
Goal-Driven Composition

of Business Process Models

Benjamin Nagel, Christian Gerth, and Gregor Engels

s-lab - Software Quality Lab
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

{bnagel,gerth,engels}@s-lab.upb.de

Abstract. Goal-driven requirements engineering is a well-known ap-
proach for the systematic elicitation and specification of strategic busi-
ness goals in early phases of software engineering processes. From these
goals concrete operations can be derived that are composed in terms
of a business process model. Lacking consistency between goal models
and derived business processes especially with respect to the dependen-
cies between goals can result in an implementation that is not in line
with the actual business objectives. Hence, constraints indicated from
these dependencies need to be considered in the derivation of business
process models. In previous work, we introduced the extended goal mod-
eling language Kaos4SOA that provides comprehensive modeling capa-
bilities for temporal and logical dependencies among goals. Further, we
presented an approach to validate the consistency between goal models
and business process models regarding these dependencies. Extending
the previous work, this paper presents a constructive approach for the
derivation of consistent business processes from goal models. We intro-
duce an algorithm that calculates logically encapsulated business process
fragments from a given goal model and describe how these fragments can
be composed to a business process model that fulfills the given temporal
constraints.

Keywords: Requirements engineering, goal models, business process
models, business process composition.

1 Introduction

Goal-driven requirements engineering has emerged as a paradigm for the elici-
tation and specification of requirements in an early phase of the software lifecy-
cle [9,19]. Goal models support the systematic definition of objectives in terms of
goals that are structured hierarchically in a goal tree. In the domain of service-
oriented enterprise applications these goal models are usually used to capture
business goals that need to be achieved. By the iterative refinement of these
goals, concrete operations are identified, that need to be performed to achieve

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 16–27, 2014.
c© Springer International Publishing Switzerland 2014

Goal-Driven Composition of Business Process Models 17

the defined goals [1,20]. These operations are used as input for the definition of
business processes composing these operations to a sequence of activities.

Recent research addresses the relations between goal models and business
process models by different approaches that explicitly consider the links and
relationships between elements in goal models and business process models [6,8].
The explicit consideration of these links ensures completeness and traceability
among both models.

However, the initial composition of operations to business processes is still an
open challenge.The identified operations cannot be composed in an arbritraryway,
since thedifferent types of relationshipsbetweengoals (AND-,OR-decompositions)
need tobe considered. Inaddition, domain-specificknowledge of stakeholders about
dependencies between goal, e.g. the order in which goals need to be achieved, have
to be considered as well.

In previous work we contributed two extensions addressing this topic. In [14]
we presented an extension of KAOS goal models, termed Kaos4SOA. This
approach enables the specification of temporal and logical dependencies among
goals. Hereby, we enable the elicitation and modeling of the stakeholders’ knowl-
edge about dependencies among goals that need to be considered in the deriva-
tion of business processes. Further, we presented a consistency validation
approach in [13]. We demonstrated the generation of formalized business pro-
cess quality constraints from these goal dependencies and showed how a derived
business process model can be validated against these constraints.

Extending the previous work, we introduce a constructive approach for the
systematic derivation of consistent business process models from Kaos4SOA goal
models. To solve the composition problem in a sufficient way we state the fol-
lowing requirements to our approach. First, it can not be guaranteed that all
operations are constrained in a way, that they can be composed unambiguously,
i.e. there is no unique valid business process model that achieves the goals and
fulfills the defined quality constraints. Second, the usage of model-checking pro-
vides a high degree of automation, but the computational complexity often raises
performance issues especially for large business process models with a high num-
ber of constraints to be validated. To enable an efficient usage of model-checking
that guides the process designers, the number of process elements and constraints
that are validated need to be reduced.

Addressing these requirements, we present a goal-driven approach that enables
the systematic derivation of consistent business process models from goal mod-
els. By analyzing the logical decompositions through the goal model, business
process fragments are calculated encapsulating a set of dependent operations.
Applying a set of business process patterns, the operations in each fragment
are composed considering the dependencies among them. Dependencies between
these fragments are calculated and finally, the fragments are composed to a
business process model according to the temporal dependencies by using model-
checking techniques.

By realizing the presented solution our approach makes the following
contributions:

18 B. Nagel, C. Gerth, and G. Engels

1. A method for the automatic identification and clustering of business process
fragments from a given goal model.

2. A pattern-based approach for the composition of operations in fragments.
3. An model-checking approach for the composition of business process models

based on fragments, which are significantly smaller than the business process
itself.

The remainder of the paper is structured as follows. In Section 2 we introduce
the foundations for our work. Our approach for the goal-driven composition of
business processes is presented in Section 3. Related work is discussed in Section 4
and finally Section 5 concludes this paper.

2 Foundations

2.1 Goal Models

Recent research in goal-driven requirements engineering brought up several
approaches for the elicitation and specification of goal models. For the expres-
sion of these goal models, different notations, like KAOS [5], Tropos [4] and
i* [21] have been developed, that provide languages for the definition of goals
and relationships among them. Due to its expressiveness and understandability
KAOS has been adopted by several approaches [3,8] to specify goal models in
the domain of service-oriented systems.

To illustrate the modeling capabilities of KAOS, an example is depicted in
Figure 1 that defines a simplified goal model from the scenario introduced in [10].
Fulfill book order is the overall root goal that is decomposed to four subgoals.
The AND-decomposition expresses that all subgoals need to be achieved in order
to achieve the higher-level goal. These subgoals can be further decomposed as
exemplary shown for the goal Payment received. This goal is OR-decomposed to
the subsubgoals Payment via credit card and Payment via money order, which
means that the payment can be received by either credit card or money order.

As illustrated by the ellipses, each leaf goal is operationalized to one or more
operations. For example the goalBook delivered is achieved by performing the op-
erationsDeliver to courier andCourier delivers to customer. Thatmeans all opera-
tions assigned to a leaf goal need to be performed in order to achieve it sufficiently.

In previous work we extended KAOS by a concept for expressing temporal re-
lationships between goals and a more precise definition of logical decompositions.
To avoid an increasing complexity of the goal models, the temporal dependen-
cies are expressed by goal annotations. The dependency predecessor/successor
between two goals G1 and G2 expresses that a goal needs to be achieved be-
fore or after another goal. Temporal dependencies can only be defined between
goals that are AND-decomposed through the whole hierarchy of the goal model,
because it is not feasible to define a mandatory temporal dependency among
alternative goals in an OR-decomposition.

An example of an order dependency for the goal model depicted in Figure 1
is the dependency between goal Books delivered and Books available that states

Goal-Driven Composition of Business Process Models 19

Fulfill
book order

Quote give

Books
delivered

Books
available

Payment
received

Payment via
credit card

Payment via
money order

Books
ordered

Books
acquired

Customer
requests quote

Provide quote

Place order to
supplier

Supplier
ships books

Books arrive at
warehouse

Deliver
 to courier

Courier delivers
to customer

Get credit
card number

Get credit card
authorization

Charge credit
card

Customer sends
money order

Receive money
order

AND

AND

OR

Fig. 1. Exemplary KAOS Goal Model

that the books cannot be delivered until they are available. To express this de-
pendency the goal Books delivered is annotated with Order.PredecessorBooks
available. A temporal succeeding dependency can be specified between the goals
Payment received and Books delivered. To make sure that the books are deliv-
ered after the payment has been received the following annotation can be used.
The strict order dependency is expressed with the annotation Order.Successor

Books delivered.
To enable a more precise specification of the decomposition relations between

goals we introduced the XOR-decomposition for the explicit distinction of de-
pendencies from the inclusive-OR provided by the KAOS notation. Applied to
our running example the OR-decomposition of goal Payment received is not pre-
cise enough, since the OR-decomposition between subgoals Payment via credit
card and Payment via money order should be exclusive as the customer will pay
either by credit card or money order and not both. The updated decomposition
with the corresponding conditions is depicted in Figure 2. Our extension also
facilitates the definition of conditions for inclusive-OR decompositions.

2.2 Business Process Modeling

Business process models provide visual representations for business processes
by describing sequences of activities and gateways connected by edges, defining
the order in which the activities are performed. These models enable a com-
mon understanding, the analysis of business processes, and also define the re-
quired composition of services. To precisely specify business process models in an

20 B. Nagel, C. Gerth, and G. Engels

Payment
received

Payment via
credit card

Payment via
money order

XOR

Condition Payment.CreditCard =
True

Condition Payment.CreditCard =
False

Fig. 2. Exemplary Definition of XOR-decomposition

understandable way, existing process modeling languages like BPMN [16] or
UML activity diagrams [15] can be used.

In our approach, we leverage the generic business process modeling language
introduced in [7]. Business process models defined in this language can be trans-
lated to BPMN. Hence, the usage of this language does not reduce the applica-
bility of our approach. Compared to existing modeling languages this notation
supports the explicit definition of business process fragments. A business process
fragment encloses a set of business process model elements. These fragments are
single-entry-single-exit fragments, that means they have a unique single entry
node and a unique one exit node.

3 Approach

To enable the derivation of business process models from goal models, we intro-
duce the goal-driven approach illustrated in Figure 3. As input for our approach
we use a given goal model following the Kaos4SOA notation and a set of CTL
constraints. These constraints are formal representations of the temporal and
logical dependencies that are identified and defined by the approach presented
in [13]. By an iterative refinement the used CTL constraints are expressed on
the level of operations, i.e. they express constraints between operations.

In the first step, business process fragments which cluster logically related
operations are identifed from the goal model. The operations in each fragment
are composed using a set of business process patterns according to their logical
dependencies in the goal model. By using the given CTL constraint, temporal
dependencies between fragments are calculated based on the clustered opera-
tions. Using these constraints the fragments are composed to a valid business
process model. The three steps of our approach are explained in the following.

3.1 Clustering of Business Process Fragments

The first step of our approach calculates business process fragments from a
given goal model. To that extent, we identify operations that can be clustered in
fragments. The operations in the fragments can be composed by applying a set
of defined business process patterns based on their logical relationships. For this
purpose, all decomposition links through the goal model need to be considered
for each operation. Therefore we provide a top-down approach starting from the
root goal that considers the complete hierarchy of decomposition links.

Goal-Driven Composition of Business Process Models 21

Goal
model

CTL
constraints

Business process model

Calculation of temporal
dependencies between fragments

Composition of business process
model

Clustering of business process
fragments

Section 3.1

Section 3.2

Section 3.3

Fig. 3. Conceptual Overview of the proposed Approach

The clustering algorithm is specified in Algorithm 1 and explained in the
following. Starting from the root goal, the first fragment is created representing
the overall business process that is composed. Then, for each child-goal the
algorithm is executed recursively. For each child, that is not a leaf-goal, the
further processing depends on the type of decomposition that the goal is part
of.

Following the KAOS semantics all goals and it’s assigned operations are con-
sidered in the business process composition, but of course some goals may be
optional, e.g. in an OR-decision. Hence, an AND-decomposition does not intend
an additional logical dependency despite the fact that all goals need to be con-
sidered. That means, we are able to create logically independent fragments for
each goal in an AND-decomposition. The composition of the different fragments
with respect to the temporal dependencies among them is part of the following
steps.

In our approach the goals are used as temporary elements in the business
process model that are refined to subgoals and finally replaced by the operations
fulfilling these goals. To compose the goals and operations according to their
logical relations, we leverage the business process patterns proposed in [18]. An
overview of the patterns used in our algorithm is given in Figure 4. Goals in an
OR-decomposition are composed by applying an inclusive-OR gateway (P3). In
the case of an conditional OR-decomposition the defined conditions are added to
the OR-gateway and pattern P4 is applied. The goals in an XOR-decomposition
are composed by an exclusive OR gateway using pattern P5.

22 B. Nagel, C. Gerth, and G. Engels

Algorithm 1. Cluster Business Process Fragments

function ClusterFragments(Goal goal, Fragment frag)
if goal.isRootGoal() then

processModel = createProcessModel(goal.name)
for all childGoal in goal.getChildGoals() do

ClusterFragments(childGoal, processModel)

else if goal.isLeafGoal() then
for all operation in goal.getOperations() do

newFrag.addElement(operation)
if goal.getOperations().count() ≥ 2 then

if operation canBeParallelizedWithOperationIn(newFrag) then
composition = applyProcessPattern(P2)

else
composition = applyProcessPattern(P1)

replace(goal, composition)
else

replace(goal,operation)

else
if goal.isPartOfORDecomposition then

applyProcessFragment(P3)
else if goal.isPartOfCondORDecomposition then

applyProcessFragment(P4)
else if goal.isPartOfXORDecomposition then

applyProcessPattern(P5)
else � AND-decomposition

newFrag = createFragment(goal.name)
frag.addElement(newFrag)

for all childGoal in goal.childGoals do
ClusterFragments(childGoal, newFrag)

Following the algorithm each goal in the model is refined until a leaf goal is
reached. Finally, each goal is replaced by its operations. If a goal is operational-
ized by exactly one operation, it is replaced by it. More than one operation
means that all operations need to be performed to achieve the stated goal. In
this case it is checked if the execution of the operations can be parallized. De-
pending on that, the pattern P2 (parallel execution possible) or P1 (no parallel
execution possible) is applied to compose the operations. The order in which the
operations need to be performed in a sequence (P1) is decided manually by the
business process designer.

An exemplary execution of the algorithm for an excerpt of the running
example is shown in Figure 5, which uses the running example introduced in
Section 2.1 with the XOR decomposition depicted in Figure 2. Following the de-
composition links in the goal model, a new fragment Payment received is created
and added to the process Fulfill book order. The two subgoals are added to the
fragment by applying pattern P5, adding an exclusive OR. The temporary goal
construct is then replaced by its operations. In this example the goal Payment

Goal-Driven Composition of Business Process Models 23

A

B

A

B

Condition

False

True

A

B

Condition 1

Condition 2

A

B

(P1) Sequence

(P2) Parallel split

(P3) Inclusive OR

(P4) Conditional inclusive OR

(P5) Exclusive OR (XOR)

Fig. 4. Business Process Patterns (based on [18])

via credit card is replaced by three operations composed as a sequence (pattern
P1).

The result of the presented algorithm is a frame for a business process model
that encapsulates all required operations clustered in business process fragments.
To complete the business process model, the fragments need to be composed. For
this purpose, we first calculate temporal dependencies between these fragments
(Section 3.2) and provide a composition approach based on model-checking (Sec-
tion 3.3).

3.2 Calculation of Temporal Dependencies between Fragments

To enable the composition of the clustered fragments temporal dependencies
between operations contained in the fragments need to be considered. As dis-
cussed in Section 2.1 temporal dependencies can only be defined between goals in
AND-decompositions. Following Algorithm 1 the goals in AND-decompositions
are encapsulated in different fragment, which means that temporal dependencies
are always stated between operations in different business process fragments.

Algorithm 2 provides a precise definition of the proposed calculation approach.
The algorithm iterates through all stated temporal constraints. Each constraint
is defined by expressing temporal relations between two or more operations. To
derive constraints for fragments, each operation in the constraint is replaced by
the business process fragment it is assigned to.

24 B. Nagel, C. Gerth, and G. Engels

Process Fulfill book order

Process Fulfill book order

Fragment Payment received...

Process Fulfill book order

Fragment Payment received...

Payment by
credit card?

Yes

No

Fragment Payment received

Get credit card
number

Get credit card
authorization

Charge
credit card

createFragment(Payment received)
add(Payment received)

applyPattern(P5)

applyPattern(P1)

Payment via
credit card

Payment via
money order

Payment by
credit card?

Yes

No Payment via
money order

Fig. 5. Exemplary Execution of Composition Algorithm

Algorithm 2. Calculate Temporal Dependencies between Fragments

function CalculateFragDependencies(TempConstraints tempConstraints)
for all tempConstraint in tempConstraints do

operations = tempConstraint.getElements()
for all operation in operations do

tempConstraint.replaceoperation, operation.getFragment()

As a result, the algorithm provides a set of CTL constraints that define tempo-
ral dependencies among the clustered business process fragments. For example,
the temporal succeeding dependency between two fragments F1 and F2 is ex-
pressed in CTL as follows: AG(F1 → AF (F2)). In the next step, the identified
fragments and the dependencies among them are used to compose a valid busi-
ness process model that fulfills the given constraints.

Goal-Driven Composition of Business Process Models 25

3.3 Composition of Business Process Model

Depending on the specification in the goal model, the number of constraints it-
self as well as the number of constrained fragments can vary. That means, not
all business process fragments do have temporal relations with other fragments.
As a consequence, in some cases only parts of the business process model can be
composed automatically based on the given constraints. For all unconstrained
fragments our approach favors the manual composition rather than automati-
cally choose an arbitrary position.

Therefore, the composition of the business process model in our approach com-
prises two steps. In the first step, a valid composition of the constrained business
fragments is calculated automatically. Second, the unconstrained fragment are
integrated manually into the business process model.

For the constructive composition of a business process based on a set of con-
straints the possible combinations need to be validated. Details for the definition
of possible compositions and their verification can be found, e.g. in [17]. The ad-
vantage of our approach is that not all combinations of all available operations
need to be considered. By using the clustered business process fragments, the
number of elements that need to composed and as consequence the number of
combinations that need to be verified can be reduced significantly.

After a valid composition has been identified, the unconstrained fragments
need to integrated into the business process model as well. We consider this a
completely manual step based on the domain knowledge of the business analyst.

4 Related Work

The derivation of operationalized requirements and architectural models has
been addressed by recent research [12,20] which does not specificly address the
composition of business process models. In [22] a pattern-based approach is
presented that supports the derivation of component diagrams from goal models.
While this work focuses on structural aspects the derivation of business process
models is not considered in terms of a concrete algorithm for the calculation of
a process composition.

For the domain of adaptive, service-oriented system the work in [2] intro-
duces an approach for the automated service composition by matching pre- and
postconditions of operations from goal models. This approach requires an exact
matching of these conditions to provide a complete composition.

In [11] an approach for the derivation of business processmodels from goalmod-
els is proposed. By presenting a defined procedure this work provides methodical
guidance for the identification of services and their compositions, but does not pro-
vide any kind of automated composition capabilities. Based on a qualitative pref-
erence analysis, the framework presented in [17] automatically calculates service
compositions. Compared to our approach this framework does not consider tem-
poral constraints for the composition and does not address the problem of checking
constraints for evolving business process models. In contrast, our approach explic-
itly considers the efficient validation against constraints. The improvement of the

26 B. Nagel, C. Gerth, and G. Engels

efficiency is achieved by applying the concept of business process fragments. By
defining the constraints on the level of these fragments, the number of required
validations can be reduced significantly.

5 Conclusion and Future Work

In this paper, we presented an approach for the guided composition of business
process models in a goal-driven way. We proposed an algorithm that identifies
and clusters related operations to business process fragments and we describe
how these fragments can be composed to a business process model by using
model-checking techniques. In summary, we provide an approach that provides
a high degree of automation but also considers involvement of domain experts
and business analysts during the composition.

As future work, we aim for a tool implementation of the presented approach.
Based on the existing workbench presented in [13,14] the composition algorithm
will be implemented by integrating a model checker (e.g. NuSMV1). Using this
tool support we will perform comprehensive case studies to evaluate the efficiency
and applicability of our approach. A main aspect in the evaluation will be the
investigation of the actual improvement of the model-checking scalability by
using the business fragments.

References

1. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: Proc. of the 31st Int. Conf. on Software Engineering, ICSE
2009, pp. 265–275. IEEE Computer Society (2009)

2. Baresi, L., Pasquale, L.: Adaptive Goals for Self-Adaptive Service Compositions.
In: 2010 IEEE International Conference on Web Services (ICWS), pp. 353–360.
IEEE (2010)

3. Baresi, L., Pasquale, L.: Adaptation Goals for Adaptive Service-oriented Architec-
tures. In: Relating Software Requirements and Architecture, pp. 161–181. Springer,
Heidelberg (2011)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems (2004)

5. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition
in requirements elicitation. In: Proceedings of the 6th International Workshop on
Software Specification and Design, IWSSD 1991, pp. 14–21. IEEE Computer So-
ciety Press (1991)

6. Dubois, E., Petit, M., Yu, E.: From Early to Late Formal Requirements: A Process-
Control Case Study. In: Proc. of the 9th Int. Workshop on Software Specification
and Design, p. 34. IEEE Computer Society (1998)

7. Gerth, C., Küster, J.M., Engels, G.: Language-Independent Change Management
of Process Models. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 152–166. Springer, Heidelberg (2009)

1 http://nusmv.fbk.eu/

http://nusmv.fbk.eu/

Goal-Driven Composition of Business Process Models 27

8. Koliadis, G., Ghose, A.: Relating Business Process Models to Goal-Oriented
Requirements Models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D.,
Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer,
Heidelberg (2006)

9. Lapouchnian, A.: Goal-Oriented Requirements Engineering: An Overview of the
Current Research. Requirements Engineering 8(3), 32 (2005)

10. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Integrating preferences into
goal models for requirements engineering. In: 2010 18th IEEE International Re-
quirements Engineering Conference (RE), pp. 135–144 (2010)

11. Lo, A., Yu, E.: From Business Models to Service-Oriented Design: A Reference
Catalog Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

12. Mart́ınez, A., Pastor, Ó., Mylopoulos, J., Giorgini, P.: From Early to Late Re-
quirements: A Goal-Based Approach. In: Kolp, M., Henderson-Sellers, B., Moura-
tidis, H., Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS (LNAI),
vol. 4898, pp. 123–142. Springer, Heidelberg (2008)

13. Nagel, B., Gerth, C., Post, J., Engels, G.: Ensuring Consistency among Business
Goals and Business Process Models. In: Proceedings of 16th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pp. 17–26 (2013)

14. Nagel, B., Gerth, C., Post, J., Engels, G.: Kaos4SOA - Extending KAOS Mod-
els with Temporal and Logical Dependencies. In: Proceedings of the CAiSE 2013
Forum at the 25th International Conference on Advanced Information Systems
Engineering (CAiSE), pp. 9–16 (2013)

15. OMG. OMG Unified Modeling Language (OMG UML) Superstructure (2010)
16. OMG. Business Process Model and Notation (BPMN) (2011)
17. Oster, Z.J., Ali, S.A., Santhanam, G.R., Basu, S., Roop, P.S.: A service composition

framework based on goal-oriented requirements engineering, model checking, and
qualitative preference analysis. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 283–297. Springer, Heidelberg (2012)

18. Russell, N., Hofstede, A.H.M.T., Mulyar, N.: Workflow ControlFlow patterns: A
revised view. Technical report (2006)

19. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, pp. 249–262 (2001)

20. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo,
M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg
(2003)

21. Yu, E.S.-K.: Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. In: Proc. of the 3rd IEEE Int. Symposium on Requirements
Engineering, pp. 226–235. IEEE Computer Society (1997)

22. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.: From Goals to
High-Variability Software Design. In: Foundations of Intelligent Systems, pp. 1–16
(2008)

	Goal-Driven Compositionof Business Process Models
	1 Introduction
	2 Foundations
	2.1 Goal Models
	2.2 Business Process Modeling

	3 Approach
	3.1 Clustering of Business Process Fragments
	3.2 Calculation of Temporal Dependencies between Fragments
	3.3 Composition of Business Process Model

	4 Related Work
	5 Conclusion and Future Work
	References

