
Towards Modeling and Execution
of Collective Adaptive Systems

Vasilios Andrikopoulos1, Antonio Bucchiarone2, Santiago Gómez Sáez1,
Dimka Karastoyanova1, and Claudio Antares Mezzina2

1 IAAS, University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany

{andrikopoulos,karastoyanova,gomez-saez}@iaas.uni-stuttgart.de
2 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy

{bucchiarone,mezzina}@fbk.eu

Abstract. Collective Adaptive Systems comprise large numbers of heterogeneous
entities that can join and leave the system at any time depending on their own ob-
jectives. In the scope of pervasive computing, both physical and virtual entities
may exist, e.g., buses and their passengers using mobile devices, as well as city-
wide traffic coordination systems. In this paper we introduce a novel conceptual
framework that enables Collective Adaptive Systems based on well-founded and
widely accepted paradigms and technologies like service orientation, distributed
systems, context-aware computing and adaptation of composite systems. Toward
achieving this goal, we also present an architecture that underpins the envisioned
framework, discuss the current state of our implementation effort, and we outline
the open issues and challenges in the field.

1 Introduction

Collective systems comprise heterogeneous entities collaborating towards the achieve-
ment of their own objectives, and the overall objective of the collective. Such systems
are usually large scale, typically consisting of both physical and virtual entities dis-
tributed both organizationally and geographically. In this sense, collective systems ex-
hibit characteristics of both service-oriented and pervasive computing. Furthermore, due
to the dynamic nature of the environment they operate in, they have to possess adapta-
tion capabilities.

In our previous work in the ALLOW project, we enabled orchestrations of physi-
cal entities [8,16] as the model for individual entities in a collective system. A single
entity is modeled using a pervasive flow modeling its functionality, the services it ex-
poses and the functionality a partner entity needs to implement in order to interact with
the physical entity. Moreover, the pervasive flows are adaptable in terms of abstract
tasks/activities, which can be refined during the execution depending on the goal of the
entity. However, this work relies on a model restricting the capabilities of entities to a
single behavioral description in terms of Adaptive Pervasive Flows (APFs), and ignores
the collaborative aspect in their behavior.

For this purpose, in the current work as part of the ALLOW Ensembles project1,
we aim at defining a Collective Adaptive System (CAS) [19], and the underpinning

1 ALLOW Ensembles: http://www.allow-ensembles.eu

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 69–81, 2014.
c© Springer International Publishing Switzerland 2014

http://www.allow-ensembles.eu


70 V. Andrikopoulos et al.

concepts supporting modeling, execution and adaptation of CAS entities, and their in-
teractions. Toward this goal, we use an approach inspired by biological systems. In
particular, we propose to model and manage entities as collections of cells encapsulat-
ing their functionality. Entities collaborate with each other to achieve their objectives in
the context of ensembles describing the interactions among them.

The contributions of this work can therefore be summarized as follows:

1. Starting from a motivating scenario (Section 2), we introduce a CAS framework
(Section 3) defining a conceptual model and the life cycle of systems realizing this
model.

2. We introduce an architecture enabling the modeling, execution and adaptation of
CAS as distributed, large scale, pervasive systems and we discuss its implementa-
tion based on well-established technologies (Section 4).

The paper closes with a summary of related work (Section 5), and concludes with an
outline of research challenges and future work (Section 6).

2 Motivating Scenario

Supporting citizens mobility within the urban environment is a priority for municipali-
ties worldwide. Although a network of multi-modal transportation systems (e.g., buses,
trains, metro), services (e.g., car sharing, bike sharing, car pooling), and smart tech-
nologies (e.g., sensors for parking availability, smart traffic lights, integrated transport
pass) are necessary to better manage mobility, they are not sufficient. Citizens must be
offered accurate travel information, where and when such information is needed to take
decisions that will make their journeys more efficient and enjoyable. In order to deliver
“smart services” to citizens, available systems should be interconnected in a synergistic
manner constituting a system of systems. The FlexiBus scenario is a case of such sys-
tem. The goal is to develop a system to support the management and operation of Flex-
iBuses (FlexiBus Management System (FBMS)), where actors (i.e., passengers, buses,
route managers, bus assistance manager etc.) need to cooperate with each other towards
fulfilling both individual and collective goals and procedures. As shown in Fig. 1, the
system must be able to manage different routes at the same time (e.g. blue and red) set
by passengers by allowing pre-booking of pick up points.

More specifically, each Passenger can request a trip to one of the predefined destina-
tions in the system, asking to start at a certain time and from a preferred pickup point.
The system should manage also special requests from each passenger like traveling with
normal or extra sized luggage, or disability related requirements. Each passenger can
pay their trip directly in the bus (cash, with a credit card or a monthly pass) or through
the FlexiBus company web site. Furthermore, during the route execution, each passen-
ger waiting for a bus can be notified for problems on a selected route (e.g. bus delays,
accidents, etc.) Each Bus Driver is assigned by the FBMS a precise route to execute,
including the list of passengers assigned to it, and a unique final destination (e.g. Trento
city center in Fig. 1). During the route realization, each flexibus can also accept pas-
sengers that have not booked only if there are available seats. Bus drivers communicate
with an assigned Route Manager to ask for the next pick-up point and to communicate



Towards Modeling and Execution of Collective Adaptive Systems 71

Fig. 1. The FlexiBus Scenario

information like passengers check-in. Different routes are created by a Route Planner
that organizes them to satisfy all passenger requirements (i.e. arrival time and destina-
tion) and to optimize bus costs (i.e. shorter distance, less energy consumptions, etc.).
To find the set of possible routes, the Route Planner communicates with the FlexiBus
Manager in order to collect necessary information (i.e. traffic, closed roads, events, etc.)
and available resources (i.e. available buses), and to generate alternative routes. A Bus
Assistance Service is also available for bus drivers to report problems that occur along
one route and request for advice/specific activities to be performed (e.g. notify police
for an accident, pickup a bus for repair). Finally, a Payment Service is the entity that
interfaces with various payment systems in order to ensure that ticket purchases are
handled correctly.

The system needs to deal with the dynamic nature of the scenario, both in terms of
the variability of the actors involved and of their goals, and of the exogenous context
changes, e.g. bus damages, passenger requests cancellations, traffic jams, roads closed
due to accidents, etc. affecting its operation. Moreover, some of the tasks executed by
the actors require customization for different environmental situations, like passenger
preferences and requirements (e.g. payment with cash or credit card, trip together with
a friend, etc.).

3 Overall Framework for CAS

In this section we present our framework to model and execute Collective Adaptive
Systems like the FBMS described above.

3.1 Conceptual Model

We model a CAS as a set of entities that can collaborate with each other in order to
accomplish their business objectives and in some cases common objectives, and for



72 V. Andrikopoulos et al.

Fig. 2. The Trip Booking Cell Flow

that form one or more ensembles. Moreover, to enable interaction among entities, each
entity exposes one or more cells.

Cells are uniquely identifiable building blocks representing a concrete functionality
in a larger, multi-cellular system. Implementing the functionality may involve interact-
ing with other cells through pre-defined protocols. Therefore each cell is defined in
terms of its behavior (flow) and protocol, describing the interaction with other cells and
exposed process fragments [15]. For example, the passenger trip booking in the Flex-
iBus scenario is performed by a specific functionality of the Route Manager entity and
it is an example of a cell in the FBMS (see Fig. 2). Among the activities that comprise
this flow is Payment, which is marked as an abstract activity, in the sense that it requires
another cell, or a composition of cells, to implement this functionality. Selecting these
cells can be done either during design or run time of the cell at hand.

Cells can be created from each other through differentiation. Cell differentiation is
the process of modifying/adapting the protocol or flow of an existing cell, resulting in
a new cell with more specific functionality. Differentiation can take place either during
the instantiation of the cell, or during its lifetime (i.e. in runtime). Accepting only credit
cards as part of the Payment activity in Fig. 2 is a case of cell differentiation from
the generic cell able to handle different payment options into a cell with more specific
functionality. The actual functionality of the Payment activity can actually be provided
by another cell, e.g. by the Payment Manager/Service.

After instantiation in the CAS cell instances belong to distinct entities and each cell
instance belongs to exactly one entity. An entity is a physical or virtual organizational
unit aggregating a set of cells. Cells can either be unique in an entity, or they can be
replicated by the entity through instantiation as many times as necessary. The Route
Manager in the FlexiBus scenario, for example, is an entity containing the Trip Booking
cell (Fig. 2) and a Route Assignment cell (Fig. 3a) managing the execution of the route.
Each entity has a context in which it operates, expressed as a set of stateful properties
representing the status of the environment of the entity, e.g. PaymentStatus in Fig. 2.
The entity context is accessible and shared by its cells and cells may keep cell specific
context. In addition, an entity has a set of goals, e.g. ensure that the PaymentStatus
context property is set to “paid” at the end of the cell flow execution, that it attempts to
fulfill by initiating or participating in one or more ensembles.

An ensemble is a set of cells from different entities collaborating with each other to
fulfill the objectives of the various entities. Each ensemble is initiated and terminated



Towards Modeling and Execution of Collective Adaptive Systems 73

(a) Route Assignment Cell Flow (Route
Manager)

(b) Route Execution Cell Flow (Bus Driver)

Fig. 3. Examples of Cells and Associated Entities

by one entity, but more than one entities are expected and allowed to join and leave
through the ensemble’s lifetime. The Route Assignment cell of the Route Manager en-
tity (Fig. 3a) for example, forms an ensemble with the Route Execution Cell of the
Bus Driver entity (Fig. 3b) to successfully coordinate the two entities in executing a
(FlexiBus) route. Note that one entity may be involved in more than one ensembles
simultaneously.

3.2 Lifecycle

The lifecycle of ensembles is depicted in Fig. 4. We distinguish two major phases: de-
sign time and run time. During the design time phase the ensembles of a CAS are
modeled as choreographies and the cells are expressed as Adaptive Pervasive Flows
(APFs) [8]. Modeling choreographies implies defining the visible behavior of the par-
ticipants (i.e. cell protocols), the sequence of exchanged messages, and the types of
the exchanged data. During the Generation & Refinement step the resulting choreog-
raphy definition is first transformed into APF skeletons — one for each participant —
which also contain the functionality required to support the defined interaction protocol
(i.e. sending and receiving messages from partners, data structures for storing the data,
etc.). In the subsequent refinement, each APF is edited so that it is completed to an
executable APF. Note that the design time phase of choreography subsumes the design
time for APFs, i.e. participant implementations/processes. Any kind of adaptation dur-
ing the design phase of APFs realizes a differentiation of cells. The possible adaptation
actions are inserting, deleting and substituting activities and control flow connectors in
the APF, changing the data dependencies, editing the context model, and injecting a
process fragment that specifies the functionality of an abstract activity.

The deployment step uses the APF skeletons from the previous step, their service
interfaces, and deployment information about the binding strategies for each of the
services to be used. After the deployment the choreography can be executed collectively
by APF instances, i.e. the APFs are made available for instantiation by the execution
environment. The instantiation of one of the APFs initiates the choreography, which is
the beginning of the run time phase for the choreography. More than one APF model
may be designated as an initiating one, e.g. the Route ensemble may be initiated by a



74 V. Andrikopoulos et al.

Ensemble/Choreography

Cells/APF

Cell/APF Instances

Design Time

Run Time

Deployment &
Instantiation

Generation &
Refinement

Fig. 4. Lifecycle of Ensembles

cell of the bus or by a cell in a passenger entity. However, if an instance of one APF
initiates a choreography, instances of the other participating APFs can only join the
initiated choreography, e.g. if a bus cell has started the Route ensemble, passengers can
only join the initiated choreography following the predefined rules for passenger check
in.

The choreography is completed successfully when the objectives of the entities par-
ticipating in the ensemble are achieved through executing all APFs in it successfully, or
even if some of the cells/APFs have abandoned the ensemble, e.g. if a passenger leaves
the bus and moves to another transportation vehicle due to changes in their objectives.
For the latter case, fault handling and/or adaptation steps may need to be performed. A
choreography is completed abnormally if all participant APFs have been terminated. In
this case either the choreography has reached a state for which a termination has been
predefined (e.g. the bus breaks down and there is no available one to substitute it, there-
fore passengers have to join another ensemble, i.e. wait for the next FlexiBus or use an
alternative transportation means), or none of the fault handling and/or adaptation steps
have been able to complete the choreography successfully. The runtime phase subsumes
monitoring and adaptation of choreographies, as well as the runtime and monitoring and
adaptation phases of APFs. Adaptation of choreographies is done through adaptation of
the visible behavior of the cells and through a change of the interaction protocol among
them, including message exchange sequence and message types. Adaptation of an APF
may not entail adaptation of the choreography.

4 Realization

4.1 Architecture

The architecture for the modeling and execution of CAS comprises two major com-
ponent groups (see Fig. 5) which cover the phases of the CAS lifecycle discussed in
Section 3.2. More specifically, the Modeling Tool comprises three major components:



Towards Modeling and Execution of Collective Adaptive Systems 75

Modeling tool

Runtime environment

ESB

Adaptation Manager

Planner Translator

Domain
Builder

Entity
Management

System

Monitoring
Information

Choreography Processes

Execution Engine

Domain
Models

Context

Fig. 5. Architecture overview

a Choreography Modeler to create choreography models for the ensembles, a Trans-
former to generate the APF skeletons that can be completed to executable processes by
the participant organizations using the APF Editor component, and an APF Editor (also
called process editor) to allow the visualization and modification of APF models.

The Runtime Environment enacts the choreographies. In particular this means that
the resulting executable APF models are deployed on one or more Execution En-
gines and can be instantiated at any time. The Deployment & Instantiation steps are
implementation-specific for each Execution Engine. In order to support the execution
of APFs containing abstract activities, the Execution Engine has to be able to start
the execution of incomplete processes, allowing the injection of additional activities
into APFs. Furthermore, the Execution Engine has to provide fault handling capabili-
ties, both for pre-defined fault and compensation handlers in the APF models, and for
failures in the Runtime Environment like service failures and unavailability of other
components in the Environment. The Execution Engine has to support user-defined ad
hoc control flow changes (e.g. deletion, insertion, substitution of one more activities
in the flow). Some of these adaptations require one or more planning steps, for exam-
ple, in order to resolve abstract activities into concrete ones and to handle the reaction
to not pre-modeled faults occurring during the execution of the APF. The component
providing this planning functionality is the Adaptation Manager.

Once the Adaptation Manager is notified about an execution problem, a change in
the context or goals of cells, it decides on the adaptation strategy to be used (horizon-
tal adaptation, vertical adaptation, other adaptation strategies etc. [9]). The choice of
the adaptation strategy determines the adaptation goal, which is passed to the Domain
Builder together with the information about the current context. The Domain Builder
builds an initial version of the adaptation problem consisting of a context model, a set
of available annotated fragments, current context configuration (i.e. the state of context
properties), and a set of goal context configurations. The Domain Builder extracts all
necessary specification from a repository of Domain Models. Taking into account the
current context and adaptation goals, the Domain Builder simplifies the context model
by pruning all unreachable configurations and removes all services that are useless for



76 V. Andrikopoulos et al.

the specified goal. With this optimization the size of the planning domain is significantly
reduced. The Translator component translates an adaptation problem into a planning
problem, which is resolved by the Planner. It is also responsible for transforming the
results of the Planner into executable APF fragments. Finally, the resulting APF frag-
ment expressing the actions necessary for realizing the adaptation strategy is sent to the
Execution Engine, that integrates it into the APF instance.

The Entity Management System (EMS) deals with all aspects of entity management:
persistence storage and management of APF models and associated entities, access con-
trol of APF models and instances, and context provisioning and management. When the
EMS creates a new entity, it deploys the entity APFs to the execution engine, adds cor-
responding context properties to the entity context model, and puts all the entity-related
specifications (such as fragments models and the context property diagrams provided
by the entity) into the Domain Models storage. When the entity “exits” the CAS, in-
verse actions are performed. The EMS is responsible for storing the system context (i.e.
a set of context properties of all active entities) and constantly synchronizes its current
configuration with the application domain by monitoring the environment of the entity.
Note that the system context is a simplified view of the application domain. The EMS
allows the Adaptation Manager to access the APF models and instances needed for
the planning step. Context information is used by the Execution Engine for different
purposes: as part of the execution of the APFs, as a trigger for adaptation, and as a
configuration parameter for the planning step.

All components (Execution Engine, EMS, Adaptation Manager) should be provided
as services and communicate through an Enterprise Service Bus (ESB) solution to facil-
itate their integration. Given the fact that multiple organizational domains may use the
Runtime Environment, it is necessary to offer multi-tenancy capabilities out of the box
for all components in the Environment. Furthermore, the Runtime Environment may
contain more than one instances of its components, distributed across on-premises and
off-premises Cloud infrastructures, for scalability purposes. This has to be taken into
consideration during the integration of the individual components.

4.2 Implementation

In the following we present the status of the implementation of the presented architec-
ture. In particular, we have developed the modeling tool as an Eclipse Graphical Edi-
tor. For purposes of expressing choreographies we use the BPEL4Chor language [13]
(which is an extension of the WS-BPEL language), and WS-BPEL [25] for implement-
ing the APFs. The user can model the participants in the choreography/ensemble as sep-
arate entities and define the interaction among them, including the abstract data types
used and the sequence of exchanged messages. BPEL4Chor code is automatically gen-
erated by the tool for the choreography, for the list of participants in the choreography
and the data exchanged among them. The components implementing the transforma-
tion from choreography definition in BPEL4Chor to BPEL process skeletons for each
participant and their service interfaces in WSDL, presented in [32], are part of the tool
as well as the Eclipse perspective for modeling and editing BPEL processes. The BPEL
modeling perspective is an extension of the BPEL Eclipse designer [28]. It is used to
view the BPEL skeletons and include additional process elements in order to define the



Towards Modeling and Execution of Collective Adaptive Systems 77

participants implementation of the choreography role (e.g. bus, passenger, route man-
ager processes). This manual refinement step is simplified by allowing to use predefined
process fragments, which are available in the tool catalogue and stored and managed in
the process fragment library Fragmento [27].

Additionally, we have extended the tool with a monitoring component for processes,
so that during the execution of the APF instances the user can view their status and
also adapt manually the instance that is currently being monitored. For this purpose
the modeling tool uses run time information from the execution engine provided via
its monitoring component. The interaction between the modeling tool, monitoring com-
ponent and execution engine supports also the runtime adaptation of APFs processes
using mechanisms like control flow change (inserting, deleting or substituting process
activities and control connectors), changes in the data used in the process instance, and
triggering re-execution of some of the already executed activities through [29].

The additional tasks of the Adaptation Manager component are realized by ASTRO-
CAptEvo2 [26], a comprehensive framework for defining highly adaptable service-based
systems (SBSs) and supporting their context-aware execution. It can deal with two dif-
ferent adaptation needs: the need to refine an abstract activity within a process instance
(i.e. vertical adaptation), and the need to resolve the violation of a context precondition
of an activity that has to be executed (i.e. horizontal adaptation). In the second case, the
aim of adaptation is to solve the violation by bringing the system to a situation where
the process execution can be resumed. Both adaptation mechanisms rely on sophisti-
cated AI planning techniques for the automated composition of services [5]. Moreover,
it is able to execute complex adaptation strategies that are realized through combining a
few adaptation mechanisms and executing them in a precise order, enabling support for
addressing complex adaptation problems that cannot be resolved by a single adaptation
mechanism [10].

The execution engine for APFs, i.e. the executable processes of the participants in
the choreography, is an extended Apache ODE Engine3, an open source implementation
of BPEL. We have extended the engine to support the integration with the modeling
tool for the purposes of monitoring, the adaptation mechanisms mentioned above as
well as with the ability to stop, suspend and resume a process instance in the engine
from the modeling tool [28]. For the ESB component of the architecture we use the
ESBMT multi-tenant aware ESB solution, as presented in [30,31]. ESBMT enhances the
Apache ServiceMix solution4 with multi-tenant communication support within service
endpoints deployed in the ESB, and multi-tenant aware dynamic endpoint deployment
and management capabilities.

The Entity Management System manages all active entities within a CAS. Currently
both the entity management and context management parts of the EMS are under con-
struction. Our CAS modeling tool is also missing features supporting modeling of con-
text in the choreographies and APFs. Adaptation mechanisms performing a reaction
to context change or driven by context information are also not yet designed and im-
plemented. Our execution engine prototype does not currently support the injection of

2 http://www.astroproject.org/captevo
3 Apache ODE: http://ode.apache.org/
4 Apache ServiceMix: http://servicemix.apache.org

http://www.astroproject.org/captevo
http://ode.apache.org/
http://servicemix.apache.org


78 V. Andrikopoulos et al.

fragments directly into the process instance; note that this is possible for the design time
phase. This is due to the fact that the previously presented implementation [26] of this
mechanism needs to be integrated in the current implementation. Currently we are also
working towards implementation of multi-tenancy of the APF execution engine.

5 Related Work

Collective or adaptive aspects of complex systems have been studied in various
domains. For example in Swarm Intelligence entities are essentially homogeneous and
are able to adapt their behavior considering only local knowledge [11,22]. In existing
systems from Autonomic computing the entity types are typically limited and the adap-
tation is guided by predefined policies with the objective to optimize the system rather
than evolve it [1,7,23]. In Service-based systems utilized on Internet of Things, entities
are hidden behind the basic abstraction of services, which are designed independently
by different service providers, and approaches to automatically compose services to
achieve a predefined goal like user specific [18] and/or business goals [24] are the fo-
cus. Multi-agent based systems concentrate on defining the rules (norms) for regulating
the collective work of different agents [12,21]. Most of the results obtained in these
domains are tailored to solve problems specific for the domain at hand using a specific
language or model but do not present a generic solution for all aspects of collective
adaptive systems.

Different choreography modeling approaches have been proposed in [3,14,17,20].
Two key approaches followed when modeling choreographies are interaction and in-
terconnection modeling [3]. The former has interaction activities supporting atomic
interactions between participants, while the latter interconnects the communication ac-
tivities of each participant in a choreography. WS-CDL [17] is a choreography language
following the interaction modeling approach. It exhibits however a strong dependency
between semantic and syntactic aspects, specifically in the definition requirement of
message exchange formats between participants at design time [4], lacks support for
describing choreographies with an unknown participants number [20], and does not de-
fine guidelines for mapping between the choreography modeling language and existing
orchestration languages, such as WS-BPEL [25]. The Savara5 project for example is
based on behavior specification and choreography specification using WS-CDL, and
behavior simulation, and generation and implementation of business processes using
BPEL and Web services. Despite the similarities in some of the used technologies with
our approach however, and due to the use of the interaction modeling approach requir-
ing explicit specifications of choreographies and orchestrations, the Savara approach
does not allow for dynamically joining and leaving the choreography.

An example of an interconnection modeling approach is the CHOReOS Integrated
Development and Runtime Environment which focuses on the implementation and en-
actment of ultra large scale choreographies of services6. By exploiting the notion of mod-
els and models@runtime [6] techniques, the CHOReOS Environment provides support

5 http://www.jboss.org/savara
6 CHOReOS: Large Scale Choreographies for the Future Internet:
http://www.choreos.eu/

http://www.jboss.org/savara
http://www.choreos.eu/


Towards Modeling and Execution of Collective Adaptive Systems 79

for a top-down and cross-cutting choreographies incorporating the design, enactment,
and adaptation of services during runtime. The adaptation requirements addressed in
the CHOReOS Environment (react to participants unavailability, or when the SLA is
not accomplished) are only a subset of the requirements on ensembles, where context
changes in pervasive environments, structural changes in the ensemble, or cells leaving
the ensemble, adapting to utility fluctuations etc. are of interest. In the scope of the Open
Knowledge European project7, the interconnection modeling approach is supported by
using the Multiagent Protocol (MAP) Web service choreography language for specify-
ing the interaction between peers, which are connected to the services participating in
the choreography. Services must be deployed prior to the choreography enactment and
the MAP language does not focus on adaptation features. These features present clear
deficits with respect to modeling CAS adaptation and the runtime reaction to changes
in a service-oriented pervasive environment.

The interaction modeling approach called BPELgold [20] is based on BPEL4Chor
[14]. The coordination logic of participants in choreographies is enabled by an ESB.
Both BPEL4Chor and BPELgold decouple the choreography specification from com-
munication specific details, allowing for dynamic ensemble adaptation during runtime.
However, while these approaches possess the required flexibility for defining ensembles
no execution environment is currently available for them.

6 Conclusion and Future Work

Collective Adaptive Systems (CAS) are characterized by heterogeneous entities that
can join and leave the system at any time towards fulfilling their own objectives. These
entities may be physical or virtual, and interact with each other as part of the collective.
CAS systems are naturally distributed, both in terms of the participating entities (i.e.
geographical location and/or organizational affiliation), and the required infrastructure
to support them. In order to enable CAS exhibiting these properties, in this work we
introduce a conceptual model inspired by biological systems which comprises collec-
tions of cells (functional building blocks) organized into entities (organizational units),
interacting with each other in ensembles (collaborations between cells).

In order to discuss the realization of this model, we map its elements to existing tech-
nologies and present a lifecycle for the ensembles based on them. We also introduce
an architecture for a CAS that ensures complete coverage of the lifecycle, and present
the current status of its implementation. Future work focuses on creating an improved
context model and provisioning techniques for entities participating in ensembles in dif-
ferent application domains, e.g. in eScience [2], and managing the adaptation of chore-
ographies. Consequently, the components of the prototype implementation discussed in
the previous sections have to be extended, and all the remaining components integrated.
In addition, different distribution and deployment options for the Runtime Environment
will be investigated in order to identify the optimal solution for different CAS.

Acknowledgment. This work is partially funded by the FP7 EU-FET project 600792
ALLOW Ensembles.

7 Open Knowledge: http://www.openk.org/

http://www.openk.org/


80 V. Andrikopoulos et al.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General Model for
Self-Adaptive Systems. In: WETICE, pp. 48–53 (2012)

2. Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Weiß, A.: Towards Collaborative,
Dynamic & Complex Systems. In: Proceedings of SOCA 2013. IEEE (December 2013) (to
appear)

3. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. IEEE Transactions
on Services Computing 2, 152–166 (2009)

4. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services Choreography
Description Language (WS-CDL). BPTrends (March 2005),
http://www.bptrends.com/

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in
asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

6. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42, 22–27 (2009)
7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Conceptual Frame-

work for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212,
pp. 240–254. Springer, Heidelberg (2012)

8. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A Formalisation of Adaptable
Pervasive Flows. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 61–75.
Springer, Heidelberg (2010)

9. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-
Based and Context-Aware Business Processes. In: Proceedings of ICWS 2012, pp. 33–41
(2012)

10. Bucchiarone, A., Marconi, A., Pistore, M., Traveso, P., Bertoli, P., Kazhamiakin, R.: Domain
Objects for Continuous Context-Aware Adaptation of Service-based Systems. In: Proceed-
ings of ICWS 2013, pp. 571–578 (2013) (to appear)

11. Pinciroli, C., et al.: ARGoS: A modular, multi-engine simulator for heterogeneous swarm
robotics. In: Proceedings of IROS. pp. 5027–5034 (2011)

12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collab-
oration patterns for autonomic service ensembles. In: CTS, pp. 508–515 (2011)

13. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service Choreogra-
phies Using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 79–93. Springer, Heidelberg (2008)

14. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for Modeling
Choreographies. In: Proceedings of ICWS 2007 (2007)

15. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer, Heidelberg (2009)

16. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows - An
Emerging Technology for Pervasive Adaptation. In: Proceedings of PerAda 2008. IEEE
(2008)

17. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web Services
Choreography Description Language Version 1.0 (November 2005)

18. Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H.: Modelling and Automated Composi-
tion of User-Centric Services. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010,
Part I. LNCS, vol. 6426, pp. 291–308. Springer, Heidelberg (2010)

19. Kernbach, S., Schmickl, T., Timmis, J.: Collective Adaptive Systems: Challenges Beyond
Evolvability. ACM Computing Research Repository (CoRR) (August 2011)

http://www.bptrends.com/


Towards Modeling and Execution of Collective Adaptive Systems 81

20. Kopp, O., Engler, L., van Lessen, T., Leymann, F., Nitzsche, J.: Interaction Choreogra-
phy Models in BPEL: Choreographies on the Enterprise Service Bus. In: Fleischmann, A.,
Schmidt, W., Singer, R., Seese, D. (eds.) S-BPM ONE 2010. CCIS, vol. 138, pp. 36–53.
Springer, Heidelberg (2011)

21. Lavinal, E., Desprats, T., Raynaud, Y.: A generic multi-agent conceptual framework towards
self-management. In: NOMS, pp. 394–403 (2006)

22. Levi, P., Kernbach, S.: Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolu-
tion. Springer (2010)

23. Lewis, P., Platzner, M., Yao, X.: An outlook for self-awareness in computing systems. Aware-
ness Magazine (2012)

24. Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: The
ASTRO Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

25. OASIS: Web Services Business Process Execution Language Version 2.0 (April 2007)
26. Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: ASTRO-CAptEvo: Dy-

namic Context-Aware Adaptation for Service-Based Systems. In: Proceedings of SERVICES,
pp. 385–392 (2012)

27. Schumm, D., Karastoyanova, D., Leymann, F., Strauch, S.: Fragmento: Advanced Process
Fragment Library. In: Proceedings of ISD 2010, pp. 659–670. Springer (2010)

28. Sonntag, M., Hahn, M., Karastoyanova, D.: Mayflower - Explorative Modeling of Scientific
Workflows with BPEL. In: Proceedings of the Demo Track of BPM 2012. CEUR Workshop
Proceedings, pp. 1–5 (2012)

29. Sonntag, M., Karastoyanova, D.: Ad hoc Iteration and Re-execution of Activities in Work-
flows. International Journal on Advances in Software 5(1&2), 91–109 (2012)

30. Strauch, S., Andrikopoulos, V., Leymann, F., Muhler, D.: ESBMT: Enabling Multi-Tenancy in
Enterprise Service Buses. In: Proceedings of CloudCom 2012, pp. 456–463. IEEE Computer
Society Press (December 2012)

31. Strauch, S., Andrikopoulos, V., Sáez, S.G., Leymann, F., Muhler, D.: Enabling Tenant-Aware
Administration and Management for JBI Environments. In: Proceedings of SOCA 2012,
pp. 206–213. IEEE Computer Society Conference Publishing Services (December 2012)

32. Weiß, A., Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Vukojevic-Haupt, K.:
Modeling Choreographies using the BPEL4Chor Designer: An Evaluation Based on Case
Studies. Tech. Rep. 2013/03, IAAS, University of Stuttgart (2013)


	Towards Modeling and Execution of Collective Adaptive Systems
	1 Introduction
	2 Motivating Scenario
	3 Overall Framework for CAS
	3.1 Conceptual Model 

	3.2 Lifecycle

	4 Realization
	4.1 Architecture
	4.2 Implementation

	5 Related Work
	6 Conclusion and Future Work
	References




