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Abstract. Six-dimensional tracking and control task within an Integrated Cognitive 
Architecture, as a makeup for automated Six-dimensional tracking and control task 
default. is a common yet highly complex space operation, challenging the human 
workload. For space exploration system safety, workload is a critical factor in task 
design and implementation. This research integrates two cognitive architectures: 
Queuing Network (QN) & Adaptive Control of Thought-Rational (ACT-R) to 
develop a rigorous computational model for Six-dimensional tracking and control 
task cognition process. ACT-R represents the human mind as a production rule 
system. Experiments are set up to build Six-dimensional tracking and control task 
cognition model and afterwards to validate feasibility of the proposed integrated 
cognition architecture. Ten subjects of similar training level are chosen to finish 
manual Six-dimensional tracking and control task with three task difficulty level: 
one only with displacement margin, one only with posture margin and one with 
displacement and posture margin. Cognition task analysis is firstly conducted on 
task performance of subjects. Cognition model of manual Six-dimensional tracking 
and control task is then built up based on the proposed integration architecture. The 
proposed integration model developed in the ACTR-QN describes component 
processes of tracking, decision making and controlling in a 3D environment by 
ACT-R production rules within QN network. Workload index for each cognition 
module is calculated based on sector utility throughout the whole task. Human 
results are compared with the modeled results in the dimension of task time and 
displacement/posture control trajectory deviation. Workload index is calculated 
based on the percentage of each module in the time dimension. 

Keywords: Mental workload, Simulation, workload, six-dimensional tracking 
and control task, cognitive modeling. 

1 Introduction 

Six-dimensional tracking and control task is a very common space exploring task yet 
highly complex task that involves coordinated control in 3 dimension displacement 
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dimension and 3 dimension posture as well as with the execution of multiple critical 
subtasks. To explore how astronauts perform this complex task, researchers have 
developed some models to account for and simulate space driving behavior. Some of 
these models are primarily conceptual models that help one to understand the 
representational and procedural components of the driving task[1]. Others are 
computational models that compute, simulate, and predict various aspects of driving 
behavior [2-4]. These computational models have emerged as powerful tools for both 
theoretical study of space driving. 

Flight control is the most similar to Six-dimensional tracking and control task. The 
research com-munity has recently witnessed a growing push for integrated performers 
models – models that unify the many aspects of flight into a single, larger scale 
computational model of behavior. Past and ongoing efforts toward integrated flight 
models, which have shown great promise, accounting for aspects of behavior during 
air traffic and even performance when flight while performing secondary tasks[5]. 
But the most popular research in performance modeling lies in road driving behavior. 
Road driving is 2 dimensional driving. In the case of control mechanism, it is 
comparable to space driving. 

The “artifact” for driving is the vehicle itself and the interface between the human 
and the vehicle. Embodied cognition is the integrated cognitive, perceptual, and motor 
processes that manipulate the vehicle and execute the desired tasks[3]. Perception-
and-action models of control provide a firm theoretical basis for how perception and 
action interact in basic tasks such as lateral and longitudinal control [6-8]. The 
approach to integrated driver modeling explored here centers on the development of 
driver models in the framework of a cognitive architecture. A cognitive architecture is 
a general framework for specifying computational behavioral models of human 
cognitive performance[9-12].The architecture embodies both the abilities and 
constraints of the human system – for instance, abilities such as memory storage and 
recall, learning, perception, and motor action; and constraints such as memory decay, 
foveal versus peripheral visual encoding, and limited motor performance. Anderson 
proposed ACT-R (Adaptive Control of Thought-Rational) cognitive architecture o 
model road driving. It is a hybrid architecture based on chunks of declarative 
knowledge and condition-action production rules that operate on these chunks. 
Aasman developed a driver model developed in Soar architecture. MHP was proposed 
to model the air navigation in NASA IMPRINT system[13]. 

However, Building useful models in ACT-R requires a considerable amount of 
training and practice. Since ACT-R uses a command-line interface to query the 
model’s internal status, it lacks the visualization of information processing and 
interactions between its modules. A few efforts have been made to improve the 
usability of ACT-R as an engineering tool. Previous work, though important, has 
focused primarily on easier construction of the task knowledge and environment. The 
research work reported in this paper addresses the visualization issue by representing 
ACT-R as a Queuing Network (QN), one of whose advantages is the visualization of 
mental information processing. The QN cognitive architecture has been used to model 
human performance including reaction time, multitask performance, the 
psychological refractory period, transcript typing, driving with a secondary in-vehicle 
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task, and driver workload measured with the NASA-task load index[14]. Such 
integration is another step towards unified theories of cognition advocated by Allen 
Newell[15]. We call the integrated architecture in this paper QN-ACTR. 

2 QN-ACTR Integrated Cognition Architecture 

At the conceptual level, the module network of ACT-R can be represented as a special 
case of QN. In a QN, information processing is the process of servers holding and 
processing entities. In ACT-R, modules process information, and buffers hold 
information. Therefore, modules and their buffers could be considered as servers in 
QN. Entities flow between these servers and carry the corresponding ACTR 
information, including buffer requests, chunks, production rules, and the notice of 
completion that triggers the next service (e.g., the next conflict resolution cycle). The 
server structure of QN-ACTR is illustrated in Figure 1. 

ACT-R represents the human mind as a production rule system. It assumes two 
types of knowledge representations: declarative chunks and production rules (rules, 
for short). A chunk’s retrieval time and error rate are determined by its activation 
level, which is jointly determined by the chunk’s learning history and association with 
other chunks. Rules represent procedural knowledge in the form of condition-action 
(IF-THEN) pairs, and its action will be fired when its condition matches the current 
“mental state”. A mental state consists of the state of each module, and each module 
is a cognitive component, such as the vision module and the declarative module. 
ACT-R “thinks” and “acts” by firing rules until a goal state is reached. Figure 1shows 
the server structure of QN-ACTR. All the servers are ACT-R modules and buffers, 
and all the paths between servers are information flows in ACT-R. 

ACT-R assumes that human has a serial central processor (the production module 
in ACT-R) and handles multitask scenarios by fast switching between tasks. Each 
thread represents the task demands from a task. First, it assumes that the goal buffer 
can hold more than one goal simultaneously. Second, when multiple threads contend 
for the procedural resource, the least recently processed thread is al-lowed to proceed. 
Threaded cognition can be incorporated in QN-ACTR as a special case of QN with a 
specific type of queuing scheduling mechanism. QN-ACTR is implemented in Micro 
Saint Sharp (http://www.maad.com/), which is chosen because it is a network-based 
simulation platform and pro-vides natural support for QN modeling. 

QN-ACTR was built in a C#-based discrete event simulation software package, 
Micro Saint Sharp version 2.2. At the implementation level, modules and buffers in 
ACT-R were programmed as servers (called task nodes in Micro Saint Sharp) as well 
as the corresponding data objects that store related parameters. Chunks and 
production rules were programmed as data objects. ACT-R methods and functions 
were ported to Micro Saint Sharp functions, which can be called by related servers. 
Global parameters were set to their default values as in ACT-R. 
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Fig. 1. The server structure of QN-ACTR 

The task environment part of a model can be built with task templates supplied 
with the QN-ACTR. A task template in QN-ACTR is a general description for a type 
of experiment. A modeler can easily build a task environment by simply setting the 
template’s parameters according to the experiment setup. 

After defining the task environment using a template and defining the task-specific 
knowledge and parameters using the same ACT-R codes, a model is ready to run. In 
addition to the same text output traces of ACT-R, QN-ACTR can show how 
information flows in the mind, which is represented and simulated as a QN. For 
example, Figure 2 is a screenshot that illustrates the implementation of QN-ACTR in 
Micro Saint Sharp. The server network inside the dashed box represents the same 
mental structure as the one shown in Figure 1. The server network outside the box 
represents the task environment (i.e., displays and controls). Servers highlighted by 
dark borders are busy processing information. In the snapshot of Figure 2, the model 
is working on three things simultaneously: encoding a visual item, trying to match 
and select the next production rule, and creating a new chunk in the imaginary 
module. 

QN-ACTR can also visualize the status and details of each module in a separated 
window. The capability in QN-ACTR can be extended this to audio displays, manual 
responses, and vocal responses using the “animator” of Micro Saint Sharp. Figure 3 
shows a snapshot during the building-sticks task in the ACT-R tutorial. 
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Fig. 2. Visualization of mental information
ACTR 

   Fig. 3. Visualization of task displays and
controls in processing in QN-ACTR 

3 Building Six-Dimensional Tracking and Control Task 
Cognition Model within QN-ACTR Architecture 

As mentioned, the ACT-R driver model has three primary components: monitoring, 
decision-making and controlling. The three components are integrated to run in QN-
ACT-R’s serial cognitive processor as a tight loop of small cognitive (and related) 
operations. The entire model is implemented as an ACT-R production system 
including relevant procedural and declarative knowledge. This section describes each 
component, the integration of the components into a working implementation, and 
finally estimation of model parameters and integration with the simulated driving 
environment. 

Control. The control component of the space driver model manages all perception of 
lower level visual cues and manipulation of spaceship controls for placement control ( 
forward, inward/outward, left/right) and posture control (pitch, yaw, roll). 

For simplicity, the model utilizes a longitudinal control law to manipulate forward 
placement of the ship, very similar to the longitudinal speed acceleration control 
proposed by Salvucci (2007) for the, namely, 

(1) 

 
The model encodes the position of the target and derives the time headway thwx to 
the target. Again, it computes differences from the last instantiation of control, 
deriving thwx along with the previously mentioned t. These two values then result in 
an updated value for acceleration. 

The acceleration equation attempts to impose two constraints: asteady time 
headway (Δthwx= 0) and a time headway approximately equal to a desired time 
headway for following the target. Again, the two constants determine the weights of 
the two constraints. The acceleration value actually manipulates two controls: A 
positive value translates to depression of speed acceleration (throttle), and a negative 

tthwkthwk xxxxx Δ+Δ=Δ 21ψ
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value translates to depression of speed decrease, with values from 0 to 1 representing 
no depression to full depression, respectively. 

For simplicity, the model utilizes a position difference control law to manipulate 
forward placement of the ship, very similar to the steering control proposed by 
Salvucci[16] for the, namely, 
 

 (2) 
 
The model encodes the position of the target and derives the displacement difference 
Δy to the target. Again, it computes differences from the last instantiation of control, 
deriving the position difference along with the previously mentioned Δt. These two 
values then result in an updated value for position difference change. Again, the two 
constants determine the weights of the two constraints. The value actually 
manipulates two controls: A positive value translates to depression of difference 
decrease, and a negative value translates to depression of difference increase, with 
values from 0 to 1 representing no depression to full depression, respectively. 

Posture control is different from speed control and focused on the posture change. 
For simplicity, the model utilizes a posture control law very similar based on the 
steering model proposed by Salvucci (2007) for car driving, namely, 
 

(3) 
 
For three direction posture control, the main purpose of the control is to decrease 

the posture difference between the ship and the target. The paper utilizes the same 
control law to manipulate the difference in the dimension of pitch, yaw and roll. The 
control law essentially attempts to impose two constraints: a steady posture degree 
difference (Δϑ= 0) and a posture degree equal to the maximum degree defined by the 
task. Again, the two constants determine the weights of the two constraints. The 
acceleration value actually manipulates two controls: A positive value translates to 
depression of degree difference increase (throttle), and a negative value translates to 
depression of degree difference decrease, with values from 0 to 1 representing no 
depression to full depression, respectively. 

Perception. The perception component of the driver model handles the continual 
maintenance of situation awareness. For this model in the 3-D space environment, 
situation awareness centers critically on the displacement and posture difference of 
the spaceship to the target. Perception is currently based on a random-sampling model 
that checks, with some probability pmonitor, one of six areas – namely, either 
forward/backward, inward/outward, left/right, pitch, yaw and roll – with the given 
decision rules. When the model decides to monitor a particular dimension, it moves 
visual attention to that dimension and determines whether there is any difference. If 
so, the model notes the vehicle’s current critical dimension in ACT-R’s declarative 
memory. Thus, declarative knowledge continually maintains the awareness of these 
dimensions. The model could, of course, be extended in a straightforward way to note 
other 5 dimensions. 

tyykyk yyy Δ+Δ=Δ ),min( max21ϕ
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Decision-making. The decision-making component of the driver model uses the 
information gathered during control and monitoring to determine whether any tactical 
decisions must be made. In the 3-D space environment, the most common decision-
making opportunity arises in the determination of which dimension to adjust first and 
how much is required to adjust. 

The decision of which dimension to change depends on the possibility of ship 
moving out of the vision field in certain dimension, given that drivers (in the United 
States) attempt to stay in the center of matrix originated by the target. If the ship is to 
move out of the vision field from horizontal dimension, the model checks current 
difference and time of moving outward. If the difference drops beyond a desired time 
value, the model decides to change the horizontal dimension 

4 Model Validation 

Just as no single method, measure, or metric will suffice for understanding human 
driver behavior, no single one will suffice to validate that the model indeed 
corresponds well to human driving. Nevertheless, one can validate the most critical 
parts of a driver model by focusing on key scenarios and analyzing the most 
important observable data involved in these scenarios. To this end, how the ACT-R 
model fits several aspects of driver data will now be examined in the scenario Six-
dimensional tracking and control task. For this specific scenario, the examination 
focuses on 6 dimension control output: forward displacement, position difference 
change in other two dimensions as well as 3 degree changes in pitch, yaw and roll 
dimensions. The data are compared in the form of aggregate results and time-course 
profiles. 

The computational nature of the QN-ACTR driving model, combined with its 
ability to interact with the same simulation environment that human drivers use, 
greatly facilitates the collection and comparison of human and model data. Human 
data from 10 universities students who are trained well in the simulated scenario. 
Model data were collected by running ten 10-min model simulations in the same 
conditions and same environment as the original experiment; note that the model, like 
a human driver, produces variability in behavior, and thus several simulation runs are 
desirable to achieve more stable results. The following analysis includes a total of 60 
times (20 times at each of 3 difficulty level) of driving data for human participants 
and same number of times for the model simulations. Because the human and model 
simulation protocols are identical in form, each set is analyzed in the same manner so 
as to generate directly comparable measures of driver behavior and performance. 

Workload data are sampled based on the statistical function of MicroSaintSharp 
(See Fig 5). ACTR-QN computed and visualized each sub-network utilization values, 
which are assumed to have linear relationship with corresponding workload 
components. Figure 4 shows the utilization of perceptual, cognitive, and motor sub-
networks. The visualization clearly demonstrates workload increasing with faster 
presentation rates and provides more detailed estimation about each workload 
components. 



 

 

Fig. 4. Tracking Trajectory
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5 Conclusion 

Computational cognitive modeling is quickly maturing to address increasingly 
complex phenomena at an increasingly high level of rigor. More specifically, 
cognitive architectures have proven very successful at capturing both lower level 
performance and higher level decision making in complex dynamic tasks. The QN-
ACTR space driving model represents a contribution toward this effort with a novel 
approach to integrating the lower level (i.e., operational) and higher level (i.e., 
tactical) aspects of driver behavior in the framework of the QN-ACTR cognitive 
architecture. Of course, the QN-ACTR Six-dimensional tracking and control task 
model does not yet provide a complete picture of space driving behavior – further 
work extending the task, artifact, and/or embodied cognition addressed by the model 
could take any number of directions. Nevertheless, we are confident that both model 
and architecture can evolve significantly from the current state of the art to capture a 
broader and deeper range of the phenomena surrounding driving behavior. 

In 3-D space driving, verification results from Six-dimensional tracking and 
control task model showed that QN-ACTR can produce identical output traces to the 
human performance (MAPE < 5.0% and R2 > 0.9). The sources of the remaining 
variances include the difference of built-in random functions between Lisp and C#, 
which is used in randomly focusing visual attention on the next item, and the 
difference in rounding digits between Lisp and C#. 

QN-ACTR is easy to use. Task-specific knowledge and parameters are defined 
using the same syntaxes as ACT-R. A task environment is defined by describing the 
experiment using a task template. The single-discrete-two-stage template is concise 
and powerful. More templates will be developed to cover other experimental 
paradigms. Compared with ACT-R, the visualization of the model in QN-ACTR is 
improved in the aspects of mental information processing and display and control 
interfaces. Another advantage of QN-ACTR is to define mental workload as network 
utilization and visualize it. There is currently no theory and measurement for mental 
workload in the ACT-R 6.0 released version, and the introduction of QN has the 
potential to improve this. 

These mechanisms are what the QN architecture lacks. The QN architecture, on the 
other hand, represents the mental network with finer granularity. The processing in 
the QN mental network is more distributed than the processing in ACT-R that 
centralizes around the procedural module. The procedural module in ACT-R and 
threaded cognition is assumed to be serial. In contrast, the QN architecture does not 
have this assumption. Besides, QN does not need executive control to model 
multitasking performance. We expect that the full integration of ACT-R and QN 
could combine the advantages from each of them and better model multitasking 
performance. 

In conclusion, QN-ACTR improves the usability of ACTR and the ACT-R 
implementation of threaded cognition as human factors engineering tools. Future 
research will examine the benefits of further integration between ACT-R and the 
QNcognitive architectures. 
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