like other standard clauses. Then,
the compiler has been prepared to recognize and parse the clause as part of the
parallel loop construct. When the new clause has been parsed and the IR is gen-
erated, our plugin detects the clause and starts all the transformations needed
on the code.

5 Plugin-Based Compiler Pass Description

Once the new clause proposed is recognized by GCC, programmers can set the
speculative variables, and the plugin developed can augment the original code.

A New GCC Plugin to Support TLS into OpenMP 239

Fig. 4. Code of Fig. 2 annotated and the resulting, transformed pseudo-code.
initSpecLoop() and endSpecLoop() are macros that expand to more code, hidden
here for legibility reasons.

The use of plugins provides several advantages, such as faster building of proto-
types, easier modifications and contributions, and the use of GCC as a research
compiler. Using plugins programmers can load external shared modules, which
are inserted as new passes into the compiler. We will take advantage of this
feature to develop our plugin and add support to TLS into OpenMP. We have
chosen to modify GCC because it is a mainstream mature compiler, and we ex-
pect that extending GCC functionalities will have a higher impact. Moreover,
as long as GCC supports more than 30 architectures, this increases the compat-
ibility of our proposal.

The new pass is added once the compiler has transformed the code into GIM-
PLE, and just before GCC does the first pass related to OpenMP (omplower).
Therefore, our pass is added before pass_lower_omp in passes.c. In this point,
we have the code in a GIMPLE representation, and the FOR-loop marked with
the omp parallel for directive preserves all the clauses written by the pro-
grammer. Therefore, we have the information about which variables are shared,
private, and speculative, the latter thanks to the new clause proposed. After
this pass, GCC processes speculative variables as shared, while their handling
as speculative will be carried out at runtime by the TLS library.

Figure 4 shows a brief example of the transformations made by the plugin.
The parser detects the new speculative clause, and the new compiler pass au-
tomatically performs all the transformations needed to speculatively parallelize
the loop. If the plugin does not find the speculative clause on the pragma,
the semantic of the loop remains identical to any other standard OpenMP loop.
With the list of variables and data structures that should be speculatively up-
dated, the plugin replaces each read of one of these variables or data element
with a specload() function call. Similarly, all write operations to speculative
variables are replaced with a specstore() function call. Loads or stores in-
volving other variables do not require additional changes in the code, since all
flavors of private and shared variables keep their respective semantics in the
context of a speculative execution. The plugin also adds all the structures and
functions needed to run the TLS system that parallelize the code. This process is

240 S. Aldea et al.

completely transparent to programmers, shielding them from the intricacy of the
underlying speculative parallelizing model. They only have to label the variables
involved in the target loop as private or shared, as with any other OpenMP pro-
gram, and label as speculative those variables that can lead to any dependence
violation.

Once the plugin has transformed the loop, GCC operation continues with the
next passes. When the compilation ends, the resulting binary file is prepared to
run speculatively.

5.1 Interface with the TLS Runtime Library

The plugin-based compiler has to augment the code with the functions and
structures needed for the speculative execution, and defined by the TLS runtime
library. The library used [3] is largely based in Cintra’s and Llanos’ work (see
[4,5] for details). The plugin has to replace accesses over speculative variables
with specstore() or specload() functions. This task requires the plugin to
detect code lines where a write and/or read is applied, to extract the type of
the speculative variable or the particular field of an speculative structure, and to
perform the changes needed, including the addition of new variables to handle
the temporal values required. The plugin is also able to detect reductions applied
on speculative variables, replacing them by the appropriate function calls to the
TLS runtime library that handle them.

The TLS runtime library also requires other functions and structures, some
of them sketched in Fig. 4, that the plugin has to correctly insert into the code.
Regarding the original loop, the plugin replaces the parallelized loop with a
new loop that drives the speculative execution. This new loop iterates over the
threads, and has the same body as the original, although it is augmented with
extra code that ensures the correct distribution of iterations over the threads,
and commits the data stored in the speculative variables. The definition of the
new loop and the code inserted before the body of the original loop is gathered
in the macro initSpecLoop() (Fig. 4) for simplicity. The code lines which are
required to be inserted after the body of the original are gathered in the macro
endSpecLoop().

Besides modifying the target loop and its body, the plugin also adds three
functions before the loop. The first one, specinit(), initializes the TLS run-
time library, and it has to be called once in a program. Therefore, the plu-
gin detects the main function of a program, and adds the call to specinit()
as the first statement. The other two functions required are specstart() and
omp_set_num_threads(), which are always placed before each parallelized loop.
specstart() initializes the execution of the following parallel loop, while omp_-
set_num_threads() set the number of threads for its parallel execution.

5.2 Handling Complex Statements

The plugin is able to handle all definitions and uses of scalar variables, not only
simple assignments. This includes dealing with complex statements, that are

A New GCC Plugin to Support TLS into OpenMP 241

required to maintain the same order in which the multiple speculative loads and
stores are executed. The plugin first resolves the loads, creating new temporal
variables that take part of the expression that assign a value to the speculative
variable. After replacing the loads for the corresponding specload(), the plugin
handles the store into the speculative variable by placing a specstore(). An
example of this situation is a writing into a speculative array with a speculative
variable as index.

Programmers may write other constructs that the plugin can deal with, such
as assignments from one pointer to another, accesses involving directions or the
data pointed by the pointer, assignments between entire data structures or only
fields of those structures, and speculative variables involved in casting operations.

5.3 Using the Plugin to Compile the User Code

From the point of view of programmers, to speculatively parallelize a source
code with our system they only have to add an OpenMP parallel loop directive
and set a few parameters to the compiler. First, programmers should add the
OpenMP directive in the target loop, and classify its variables according to their
usage in private and its variants, shared, speculative.

Second, to compile the program, programmers should indicate the size of the
block of iterations that will be issued for speculative execution, as well as the
number of threads they want to launch. We have developed a wrapper script
that launches the compilation of the plugin plus the speculative engine, and it
is run as follows:

$ atlas –threads T –block B -c example.c

Just by using the speculative clause, a programmer can speculatively paral-
lelize a code, while the rest of transformations needed are transparently per-
formed by the plug-in and the compiler.

6 Validation

In order to check the correctness of our plugin and the code that it generates, we
have developed a battery of regression tests. These regression tests include more
than 50 loops with one or more speculative variables, scalar variables, pointers,
elements from multidimensional arrays, or elements from data structures. They
also cover situations with speculative variables that have different types, and
loops executing a number of iterations that are variable and defined in runtime.
These regression tests are developed with the aim of covering possible situations
that we can find in a source code, allowing us to check the correction of the
plugin before addressing real applications. One of these tests is shown in Fig. 5,
where we check the correct operation of the plugin with speculative accesses
over variables with different sizes, and speculative accesses to data structures,
including assignments between entire structures.

We have also tested the plugin with real-word applications that are not par-
allelizable at compile time due to several data dependencies, requiring runtime

242 S. Aldea et al.

1: int i, j, array[MAX], array2[MAX];
2: struct card{ int field; };
3: struct card p1 = {3}, p2 = {99999}, p3 = {11111};
4: char aux_char = ’a’;
5: double aux_double = 3.435;

...
6: #pragma omp parallel for default (none) private(i,j) shared(array1, p2) \
7: speculative(p1, p3, aux_char, aux_double, array2)
8: for (i = 0 ; i < NITER ; i++) {
9: for (j = 0 ; j < NITER ; j++) {
10: if (i <= 1000) p1.field = array[i % 4] + j;
11: else array2[i % 4] = p1.field;

12: if (i > 2000) aux_char = i %20 + 48 + aux_char % 48;
13: else aux_char = i % 20 + array[i % 4] % 10 + 48;

14: if (i > 1500) aux_double = array[i % 4] / (i+1) + aux_double;
15: else array2[i % 4] = (int) (aux_double / i*j) + (array2[(i+j) % 4] + i*j) % 1234545;

16: if (i*j > 10000) p1 = p2; else p3 = p1;
17: }
18: }

Fig. 5. Example of the kind of situations that the plugin can deal with

speculative parallelization. These applications are the 2-dimensional Convex Hull
problem (2D-Hull) [15], the Delaunay Triangulation using the Jump-and-Walk
strategy [16], the 2-dimensional Minimun Enclosing Circle (2D-MEC) prob-
lem [17], and a C implementation of TREE [18]. The plugin is able to spec-
ulatively parallelize the target loops in these benchmarks correctly.

7 Relative Performance and Programmability

Automatic parallelization moves the workload from the programmer to the com-
piler. This is a great deal if the performance achieved by the automatic approach
is as good as the obtained by the manual one. In Table 1 we summarizes the
relative performance of both automatic and manual approaches. Note that the
numbers are not the speedups obtained, but their relative comparison. The ex-
perimental results show that the automatic transformation leads to a faster code
than the one obtained by manually replacing accesses to speculative variables
with function calls. The reason is that the manual transformation of the source
code may prevent the application of certain compiler optimizations. In contrast,
our automatic transformation system works with the GIMPLE intermediate rep-
resentation, after the first phases of the compiler have been triggered. The per-
formance achieved by the applications parallelized using the speculative clause
is 24% faster than the performance scored by the manual parallelization on geo-
metric average. The maximum speedup achieved in each application is shown in
Table 1. Data have been obtained running each experiment three times, and then
obtaining the average. Experiments were carried out on a 64-processor server.

Regarding programmability, using the proposed clause dramatically reduces
the number of lines required in comparison with the former, manual way of

A New GCC Plugin to Support TLS into OpenMP 243

Table 1. Number of lines required in both automatic and manual approaches, their
relative performance, and the maximum speedup achieved for each application, where
’p’ indicates the number of processors. 2D-Hull and MEC are executed with a 10M-
points dataset, Delaunay with a 1M-points dataset, and TREE with a dataset of 4096
nodes.

of lines Relat. perfor. by # of proc. Maximum
Application Auto Man. 8 16 32 48 64 Speedup

2D-Hull 1 139 1.301 1.288 1.404 1.287 1.205 12.97 (56p)
Delaunay 1 191 1.261 1.255 1.212 1.106 1.122 3.11 (32p)
2D-MEC 1 50 1.335 1.369 1.416 1.285 1.410 2.63 (24p)
TREE 1 42 1.125 1.106 1.077 1.198 1.218 6.47 (40p)

Geom. Mean 1 86 1.253 1.251 1.269 1.217 1.234 5.12

parallelizing a code using the TLS library. Parallelizing a code with the pro-
posed speculative clause only requires one line of code –the modified OpenMP
pragma–, while parallelizing the same code manually requires tens to thousands
new lines, depending on the number of accesses to speculative variables.

Such reduction in the number of required lines is not the only advantage.
Parallelizing the code with the plugin only requires classifying the variables
within the loop according to their usage, whereas the manual alternative is not
only a hard, error-prone task, but also a deep knowledge of the TLS library.

8 Related Work

As far as we know, there are not proposals to extend OpenMP to support
software-based TLS. Instead, in the literature there are some approaches that
extend OpenMP to support Transactional Memory (TM) [19], and hardware
speculation, such as the pragma implemented in the IBM C/C++ compiler for
Blue Gene/Q [20]. Early works propose the use of pragma directives, OpenMP-
based [21] or not [22], to enable speculative parallelism at a hardware level.
However, these proposals do not define any particular new OpenMP directive.

More recently, proposals are focused on TM. Proposals such as [23,24,25]
extend OpenMP to support TM, providing new directives and clauses in order
to mark and wrap critical sections A similar proposal is Soc-TM [26], but focused
on TM programming for embedded systems.

Although some of these proposals implement the code generation required,
as far as we know, there are not any specific work that proposes or implements
OpenMP extensions to support Thread-Level Speculation. This empty hole is
what we aim to fill with this paper, proposing a new OpenMP clause, and a
plugin-based compiler pass that supports the TLS runtime library [3] based on
the technique that Cintra and Llanos’ speculative engine [4,5] implements.

Other research groups have also experimented with the GCC (since version
4.5) plugin mechanism. Among them, some plugins are designed to make the
development of GCC plugins easier than with the standard procedure, such as

244 S. Aldea et al.

GCC Melt [27], MilePost GCC [28], or a GCC Python plugin [29]. We decided
to develop our transformation system as a GCC plugin in order to avoid depen-
dencies to third-party, not-so-mature systems.

9 Conclusions

We present a compile-time system that automatically adds the code needed to
handle the speculatively parallel execution of a loop, and uses a new OpenMP
clause (speculative) to find those variables that may lead to a dependence vio-
lation. We have used the plugin mechanism provided by GCC to support the new
OpenMP clause. Using this clause, programmers can point out the speculative
variables, and they do not need to know anything about the speculative paral-
lelization model. In order to parallelize a code, programmers are only required to
add one line (the OpenMP pragma plus the speculative clause), instead of the
significant amount of lines required by the manual parallelization, which depends
on the number of accesses to speculative variables. Moreover, the performance
of the generated codes is even faster that the manually parallelized codes.

We expect that implementing this new clause in a mainstream compiler, to-
gether with the automation of the whole process of the speculative paralleliza-
tion, will help Thread-Level Speculation to be mature enough for its inclusion
in mainstream compilers.

Acknowledgments. This research is partly supported by the Castilla-Leon
Regional Government (VA172A12-2, PIRTU); Ministerio de Industria, Spain
(CENIT OCEANLIDER); MICINN (Spain) and the European Union FEDER
(MOGECOPP project TIN2011-25639, CAPAP-H3 network TIN2010-12011-E,
CAPAP-H4 network TIN2011-15734-E).

References

1. Chandra, R., Menon, R., et al.: Parallel Programming in OpenMP, 1st edn. Morgan
Kaufmann (October 2000)

2. Aldea, S., Llanos, D.R., González-Escribano, A.: Support for thread-level specu-
lation into OpenMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 275–278. Springer, Heidelberg (2012)

3. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: New Data Structures to Han-
dle Speculative Parallelization at Runtime. In: Proceedings of HLPP 2014 (2014)

4. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: Proceedings of PPoPP 2003 , pp. 13–24 (June 2003)

5. Cintra, M., Llanos, D.R.: Design space exploration of a software speculative par-
allelization scheme. IEEE Trans. Parallel Distrib. Syst. 16(6), 562–576 (2005)

6. Kulkarni, M., Pingali, K., et al.: Optimistic parallelism requires abstractions. In:
Proceedings of PLDI 2007, pp. 211–222 (2007)

7. Gupta, M., Nim, R.: Techniques for speculative run-time parallelization of loops.
In: Proc. of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–12 (1998)

A New GCC Plugin to Support TLS into OpenMP 245

8. Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of PLDI
1995, pp. 218–232 (1995)

9. Dang, F.H., Yu, H., Rauchwerger, L.: The R-LRPD test: Speculative parallelization
of partially parallel loops. In: Proceedings of 16th IPDPS, pp. 20–29 (2002)

10. Xekalakis, P., Ioannou, N., Cintra, M.: Combining thread level speculation helper
threads and runahead execution. In: Proceedings of ICS 2009, pp. 410–420 (2009)

11. Gao, L., Li, L., et al.: SEED: A statically greedy and dynamically adaptive approach
for speculative loop execution. IEEE Trans. Comput. 62(5), 1004–1016 (2013)

12. GNU Project: GCC internals (2013), http://gcc.gnu.org/onlinedocs/gccint/
13. Novillo, D.: GCC an architectural overview, current status, and future directions.

In: Proceedings of the Linux Symposium, Tokyo, Japan, pp. 185–200 (September
2006)

14. Novillo, D.: OpenMP and automatic parallelization in GCC. In: Proceedings of the
2006 GCC Developers’ Summit, Ottawa, Canada (2006)

15. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental
constructions. Comput. Geom. Theory Appl. 3(4), 185–212 (1993)

16. Devroye, L., Mücke, E.P., Zhu, B.: A note on point location in Delaunay triangu-
lations of random points. Algorithmica 22, 477–482 (1998)

17. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

18. Barnes, J.E.: TREE. Institute for Astronomy. University of Hawaii (1997),
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/

19. Larus, J., Kozyrakis, C.: Transactional memory. Commun. ACM 51(7), 80–88 (2008)
20. IBM: Thread-level speculative execution for C/C++. IBM XL C/C++ for Blue

Gene, Tech. report (2012)
21. Packirisamy, V., Barathvajasankar, H.: OpenMP in multicore architectures. Uni-

versity of Minnesota, Tech. Rep (2005)
22. Martínez, J.F., Torrellas, J.: Speculative synchronization: Applying thread-level

speculation to explicitly parallel applications. In: Proceedings of ASPLOS 2002,
pp. 18–29 (2002)

23. Baek, W., Minh, C.C., et al.: The OpenTM transactional application programming
interface. In: Proceedings of 16th ISCA, pp. 376–387. IEEE Computer Society (2007)

24. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E.,
Labarta, J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 37–53. Springer, Heidelberg (2008)

25. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.:
A case for including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 149–160. Springer, Heidelberg (2010)

26. Ferri, C., Marongiu, A., et al.: SoC-TM: Integrated HW/SW support for
transactional memory programming on embedded MPSoCs. In: Proceedings of
CODES+ISSS 2011, pp. 39–48. ACM Press (2011)

27. Starynkevitch, B.: MELT: A translated domain specific language embedded in the
GCC compiler. In: Proceedings of IFIP DSL 2011, pp. 118–142 (2011)

28. Fursin, G., Kashnikov, Y., et al.: Milepost GCC: machine learning enabled self-
tuning compiler. Int’l. Journal of Parallel Programming 39(3), 296–327 (2011)

29. Malcolm, D.: GCC python plugin v0.12.(2013),
https://fedorahosted.org/gcc-python-plugin/ (last visit: May 2014)

http://gcc.gnu.org/onlinedocs/gccint/
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/
https://fedorahosted.org/gcc-python-plugin/

	A New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation into OpenMP
	1 Introduction
	2 Thread-Level Speculation in a Nutshell
	3 New OpenMP Clause: speculative
	4 Parsing the New speculative Clause
	5 Plugin-Based Compiler Pass Description
	5.1 Interface with the TLS Runtime Library
	5.2 Handling Complex Statements
	5.3 Using the Plugin to Compile the User Code

	6 Validation
	7 Relative Performance and Programmability
	8 Related Work
	9 Conclusions
	References

