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Abstract. Assessing the development costs of an application remains an arduous
task for many project managers. Using new technologies and specific software
architectures makes this job even more complicated. In order to help people in
charge of this kind of work, we propose a model for estimating the effort required
to implement a service-oriented system. Its starting point lies in the requirements
and the specifications of the system-to-be. It is able to provide an estimate of the
development effort needed. The latter is expressed in a temporal measurement
unit, easily convertible into a monetary value. The model proposed takes into
account the three types of system complexity, i.e., the structural, the conceptual
and the computational complexity.

Keywords: Software Engineering, Service-oriented Computing, Development
Costs Estimation.

1 Introduction

“How much will it cost to develop a given Information System (IS)?” remains one of the
main issues for project managers. The rapid evolution of technologies as well as some
new IS development paradigms do not often facilitate this work. In this paper, we focus
on Service-oriented Systems (SoS), i.e., ISs based on the Service-oriented Computing
(SoC) paradigm. Its main component, the service, is a black box: only messages sent and
received are known. Consequently, some software features are no longer programmed
while the exchanges of messages must be developed. As recently underlined, assessing
the cost of SOA development deserves more attention: “Current approaches to costing
[SOA] projects are very limited and have only been applied to specific types of SOA

such as Service Development or SOA Application Development” [1]. In response, we
propose a requirements-based model for estimating a priori the effort needed to develop
a SoS. To do so, we adapt and extend an existing model to best suit to the service-
oriented paradigm. The results provided consists of an estimation of the development
effort required to carry out the SoS implementation. This estimate is based on the three
types of software complexity, i.e., the structural, the computational and the conceptual
complexity [2, Chap. 5]. The measurement unit of the estimate provided is temporal in
order to avoid focussing on a specific social policy applied in a given country.

This paper proceeds by first analysing the related literature based on which we con-
clude that an adapted model for SoS is needed (§2). Then, the methodology followed
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is detailed (§3) and the model is developed accordingly (§4). In §5, an example case
illustrates the use of the model. Conclusion and future work are presented in §6.

2 Related Work

Existing methods used for estimating a priori the software development costs are either
experts-based methods or model-based methods. Model-based methods use algorithms,
heuristics computations and/or old projects data. Experts-based methods rely on human
expertise and depend on experts’ intuition, knowledge and unconscious processes. We
decide to focus on a model-based approach in the scope of this work.

Model-based estimation techniques are principally grounded on analogies, empirical
studies and/or system-to-be analysis. To be effective, the first kind of techniques needs
lots of data collected during previous projects. The objective is to find the similarities
with the current project. This technique is close to experts-based methods but it is applied
with much more formalism and, often, the use of probabilistic principles. Analogy-based
techniques, e.g., [3, 4], face a recurring issue: they need highly skilled workers and they
cannot be applied in young organizations because of a lack of historical data. That could
be a problem in SoC seeing that it is a young paradigm which evolves quickly.

The second kind of techniques is based on empirical research, whereby situation-
based models are proposed. In some sense, they generalize analogy techniques. One
well-known initiative is COCOMO [5]. The core idea is that the development costs grow
exponentially when the system-to-be grows in size. The problem is that the development
of a SoS often combines several development strategies and processes: the underlying ser-
vices can communicate without any restrictions on their own development technologies.
As a result, COCOMO models and similar techniques are often over-calibrated as under-
lined by Tansey & Stroulia [6]. These authors attempted unsuccessfully to propose an
empirical model based on COCOMO to estimate SoS development costs. They were con-
strained to conclude that SoS development also involves developing and adapting declar-
ative composition specifications, which leads to fundamentally different processes.

The third kind of techniques consists of an analysis of the system-to-be structure in
order to measure its characteristics impacting the development costs. One well-known
technique is the use of function points based on which the software size is estimated. It
is a measurement unit which captures the amount of functionalities of an IS [7, 8]. In this
way, Santillo uses the COSMIC measurement method and, actually, he mainly focuses
on the determination of the boundary of an SoS [9]. He also identifies one critical issue:
from a functional point of view, SoC is different from traditional software architectures.
New measurement methods are therefore essential for sizing SoS: we need new rules and
new attributes appropriate to the SoC paradigm [9]. Nevertheless, the idea of using the
function points deserves further research, which is what we aim for this paper.

2.1 Software Development Costs Estimation in Service-Oriented Computing

In [10], the authors use the Work Breakdown Structure (WBS) for costing SoS. This is
a decomposition technique that tries to make a granular list of planned tasks often rep-
resented as a tree. It helps to reduce the mean relative error and possible slippages in
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Fig. 1. Illustration of the proposed model structure and its main components

project deliverables. After the SoS decomposition in atomic tasks, the authors propose
an algorithm to estimate the development costs of the system-to-be.

A second related work tackles the defect prediction issue in SoS [11]. To do so, the
authors use COCOMO to estimate the size of the future SoS. The paper does not solve the
main issue explained above, i.e., different strategies and processes can be used during
a SoC project, and one variable used in their model –the infrastructure factor– is not
clearly defined. It seems they use a COCOMO coefficient estimated based on common
software.

In [12], the authors propose an estimation framework for SoS by reducing the total
software complexity. They propose to decompose the SoS into smaller parts. Then, each
of them is separately estimated. However, it is not clear how all the values resulting from
the individual estimation are aggregated to provide a single figure.

3 Methodology Followed

Instead of measuring the SoS development costs –which depend on many unrelated
variables such as the wage level– we propose to measure the effort needed, i.e., the
number of staff per period needed to carry out the development tasks. To do this, we
first evaluate the SoS complexity from which we can deduce the total effort needed.
We take into account the three main sources of software complexity [2, Chap. 5]. The
structural complexity refers to the software design and structure such as the quantity
of data stored, the operations achieved, the user interfaces required and so on. As
show in Fig. 1, the structural complexity is captured in our model through the analy-
sis of the SoS specifications. This step is the starting point. Specifying the SoS could
be achieved thanks to a modelling language, e.g., UML, or with a framework such as
IEEE SRS1. In the scope of this work, that choice is not important as long as one is
able to identify the significant factors –defined below– impacting the structural com-
plexity. The computational complexity refers to the way that the computation is being
performed. This kind of complexity is captured via an analysis of the system-to-be
environment (the second step in Fig. 1). The conceptual complexity is related to the
difficulty to understand the system-to-be objectives and its requirements. It refers to
the cognitive processes and the capabilities of the programmers. In our model, the ef-
fort estimation is adjusted to the development staff productivity (the third step in Fig. 1).

1 The IEEE SRS framework was consulted the last time in February 2013 at
http://standards.ieee.org/findstds/standard/829-2008.html

http://standards.ieee.org/findstds/standard/829-2008.html
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Table 1. Characteristics of the SoS Complexity Model along with their acronyms

IC (Input Complexity): Complexity due to data inputs received by the system-to-be.
OC (Output Complexity): Complexity due to the data outputs that the system-to-be has to send

to its environment.
DSC (Data Storage Complexity): Complexity due to persistent data that the SoS has to store.
WS (Weight Source): Weight allocated to an input or output source type (see Table 2).
WT (Weight Type): Weight allocated to a specific type of input or output (see Table 2).
WST (Weight Storage Type): Weight allocated to a type of storage destination (see Table 2).
IOC (Input Output Complexity): Sum of the IC, OC and DSC.
FRC (Functional Requirements Complexity): Complexity due to the implementation of func-

tional stakeholder’s needs.
NFRC (Non-Functional Requirements Complexity): Complexity due to the implementation of

non-functional stakeholder’s needs.
FI (Functions to Implement): Features that have to be entirely implemented in the system-to-

be.
FS (Functions as a Service): Features that will not be coded because services will be used

instead.
QA (Quality Attribute): Primary characteristics coming from the non-functional requirements

which state how the functional requirements will be delivered.
QSA (Quality Sub-Attribute): Secondary characteristics refining each QA.
RC (Requirements Complexity): Sum of the FRC and NFRC.
PC (Product Complexity): Complexity of the SoS due to the tasks that it will perform; it sums

the IOC and RC.
DCI (Design Constraints Imposed): Complexity due to constraints and rules to follow during

the system-to-be development.
C (Constraint): Any environment characteristic of the development work or of the system-to-

be that limits and/or control what the development team can do.
IFC (Interface Complexity): Complexity due to the interfaces to implement in the system-to-

be.
I (Interface): Integration with another IS or creation of a user interface.
SDLC (Software Deployment Location Complexity): Complexity due to the type of users who

will access to the SoS as well as their location.
UC (User Class weight): Weight associated with a user class.
L (Location): Number of the different access locations for a specific user class.
SFC (System Feature Complexity): Complexity due to specific features to be added to the

system-to-be.
FE (Feature): Distinguishing characteristic of a software item aiming at enhancing its look or

its feel.

4 A Model for Effort Estimation in SoS Development

4.1 Software-Intrinsic Complexity Estimation in Service-Oriented Systems

The SoS Complexity Model. The model proposed should first help to estimate the
structural complexity of the SoS (see the first step in Fig. 1). To do so, we adapt and
improve an existing model [13]. The latter allows to compute the software-intrinsic
complexity before its coding. It analyses stakeholders’ requirements expressed in nat-
ural language and categorizes them into three groups –critical, optional and normal
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Table 2. Sources and type weights for the input, output and data storage complexity

Parameter Description Weight

Input/Output
Sources

External Input/Output through Devices 1
Input/Output from files, databases and other pieces of software 2
Input/Output from outside systems 3

Input/Output
Types

Text, string, integer and float 1
Image, picture, graphic and animation 2
Audio and video 3

Data Storage
Types

Local data storage 1
Remote data storage 2

requirements– according to eleven axioms. The “normal category” is the default cate-
gory when the classification algorithm does not succeed to select one of the two other
categories. From our point of view, this method faces two problems. First of all, the re-
quirements categorization is complex and imprecise (cf. the default category used when
no decision is made). Secondly, the complexity estimation does not take into account
some specific features of the SoC such as the use of external services to provide system
features. In [13], once a requirement is specified, all of its underlying features increase
the software complexity. Despite these two flaws, this model performs well during the
tests and comparisons with similar initiatives [13–15]. This is why it is a sound basis
on which a specific model for the SoC could be built.

In the rest of this section, we identify the characteristics –defined in Table 1– of SoS

and how they increase structural complexity based on the model proposed in [13].
Input Output Complexity. The Input Output Complexity (IOC) gathers the complexity
of the input (IC), output (OC) and data storage complexity (DSC) together. Table 2 lists
the different weights, picked up from [13], for the types and sources of IC, OC and DSC.

IC =

3∑

i=1

3∑

j=1

Iij ×WSi ×WTj (1)

where Iij is the number of inputs of the source i and being of the type j identified in
the system-to-be specifications; WSi and WTj are respectively the weight of the input
source i and the input weight of the type j as listed in Table 2. In order to compute the
OC value, you substitute the variable Iij by Oij in Equation 1.

The use of services to perform some functionalities involves data exchanges between
the providers and the consumers of services. The WSDL technology is commonly used
for describing service capabilities and communication processes [16]. Two versions
of the WSDL protocol currently exit (WSDL 1.1 and 2.0), but their relevant parts for
our model are identical. <operation/> tags define service functions. Each operation
consists of one or several input and output tag(s), i.e., messages exchanges, which must
be considered as an input/output source from outside systems. Most of the time, the
type to apply is “text” seeing that messages exchanged are XML documents.

Equation 2 states how to compute the DSC.

DSC =

2∑

i=1

Si ×WSTi (2)
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where Si is the number of data storage of type i and WSTi is the weight of the type i.
The IOC value is the addition of the IC, OC and DSC values.

Requirement Complexity. The Functional Requirements Complexity (FRC) value cap-
tures the complexity of a given functionality. As some functions can be fulfilled thanks
to the use of (composite) services, they should not all be taken into account for the
computation of the FRC complexity value. Let F be the set which includes all the SoS’
functions. F contains two sub-sets: FI and FS for, respectively, the Functions to Im-
plement set and the Functions as Services set which will not be fully developed because
(composite) services will be used instead. They do not increase the RFC value as stated
in Equation 3.

FRC =

n∑

i=1

m∑

j=1

FIi × SFij +

k∑

k=1

FSk (3)

where FIi is the ith function of FI and SFij is the jth sub-function obtained after
the decomposition of the function FIi. FSk is the kth function of FS outsourced as
services. In this case, only the main function –i.e., the (composite) service being used–
increases the FRC value. Although its computational complexity is hidden, developers
have to implement the exchanges of messages between the service used and the SoS.

Non-functional requirements are criteria related to the way the functional require-
ments will be performed; its complexity value can be computed as stated in Equation 4.

NFRC =

6∑

i=1

n∑

i=1

QAi ×QSAj (4)

where QAi is the main quality attribute i and QSAj is the quality sub-attributes j
related to QAi. The quality attributes proposed are those of the ISO/IEC-9126 stan-
dard2 [17].

The Requirement Complexity (RC) is the addition of the FRC and the NFRC.
Product Complexity. The Product Complexity (PC) captures the SoS complexity based
on its overall computations. It is obtained by multiplying the IOC and the RC values [13].
Design Constraints Imposed. The Design Constraints Imposed (DCI) refers to the num-
ber of constraints to consider during the development of the SoS such as regulations,
hardware to reuse, database structures, imposed development languages, etc. Of course,
the constraints imposed on the software modules used as services are not taken into
account. These services are black boxes for service customers, only the constraints con-
cerning the communication are relevant for the computation of the DCI.

DCI =

n∑

i=1

Ci (5)

where Ci is the ith constraint type imposed; its value is to number of constraints i.

2 The main quality attributes of the ISO/IEC-9126 standard are Functionality, Reliability, Usabil-
ity, Efficiency, Maintainability and Portability. See [17] for more information.
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Interface Complexity. The Interface Complexity (IFC) is computed based on the number
of external integrations and user interfaces needed in the future software.

IFC =

n∑

i=1

Ii (6)

where Ii is the ith external interface to develop. Ii has a value ranging from one to x
depending of the number of integrations to carry out: a user interface has a value of one
while the value of an interface used to integrate multiple systems corresponds to the
number of ISs to interconnect. Each service used counts for one interface.
Software Deployment Location Complexity. The Software Deployment Location Com-
plexity (SDLC) is the software complexity due to the types of users accessing the system-
to-be combined with the different locations from where they will access it.

SDLC =

4∑

i=1

UCi × Li (7)

where UCi is the user class weight and Li is the number of locations from which the
user belonging to the user class i will access the software. User classes are [13]: ca-
sual end users occasionally accessing the SoS (weight of 1), naive or parametric users
dealing with the database in preconfigured processes (weight of 2), sophisticated users
using applications aligned with complex requirements and/or infrequent business pro-
cesses (weight of 3), and standalone users working with specific software by using
ready-made program packages (weight of 4).
System Feature Complexity. The System Feature Complexity (SFC) refers to specific
features to be added to enhance the look and the feel of the system-to-be.

SFC =

n∑

i=1

FEi (8)

where FEi is the feature i with a weight of 1.
Computation of the SOS RBC value. The Service-Oriented System Requirements-based
Complexity (SOS RBC) value can be computed as follows:

SOS RBC = (PC +DCI + IFC + SFC)× SDLC (9)

Note Sharma & Kushwaha also include the “personal complexity attribute” (PCA)
in their complexity measurement model [13, 18]. However, the structural complexity
measure should only take into account the software structure and not the capabilities of
the development staff. The latter should only impact the development effort needed.

Validation of the Complexity Model. Here is a theoretical validation of the model we
proposed in this section based on the validation framework for the software complexity
measurement process of Kitchenham et al. [19].

Property 1: For an attribute to be measurable, it must allow different entities [i.e., dif-
ferent specifications of systems-to-be] to be distinguished from one other.
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All attributes used in the Equations 1 to 9 are clearly defined and distinguishable from
each other (see Table 1). They cover the specifications of a SoS. Therefore, the SOS RBC

model should give different values for different SoS specifications.
Property 2: A valid measure must obey the representation condition, i.e., it must pre-
serve our intuitive notions about the attribute and the way in which it distinguishes
entities.

This property refers to the psychological complexity, also called conceptual complex-
ity, –i.e., the complexity due to the efforts needed for a given human being to understand
and to perform a specific software development task– which cannot interfere with the
structural complexity . The latter is the kind of complexity that the SOS RBC model
has to capture. All the attributes used are only related to countable and distinguishable
intrinsic characteristics of the system-to-be without any relations with the development
staff capabilities. We conclude that this property is respected by the SOS RBC model.

Property 3: Each unit of an attribute contributing to a valid measure is equivalent.
Each identical attribute in the system-to-be will have the same weight and importance

in the estimation regardless its position in the specifications.
These three properties are necessary to validate a complexity measurement process,

but not sufficient [19]. Indirect measurements must also respect properties 4 and 5.

Property 4: For indirect measurements processes, the measure computed must be based
on a dimensionally consistent model, with consistent measurement units while avoiding
any unexpected discontinuities.

Our model aims at measuring the complexity of software specifications. All the at-
tributes evaluated to compute the model are intrinsic features of the SoS impacting its
complexity.

Property 5: To validate a measurement instrument, we need to confirm that the mea-
surement instrument accurately measures attribute values in a given unit.

This property asks for a definition of the measured attributes and their unit. In this pa-
per, we propose a semi-formal definition of the measurement instrument –the best solu-
tion is to propose a formal one– based on both mathematical tools and literal definitions.

4.2 Estimation of the Total Intrinsic Size of the System-to-be

In order to estimate the total development effort needed, the model is adjusted with the
Technical Complexity Factors (TCF) [7, 8]. They are used to capture the computational
complexity (see the second step in Fig. 1). The TCFs are significant characteristics of the
software development project which influence the amount of work needed. Each TCF

is associated to a Degree of Influence (DI) ranging from 0 (no influence) to 5 (strong
influence). They must be estimated by the development team based on the requirements
and on the system-to-be environment3.

Equation 10 expresses TCF value (TCFV) in a mathematical form [8].

3 The sixteen TFCs are Complex processing, Data communication, Distributed functions, End
user efficiency, Facilitate change, Heavily used configuration, Installation ease, Multiple sites,
On-line data entry, On-line update, Operational ease, Performance, Reusability, Security con-
cerns, Third parties IS and Transaction rate. See [7, 8] in order to have more details about the
TCF’s and the process to follow in order to estimate the appropriate DI for a TCF.
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TCFV = 0.65 + 0.01×
16∑

i=1

DIi (10)

where DIi is the degree of influence of the ith TCF.
The adjusted SOS RBC (A-SOS RBC) is the SOS RBC value times the TCFV [8].

A-SOS RBC = SOS RBC × TCFV (11)

4.3 Estimation of the Total Development Work Needed

The estimation of the SoS Requirements-based Effort (SOS RBE) value is based on the
A-SOS RBC. The SOS RBE is significantly related to the productivity of the development
staff –it captures the conceptual complexity (see the third step in Fig. 1). The staff pro-
ductivity is the ratio between the number of code lines written and the time required. It
depends on the language used since the latter can be more or less complex, expressive,
flexible, etc. The Quantitative Software Management firm (QSM), specialized in quan-
titative aspects of software, makes available the productivity of development staff for
many languages. These values result from empirical research achieved on more than
2190 projects. For all the studied languages, QSM proposes the average value, the me-
dian as well as the lowest and the highest value of the number of lines of code needed4.
For instance, the values of the J2EE language are, respectively, 46, 49, 15 and 67.

Equation 12 states how to compute the SOS RBE.

SOS RBE =
(A-SOS RBC × L)

P
(12)

where L is the number of code lines needed per function point as stated by the QSM

company. P is the productivity of the development staff express in lines of code per
period. The SOS RBE value estimates the number of periods needed for the implemen-
tation of the SoS. The unit of the SOS RBE is the same than the period unit of P . The
development productivity variables P and L may lack of precision. There are two more
sophisticated approaches. The first one lies in calculating the ratio between the number
of code lines and development time needed for previous internal projects (see, e.g., [20]).
A second approach is to use a parametric estimation model built upon empirical data
(see, e.g., [21]). A complete discussion of this topic is out of the scope of this paper.

5 Example Case of the Proposed Effort Estimation Model

A company active in the food industry would like a new IS in order to improve the
purchase management. With the new IS, a significant amount of orders should be auto-
matically sent. Currently, workers have to manually carry out all the orders. It exists a
legacy IS which manages the outgoing orders. Only its main function will be kept and
exposed as a service –it estimates the stock level needed.

4 All the results of this research are available at http://www.qsm.com/resources/
function-point-languages-table . Last consultation in July 2013, the 3rd.

http://www.qsm.com/resources/function-point-languages-table
http://www.qsm.com/resources/function-point-languages-table
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Fig. 2. Activity diagram of the use case View stock level

First, the system-to-be specified with UML has to satisfy the following main use cases.
View stock level: the system-to-be should enable the purchase department to consult
the stock levels for all existing products. Carry out analysis of purchases: the stock
manager would like to have a specific interface to analyse the purchases made (mainly
with descriptive statistics and underlying graphic illustrations). Manage order error:
the purchase manager is in charge of the errors management detected when outgoing
orders are delivered and encoded by a warehouse worker. Send automatic order: one of
the main requirements of the company is to enable automatic sending of orders when a
given threshold is reached. The use cases were refined with other UML diagrams. As an
example, Fig. 2 represents the Activity diagram refining the use case: View stock level.

The IOC identified in the studied Activity diagram is 13: the IC is 5, the OC is 13 and
the DSC is 0. E.g., for the activity “Select stock item(s)”, the OC is 2× 1 because of the
request in the database (source weight is 2) allowing to display all the possible stock
item(s) stored as string (type weigh is 1). The IC is 1× 1 because of the selection made
by the user through a device, e.g., the mouse or the keyboard.

Concerning the FRC, the use cases compose the functions set; their sub-functions are
the steps of their respective Activity diagrams. The FRC value for the studied Activity
diagram is 10 (1 × 9 + 1); 1 because we study here the sub-functions of only one
main function, i.e., one use case, 9 because there are nine sub-functions –send normal
order(s) and carry out urgent order(s) are extends use cases and thus refined in other
Activity diagrams; the activity Estimate the production level (for the period) will be
achieved through the use of a Web Service (WS) (+1).

Based on the stakeholders’ non-functional requirements, the NFRC value is 10. The
total RC value identified in this Activity Diagram is 20 (10 + 10).

The stakeholders explain they want to use the J2EE development platform (one con-
straint) and the WS technologies –WSDL, SOAP and HTTP (three constraints)– in order
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to reuse the legacy application. Last but not least, the SoS will be hosted on the existing
application server (one constraint). The total DCI value is 5 (1 + 3 + 1).

The IFC value identified in the studied Activity Diagram is 16. There is one interface
with the Warehouse Management IS, one with the 13 provider ISs, one user interface
for the workers at the purchase department and one interface for the WS used.

In this example, two user classes were identified: the workers at the Purchase
Department and their manager. Both of these two classes are parametric users (weight
of 2). They should access the system-to-be from their company offices. The SDLC value
is 2 (2 × 1).

No additional system features were required for this Activity. The SFC value is
thus 0.

Once this work done for all the SoS specifications, the SOS RBC value can be com-
puted. The result of this analysis based on Equations 1 to 9 is5: SOS RBC = 5170.

The SOS RBC value is then adjusted with the TCF’s applicable to this system-to-
be such as, e.g., Distributed functions, Facilitate change and Third parties IS, with a
DI value of, respectively, 2, 1 and 5 evaluated as described in [7, 8]. The TCFV is:
0.65 + 0.01× 27 = 0.96. The A-SOS RBC value is: 5170× 0.92 = 4756.4.

The last step is the computation of the total work needed for the implementation
of the system-to-be. The reference language used is J2EE: L = 46 (cf. §4.3). The
productivity of the staff development has been estimated to 37 lines per hour thanks
to an analysis of previous projects. So, the total development effort needed is: SOS

RBE = 4756.4×46
37

∼= 5790 hours. Once the average cost per hour known, the financial
forecasting of the total development costs of the system-to-be can be drawn up.

6 Conclusions and Future Work

The model proposed, based on the specifications of a SoS, enables to compute the es-
timated development effort needed for its development. Eliciting, modelling and spec-
ifying correctly the requirements remain a significant success factor in the use of our
model.

As underlined in §3, the three sources of software complexity –i.e., the structural, the
conceptual and the computational complexity– are covered by the estimation model pro-
posed. The analysis of the system-to-be specifications identifies the different software
attributes of the structural complexity and put values behind each one (cf. Equations 1
to 9 from which the SOS RBC value can be computed). The TCFs used to adjust the
SOS RBC value (cf. Equation 11) aim at adding the computational complexity to the1
model proposed. Indeed, they refer to the way that the stakeholders’ requirements will
be processed in the system-to-be according to its environment. Lastly, the third step in
the model use takes into account the conceptual complexity. This is achieved thanks to
Equation 12 in which the productivity of the development staff is added comparatively
to the development language chosen for the project.

However, we put aside some difficulties. First, the system-to-be can be coded with
more than one language while allowing the use of other programming languages for

5 The detailed calculation is: ((IC + OC + DSC) × (FRC + NFRC) + DCI + IFC +
SFC)× SDLC = ((21 + 33 + 5)× (33 + 10) + 8 + 39 + 1)× 2 = 5170.
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implementing the services used. Secondly, the productivity of the development staff
deserves more attention. Although this problem is out of the scope of this work, one
significant question remains unsolved: Is the productivity of development staff the same
for SoC projects than for projects in line with other computing paradigms? To the best
of our knowledge, there is no clear answer to this question.
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