
A Light-Weight Framework for Bridge-Building
from Desktop to Cloud

Kewei Duan1,�, Julian Padget1, and H. Alicia Kim2

1 Department of Computer Science, University of Bath
{k.duan,j.a.padget}@bath.ac.uk

2 Department of Mechanical Engineering, University of Bath
h.a.kim@bath.ac.uk

Abstract. A significant trend in science research for at least the past decade
has been the increasing uptake of computational techniques (modelling) for in-
silico experimentation, which is trickling down from the grand challenges that
require capability computing to smaller-scale problems suited to capacity com-
puting. Such virtual experiments also establish an opportunity for collaboration
at a distance. At the same time, the development of web service and cloud tech-
nology, is providing a potential platform to support these activities. The problem
on which we focus is the technical hurdles for users without detailed knowledge
of such mechanisms – in a word, ‘accessibility’ – specifically: (i) the heavy
weight and diversity of infrastructures that inhibits shareability and collaboration
between services, (ii) the relatively complicated processes associated with de-
ployment and management of web services for non-disciplinary specialists, and
(iii) the relative technical difficulty in packaging the legacy software that encap-
sulates key discipline knowledge for web-service environments. In this paper,
we describe a light-weight framework based on cloud and REST to address the
above issues. The framework provides a model that allows users to deploy REST
services from the desktop on to computing infrastructure without modification
or recompilation, utilizing legacy applications developed for the command-line.
A behind-the-scenes facility provides asynchronous distributed staging of data
(built directly on HTTP and REST). We describe the framework, comprising the
service factory, data staging services and the desktop file manager overlay for
service deployment, and present experimental results regarding: (i) the improve-
ment in turnaround time from the data staging service, and (ii) the evaluation of
usefulness and usability of the framework through case studies in image process-
ing and in multi-disciplinary optimization.

1 Introduction

With the increasing uptake of computational techniques for in-silico experimentation,
scientists seek capacity computing power along with the means to collaborate at a
distance.

Web services in principle provide a convenient means to publish and share com-
putational representations of domain-specific knowledge, while grid computing has

� Student author.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 308–323, 2014.
c© Springer International Publishing Switzerland 2014



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 309

delivered the infrastructure for capability scientific computing[1–3]. More recently,
cloud computing, which can be seen as an evolution of the latter, offers a more ac-
cessible and flexible provisioning of capacity computing, that renders the usability is-
sues around complex infrastructure largely invisible to end users. It also shows benefits
for scientific applications in a wide range of domains[4–6]. However, there are still
hurdles for scientists who have limited technical knowledge of cloud computing infras-
tructure and of the use of new technology in scientific applications. We identify them
as: (i) the heavy weight and diversity of infrastructures that inhibits shareability and
collaboration among distributed services, (ii) the relatively complicated processes asso-
ciated with deployment and management of web services for non-discipline specialists,
(iii) the relative technical difficulty in packaging the legacy software that encapsulates
key discipline knowledge for web-service environments.

The aforementioned hurdles are determined by the nature of the end-user-scientist
and the resources that need to be deployed in the cloud. Most scientists who have lim-
ited knowledge of web services or cloud infrastructure may need to face the need to
learn new programming languages or system administrative skills for the purpose to
build scientific applications in the cloud or as web services. For example, an engineer
normally has the skill to develop desktop applications based on Fortran or Matlab, but
rarely has knowledge of or experience of web application development based on lan-
guages like Java or Python. On the other hand, with years of development, numerous
legacy codes and programs in which real domain-specific knowledge resides, may face
the predicament that a new round of coding and translating work is needed or they sim-
ply lose the ability to be re-developed because of the lack of source codes, documents
or language support1.

Our REST based light-weight framework lowers the barriers by providing a set of
GUI based client tools and a set of REST web services which serve as both portal for
service deployment and service execution by following the PaaS service model[7]. In
recent years, the REST architectural style[8] and REST-compliant Web services have
emerged and the approach has rapidly gained popularity due to its flexibility and sim-
plicity. Our framework is able to deploy legacy codes and command-line programs as
RESTful services, which can support a wide range of languages and tools, such as
C/C++, Fortran, Matlab, Python, Unix shell, JAVA, and some engineering design op-
timization frameworks, specifically OpenMDAO[9] and Dakota[10]. Furthermore, be-
cause the framework follows RESTful principles, it can be directly accessed from a
wide range of programming languages (such as a command line scripts/applications) or
a generic workflow management system (such as Taverna[11], see section 4) without
any additional library support or tools. The services are made into as web applica-
tions, based on easily obtainable, free, open-source tools, such as Apache-Tomcat and
MySQL. Embedded within the framework is a distributed data-flow mechanism, that
can enhance data-staging performance in the execution of composite services. Through
the desktop GUI tool, inexperienced users can learn about, create and use web services.
We demonstrate the framework operating both in the context of a private server and the
Amazon EC2 service, in order to show compatibility with both private and public cloud

1 In the worst case, only a binary of the program may exist, which happens to be executable due
to backwards hardware compatibility.



310 K. Duan, J. Padget, and H.A. Kim

provisioning. Hence, we believe it should be readily deployable on top of other IaaS
services with little change.

The primary technical contributions of the paper are: (i) the design of a RESTful
framework for the deployment of legacy codes through a service factory facility, (ii) an
architecture for the execution of those services, in which data services are supplied by
an asynchronous data-flow mechanism providing Data as a Service and control can be
provided by existing workflow engines, such as Taverna, and (iii) a desktop GUI and
file system overlay to provide the interface for service management. Complementary to
these is the social contribution, of providing access to web service functions, cloud com-
puting infrastructure and user-controlled means for sharing the scientific knowledge
embedded in computational resources (software). These aspects have been evaluated,
using recognized HCI practices[12, 13] on the one hand through participatory exercises
and surveys (usability) and on the other through two case studies (usefulness).

The rest of the paper is structured as follows. In Section 2, we discuss the challenges
of migrating scientific applications to cloud and related work. Section 3 introduces our
framework and the solutions proposed to meet those challenges. Section 4 evaluates the
framework in respect of three issues: (i) performance, (ii) user-based experiments, and
(iii) (two) case studies. Lastly, Section 5 presents conclusions and future work.

2 Related Work

Cloud computing is commonly categorized into three service models[7] known as
{Infrastructure, Platform, Software} as a Service (IaaS, PaaS and SaaS, respectively),
of which PaaS is the service model that provides the consumer with the capability to
deploy consumer-created or acquired applications onto infrastructure, thus creating an
instance of a service. Our aim is to provide access to cloud services so that regular users
can deploy their own (command-line) applications as services, share them with others
and utilise them in service workflows. We do this through the provision of a platform
that provides: (i) deployment services, and (ii) data storage and transfer services.

This paper focuses on the use of cloud platform for science and engineering appli-
cations, in which the platform enables applications to appear as web services, creating
a SaaS for public invocation. Our aim to provide a platform for users without sophis-
ticated programming skills to be able deploy web services. There are several generic
PaaS platforms like Google APP Engine [14] and Heroku [15], both of which provide
the means for users to deploy web applications on the providers’ public cloud infras-
tructure. However, both of them work via programming language APIs. For the purpose
of deploying an application into their infrastructures, users must either write applica-
tions in specific languages or modify original codes in those languages. Other potential
platforms – providing command-line interfaces – are: (i) CloudFoundry [16], which
provides an open-source mechanism for application deployment, however it uses its
own API – implemented for a range of popular languages – for service interaction,
rather than the standardised (REST) mechanisms that we adopt, and (ii) Openshift [17],
which aims to provide a platform for running web applications using cloud resources.
It too needs quite sophisticated skills to write applications in supported languages by
using the command-line administration tools specifically designed for this platform.



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 311

The Generic Worker framework [18] has similar goals to our framework: it provides
PaaS service based on Microsoft’s Azure Cloud platform. Services can be deployed by
the client using command-line tools. They also adopt a distributed data transfer mech-
anism for performance enhancement. However, their services are tightly connected to
Azure service elements, such as Azure’s REST web service API and the Azure blob
store.

Additionally, toolkits such as Soaplab[19], Opal[20] and Generic Factory Service
(GFac)[2] wrap command-line applications for service deployment. Users can use them
to describe the command-line and parameters to create services. These too differ from
our framework in several ways:

1. We adopt a cloud infrastructure to provide the function of service deployment as
web service, which allows hot-plug style program uploading and deployment. The
above assume programs have been installed on the server and work as local tools on
a server that needs to be set up and configured every time a new service is deployed.

2. We consider the deployment of web service in a broader context, assuming services
will be composed, consequently a data staging mechanism is provided to assist in
the effective composition of services. The above tools do not consider data commu-
nication as part of their concern, which can in the worst case result in centralized
data transfer, when deployed as web services.

3. We provide a desktop GUI tool for clients to deploy web services based on command-
line programs. This avoids the need to learn and use the description languages
adopted in these tools (“Ajax Command Definition” in Soaplab, “serviceMap” in
GFac and “Metadata” in Opal), as well as the overheads involved in authoring, de-
bugging and maintaining such descriptions in parallel with the application.

Our framework should be deployable in any private cloud or any popular public
cloud based as it is on a set of open-source tools and standard protocols. The data can
also reside in any form of cloud computing storage, such as Dropbox, Ubuntu one,
OwnCloud or SpiderOak, for example. We also note that data elements in our frame-
work are transferred and stored without additional mark-up. To facilitate the delivery of
the right data at the right time in the right place, we have developed a data-flow style
Data-as-a-Service (DaaS) mechanism, called Datapool, that keeps all the data in their
original format (ie., no encoding, no wrapping) and provides for asynchronous data
transfer between services (described in detail in Section 3).

3 A Cloud-Based Framework for Scientific Applications

In this section, we describe our framework and how we believe it addresses the issues
raised by the hurdles we identified earlier. We approach these issues from three perspec-
tives: (i) service deployment, (ii) service invocation and execution, (iii) data staging.

3.1 Service Deployment

Scientific applications must be uploaded and registered with the framework before they
are available for invocation and execution in the cloud. There are three tasks at this



312 K. Duan, J. Padget, and H.A. Kim

(a) The main window of GUI tool

(b) The parameter window of GUI tool

Fig. 1. Windows of GUI tool

stage: (i) to upload and store the application and its dependencies in the cloud repos-
itory, (ii) to write and upload the description of the application to cloud for subse-
quent configuration and deployment, (iii) the configuration of authorization information
that controls who may access the service once deployed. These tasks are all performed
through the client GUI tool.

To illustrate the features of the deployment service, we use the screenshots shown in
Figure 1, where Figure 1(a) shows the main window of the GUI tool. Our aim here is to
make deployment tasks fit within the familiar range of operations of a desktop window
manager. The GUI tool is set up to connect with the delpoyment service in the cloud
through a URI with user authentication information. For the application uploading task,
the user packs the binary and dependencies into a self-contained folder as a compressed



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 313

Fig. 2. Local folder for service description

Table 1. URIs of Datapool and Application Services

Methods URIs
PUT http://. . . /datapool/{Datapool Name}/{Data Object Name}
PUT http://. . . /datapool/{Datapool Name}?DO URI={Data Object URI}

Datapool GET http://. . . /datapool/{Datapool Name}/{Data Object Name}
Services GET http://. . . /datapool/{Datapool Name}

DELETE http://. . . /datapool/{Datapool Name}/{Data Object Name}
DELETE http://. . . /datapool/{Datapool Name}

PUT http://. . . /APP service/{Service Name}
Application GET http://. . . /APP service/{Service Name}?DP URI={Datapool URI}

Services DELETE http://. . . /APP service/{Service Name}
GET http://. . . /APP service/Service Info/{Service Name}

file and uploads it cloud side through the deployment service. The uploader can be started
from the menu when the user right-clicks on the compressed file2. In this case, a Java
executable which has two inputs and one output is uploaded. The Java runtime is a special
case that can be specified by ticking “Jar executable”. One another notable feature shown
in Figure 1(a) is the access permission setting. The user can choose whether a service
can be accessed by all users as a public service or by selected users. Permitted users
can be added in a separate window by the service owner clicking the Add Users button.
Figure 1(b) shows the parameter window of the GUI tool. In the deployment process
of Web service, the framework needs the information for mapping each command-line
argument into a parameter for the web service. At the same, the framework also needs
to generate a command-line for the invocation of the program. Therefore, this window
allows the description of a wide range of command-line I/O types, such as argument flag,
file path, standard I/O stream, etc. The framework identifies the binary file type through
the extension name of file name entered here as well.

2 Thanks to integration with the file manager. Although, in this case, the integration is with the
Nautilus file manager on Ubuntu, such overlays are common interface extensions on other
operating systems, so we view this as a generic technique.



314 K. Duan, J. Padget, and H.A. Kim

Lastly, users also need functions to remove, modify or redeploy the service, which
requires the service description. During the deployment process, the description – rep-
resented as a XML file – is uploaded as a cloud resource. At the same time, a copy is
stored in a designated local folder. Figure 2 shows the folder contains all the descrip-
tions. Users can operate on them by starting the GUI tool from the right-click menu,
to access operations for remove, modify and redeploy. The description of any service
that is removed is kept in the folder, identified by a cloud icon with a cross, for possible
future redeployment.

3.2 Service Invocation and Execution

Table 1 shows all the URIs of the two types of services. Datapool services are the ser-
vices for I/O data item manipulation (uploading, retrieval, etc.). Application services
include the services for application service deployment and execution. Uniform meth-
ods based on the HTTP protocol are allocated to each URI for each specific operation.
For example, the first and third service in the application services list have the same
URI, which denotes one application resource. The PUT method denotes a service de-
ployment operation, while DELETE denotes a service removal operation. These ser-
vices also support a role-based authorization system so that only an authenticated and
authorized user can access those services. Authentication is carried out over HTTP and
communication can be further encrypted and secured by HTTPS through the Transport
Layer Security (TLS) protocol. In Section 3.1, we describe the means to specify the
authorization permissions for a given service.

Of particular note are the datapool resources: each denotes a collection of data items,
addressable through an unique URI. Multiple Datapool instances can be generated and
customized through the Datapool service by the user. Each data item inside a Datapool
is also given an unique URI. Only the creator of each Datapool and the creator’s services
can access the content, which is ensured by the role-based authorization mechanism.
There are two advantages to organizing data in this way. First, because all the data items
and the data collection are directly associated with URIs, they are all web resources
that can be accessed over HTTP at any time rather than merely a data stream in the
form of extra layer of XML or other structure. Therefore, each data item can also be
transferred and kept in their original textual or binary format. Second, in the execution
of an application service, the URI of one Datapool that contains all the input data is
provided to the service. The application will pull the necessary data automatically from
the provided local or remote Datapool. In this way, the interfaces are unified for different
application services in the form of a URI, of which the Datapool URI is a constituent
as a query string. The second URI in the application services list in Table 1 illustrates
the unified format.

Figure 3 shows an example deployment using the framework. It contains one client
and two servers. Each server is composed of a pair of a Datapool and an Application
service, both of whose implementation is based on Apache-Tomcat. All the components
communicate with each other through REST services invocations. The execution of
application service depends on the data provided by its local Datapool, which are fed
through a file system. Figure 4 shows more details about the execution sequence in an
example workflow based on the framework in Figure 3. In this example, Application



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 315

Fig. 3. The UML Deployment Diagram of the Framework Deployment Example

Service 1a(AS1a) consumes input D1. AS2a needs D2 and D3, which is the output
generated by AS1a, as inputs. As depicted, client’s duties are simplified to initializing
input data and dispatching control signals to Datapool and Application Services. There
are two essential features, which we emphasize here, namely: (i) inputs are uploaded
to Datapool separately and in advance, so that Step 1 and Step 2 are able to execute
concurrently (ii) DP2a can retrieve the input directly for AS2a in Step 12 and 13 from
the other Datapool service without data needing to pass via the client.

3.3 The Data Staging Mechanism

Data staging and how to control it are not new problems. Already in 1997 [21], adopted
the idea of distributed data-flows in a service composition framework to improve data
transfer performance, as did also [22] some years later. Similar ideas are embodied in
some distributed program execution engines, such as [23, 24], to overcome the bottle-
neck of data transfers. Meanwhile, several workflow management systems took up a
peer-to-peer style mechanism for intermediate data movement[25–27]. Although there
are differences in detail between the various aforementioned solutions, there is one
common aspect, namely the use of a private – by which we mean internal, or closed –
mechanism (functions are exposed by a set of developer defined specific interfaces and
operations) to handle data transfer. A further point in common is the need for address-
ability: in each case the data objects are assigned some unique label that allows them
to be accessed from any location on the network that is participating in the enactment
process. These works inspired our data staging mechanism based on cloud resources
and REST.



316 K. Duan, J. Padget, and H.A. Kim

Fig. 4. The UML Sequence Diagram of the Execution of Workflow Example

We can make two quite obvious remarks about dataflows between several services:
(i) for a given service invocation, the dataflow rarely involves the client or central con-
troller, which means that dataflows can (normally) be distributed (point-to-point), and
(ii) it is not uncommon that the necessary data objects (inputs) may come from differ-
ent sources, suggesting that data transfers can be initiated asynchronously before the
actual execution of a service. These constitute the properties our data staging mecha-
nism needs to satisfy.

Distributed Data Transfer. Figures 5 and 6 illustrate the essential difference between
a centralized and a distributed mechanism for data transfer. Figure 5 shows that both
control-flow and data-flow are centrally coordinated for each Web service invocation.
There is a high risk that the client or central controller becomes a bottleneck for data
communication among computation components. In Figure 6, the data-flows are dis-
tributed among Web services directly rather than passing through a central controller,
which also allows for the concurrent transfer of data items from different resources. This
process is also demonstrated in the example of Section 3.2. The client can also obtain
the complete set of data objects whenever it is desired. Hence, each service provider
takes care of the task of data storage instead of the client. Furthermore, each data



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 317

Fig. 5. Centralized Data-Flows in Web Ser-
vices Compostion

Fig. 6. Distributed Data-Flows in Web Ser-
vices Composition

object has the capability to be identified and accessed universally through the Internet
by means of its URI.

Asynchronous Data Transfer. Under synchronous data transfer, because the data ref-
erences are controlled through the client, data transfer only starts when the last ser-
vice finishes and the next service invocation happens. However, with an asynchronous
method, the transfers start as and when each preceding service finishes. The transfers
are not synchronized with the invocation of the next service, rather data elements are
transferred and stored in the ‘next’ Datapool in advance, the benefits of which are anal-
ysed in [28].

4 Evaluation

4.1 Experiment on Usefulness and Usability

A formal experiment with an after-experiment survey is carried out to collect evidence
for the usefulness of the GUI tool-based service management mechanism. The objective
here is assess usage of the tool for users who do not have any experience of building or
deploying web services. A secondary aim is to collect evidence for the usability of the
GUI. In this experiment, four programs are provided to the evaluators. Three of them
have two inputs and one output, and are written in Java, Python and Unix shell, respec-
tively. The other has three inputs and two outputs and is written in Python. The exper-
iment has four stages: (i) a 3–5 minute training stage, which includes a tutorial video
and question time, (ii) three simple programs are provided to participants to deploy in an
order that they decide, while the time to complete the operation is recorded, (iii) a more
complicated program for which deployment time is also recorded, and (iv) completing
the survey.

Figure 7 shows the average time and full time range for deployment operations based
on data collected from 9 participants. We note that none of the subjects claimed any
prior experience of building or deploying web services.

In a question about their subjective views on simplicity with 5-point scales from very
easy (1) to very difficult (5), 2 out 9 said very easy (1), and the rest said easy (2). All the



318 K. Duan, J. Padget, and H.A. Kim

Fig. 7. The average time of deployment
operations

Fig. 8. The wing structure optimization process built
in Taverna

participants successfully deployed web services in around 2 minutes. In the randomly
ordered simpler cases, it can be noticed that there is a significant fall in the time taken.
It also can be noticed that after three test cases, the time taken for the more difficult
case is less than the first of the simple ones. The objective evidence obtained from this
experiment is that the GUI based mechanism is easy to learn and use for single service
deployment.

4.2 Case Studies

Image Processing Workflow. In this workflow, the binaries for PovRay[29] and
ImageMagick[30] are installed on the cloud-side of the framework. PovRay is a ray
tracing program to draw 3-D image from scene description that is written in the POV
description language. ImageMagick is a software suite to create, edit, compose, or con-
vert images. In this case, we create a workflow to output a 3-D image in png format
starting from a POV description as input, and then convert it to jpg format using Im-
ageMagick. Both of their execution processes are written as Unix shell scripts. The
uploaded package also includes related PovRay include files that serve as libraries for
3-D image generation. They are all deployed through the GUI tool as web services. In
the deployment process, PovRay dependency files in the format of inc are compressed
and uploaded to build the web service. The workflow contains two Datapool services
and two Application services. They are invoked from the client-side by an executable
script written in Python, which supports the invocation of RESTful web services. The
png file is an intermediate data object, which is not transferred back to the client. The



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 319

Datapool service for ImageMagick receives this image as a URI reference (step 6 in
Figure 4).

This case study serves to demonstrate how the binary versions of two command-
line programs with libraries can be turned into web services and then invoked from a
command-line program written in Python.

Multi-Disciplinary Optimization (MDO) Workflow. Multi-disciplinary design opti-
mization (MDO) is a field of engineering that uses (multi-objective) optimization meth-
ods to solve design problems combining a number of disciplines. For the purpose of
demonstrating multi-disciplinary design optimization process as a web services com-
position, we use the Taverna workflow management system [11] to carry out the tasks
of composition, execution and monitoring, as in our previous work [28, 31]. The com-
position of services expressed as a workflow, is also able to operate in conjunction with
the distributed data staging mechanism of our framework, even though the intermedi-
ate data movement in Taverna is centralized in style. Figure 8 shows a screenshot of
the service composition design example, which serves to optimize the internal stiffness
distribution of a typical aircraft wing under coupled aerodynamics and structural con-
siderations. In Figure 8, the boxes Aerosolve, AeroLoad transfer, BLES3 are services
deployed based on three command line programs, written in Fortran and C. The boxes
GetInputs4Aerosolve, GetInputs4AeroLoad transfer, GetInputsBLES3 are the Datapool
services. The input ports built into Taverna are located at the top of Figure 8, and the
output ports are at the bottom. One local service, Data Retriever, retrieves the data
based on the URIs returned by the last application service.

Our framework can also deploy legacy MDO workflows based on existing MDO
frameworks like OpenMDAO[9] and Dakota[10]. OpenMDAO is based on Python and
a workflow is expressed as an executable python script. With the support of the Open-
MDAO runtime installed in a server (ie. cloud side), the deployment process can be
achieved as easily as for any other command-line program. Dakota has a different ex-
ecution approach in that the workflow is defined as a input file, which is then executed
by the Dakota runtime. With the Dakota runtime installed in server, the workflow can
be executed as a web service by simply uploading the input file through the Datapool
service.

This case study primarily serves to show how a popular workflow engine can enact
a workflow whose services are the result of our deployment mechanism, thus enabling
composition at a programmatic level and sharing of the discipline knowledge that is
embedded in software.

4.3 Comparison of Data Staging Performance

In order to evaluate the performance of services deployed using our new framework,
we have run the wing optimization process from Section 4.2 in two network-based
configurations: (i) with all the programs deployed as SOAP services and controlled
through a centralized client, including all the data transfers, constituting in effect a worst
case scenario for data overheads, and (ii) with the programs deployed as REST services,
using a centralized client for control, but the universal distributed flows framework for



320 K. Duan, J. Padget, and H.A. Kim

Fig. 9. Comparison of 1000 continuous executions

Fig. 10. Results of simple workflows with centralized and dis-
tributed data-flows

data. We first compare these two modes, where the programs or services are executed
in the same machine environment and the network environment is also the same.

To provide preliminary evidence that the REST web services with distributed data-
flows performs better than the centralized approach, we ran an experiment of 1000 con-
secutive executions for both processes in the same environment. The result is presented
in Figure 93. We can observe some spikes because of a changing network situation, but
the figure shows that the REST workflow is faster by a clear margin and also demon-

3 The x-axis only denotes the number of the run: it does not signify concurrent execution of
the two modes. The data from the two sets of runs is overlaid to facilitate comparison of the
execution times.



A Light-Weight Framework for Bridge-Building from Desktop to Cloud 321

strates lower variation. In order to asses data transfer costs, we wrote a workflow that
just moves data from client to one service, on to another, then back to the client. These
two services are deployed in two different VMs on the same LAN as the client. Client
and servers access each other by URIs. We set up two scenarios both using RESTful
services, but while one uses centralized transfer, the other uses the distributed method.
In the first scenario, the data transferred from the first service to the second is included
in the HTTP body, while in the second just the URIs are transferred and data is trans-
ferred in the background by the Datapool service. The results are shown in Figure 10.
Each workflow was run 10 times for the two scenarios and different data sizes to obtain
the mean value. The results suggest the expected trend, in that gains increase with the
size of data to be transferred. Crossover, in the test environment, occurs between and 1
and 2Mb, but clearly this will be different for different network environments.

5 Conclusion and Future Work

In this paper, we have presented evidence for the benefits arising from our light-weight
framework for the deployment and execution of scientific application in the cloud. With
our GUI based deployment mechanism, the technical barriers are lowered for non-
specialist usage of web services and cloud resources. The framework reduces the effort
for users to turn legacy codes and programs into web services and hence collaborate
with each other. The distributed and asynchronous data staging mechanism helps re-
duce end-to-end times by hiding the costs of data staging between services as well as
between client and service. This paper also evaluates the usefulness and usability of the
framework through a simple user study and case studies, showing how different types
of legacy programs and tools can cooperate seamlessly in workflow with the support of
our framework.

In future work, we need to address support for the construction and deployment
of composite services: one approach we have explored as proof-of-concept, is to treat
a Taverna workflow as a service to be executed, where the workflow description is
the data and the program is the enactment engine. Similar functionality should also
be achievable with Kepler [25]. A more serious issue however, is the dependence on
specific services, meaning there is a reliance on a service provided at a specific URL, as
against a specification of a service by, say, its profile (in OWL-S terminology), and the
late binding identification of suitable available candidate services close to enactment
time. A preliminary effort in this direction appears in [32], based on a matchmaker that
assumes WSDL format service descriptions, but a fresh approach that takes advantage
of REST seems desirable when this is revisited. Hence, we hope this framework will
allow more users to build their own services, and take advantage of the power offered
by service composition to enable collaboration. Finally, we propose to take advantage
of the availability of capacity computing facilities to support speculative enactment of
services, following the design set out in [33].

Acknowledgements. We thank Lizzie Gabe-Thomas for advice on experiment design
in user trials of the deployment tools and the participants for their help.



322 K. Duan, J. Padget, and H.A. Kim

References

1. Gannon, D., Ananthakrishnan, R., Krishnan, S., Govindaraju, M., Ramakrishnan, L., Slomin-
ski, A.: Grid Web Services and Application Factories. In: Grid Web Services and Application
Factories, pp. 251–264. John Wiley & Sons, Ltd. (2003)

2. Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru, S., Gannon, D.: Building web
services for scientific grid applications. IBM Journal of Research and Development 50(2.3),
249–260 (2006)

3. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In: Proceedings
of the 10th European Conference on Software Maintenance and Reengineering, CSMR 2006,
p. 11. IEEE, Bari (2006)

4. Gorder, P.F.: Coming soon: Research in a cloud. Computing in Science and Engineer-
ing 10(6), 6–10 (2008)

5. Sullivan, F.: Guest editors introduction: Cloud computing for the sciences. Computing in
Science & Engineering 11, 10 (2009)

6. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific computing in the cloud.
Computing in Science & Engineering 12(3), 34–43 (2010)

7. Mell, P., Grance, T.: The nist definition of cloud computing (draft). NIST special publica-
tion 800(145), 7 (2011)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine (2000)

9. NASA Glenn Research Center: OpenMDAO, http://openmdao.org/ (accessed Jan-
uary 15, 2014)

10. Sandia National Laboratories: The DAKOTA Project, http://dakota.sandia.gov/
(accessed January 15, 2014)

11. School of Computer Science, University of Manchester: Taverna,
http://www.taverna.org.uk/ (accessed January 15, 2014)

12. Kitchenham, B.A.: Evaluating software engineering methods and tool part 1: The evaluation
context and evaluation methods. ACM SIGSOFT Software Engineering Notes 21(1), 11–14
(1996)

13. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models:
current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)

14. Google: Google App Engine, http://developers.google.com/appengine/
(accessed January 15, 2014)

15. Lindenbaum, J., Wiggins, A., Henry, O.: Heroku (2008),http://www.heroku.com (ac-
cessed January 15, 2014)

16. GoPivotal, Inc.: Cloud Foundry, http://www.cloudfoundry.com/ (accessed Augest
24, 2014)

17. Red Hat, Inc.: Openshift, https://www.openshift.com/ (accessed January 15,
2014)

18. Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the gap between desktop
and the cloud for escience applications. In: IEEE 3rd International Conference on Cloud
Computing (CLOUD), pp. 474–481. IEEE, Chengdu (2010)

19. Senger, M., Rice, P., Bleasby, A., Oinn, T., Uludag, M.: Soaplab2: more reliable Sesame door
to bioinformatics programs (2008)

20. Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and evaluation of opal2:
A toolkit for scientific software as a service. In: 2009 World Conference on Services - I,
pp. 709–716. IEEE, Los Angeles (2009)

21. Alonso, G., Reinwald, B., Mohan, C.: Distributed data management in workflow environ-
ments. In: Proceedings of the Seventh International Workshop on Research Issues in Data
Engineering, pp. 82–90 (April 1997)

http://openmdao.org/
http://dakota.sandia.gov/
http://www.taverna.org.uk/
http://developers.google.com/appengine/
http://www.heroku.com
http://www.cloudfoundry.com/
https://www.openshift.com/


A Light-Weight Framework for Bridge-Building from Desktop to Cloud 323

22. Liu, D., Peng, J., Wiederhold, G., Sriram, R.D., Aruthor, C., Law, K.H., Law, K.H.: Compo-
sition of engineering web services with distributed data flows and computations (2005)

23. Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., Hand, S.:
CIEL: a universal execution engine for distributed data-flow computing. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI
2011, p. 9. USENIX Association, Berkeley (2011)

24. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys 2007, pp. 59–72. ACM, New
York (2007)

25. Davis, U.C., Santa Barbara, U.C., San Diego, U.C.: Kepler project,
https://kepler-project.org/ (accessed: January 15, 2014)

26. Cardiff University: Triana project, http://www.trianacode.org/ (accessed May
08, 2013)

27. Cao, J., Jarvis, S., Saini, S., Nudd, G.: Gridflow: workflow management for grid computing.
In: Proceedings of the CCGrid 3rd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, 2003, pp. 198–205 (May 2003)

28. Duan, K., Padget, J., Kim, H.A., Hosobe, H.: Composition of engineering web services with
universal distributed data-flows framework based on roa. In: Proceedings of the Third Inter-
national Workshop on RESTful Design, pp. 41–48. ACM, Lyon (2012)

29. Persistence of Vision Raytracer Pty. Ltd.: Povray, http://www.povray.org/ (ac-
cessed Januray 15, 2013)

30. ImageMagick Studio: Imagemagick, http://www.imagemagick.org (accessed Jan-
uary 15, 2014)

31. Duan, K., Seowy, Y.V., Kim, H.A., Padget, J.: A Resource-Oriented Architecture for MDO
Framework. In: Proceeding of 8th AIAA Multidisciplinary Design Optimization Specialist
Conference, AIAA, Honolulu (2012)

32. Chapman, N., Ludwig, S., Naylor, W., Padget, J., Rana, O.: Matchmaking support for
dynamic workflow composition. In: Proceedings of 3rd IEEE International Conference
on eScience and Grid Computing, pp. 371–378. IEEE, Bangalore (2007), doi:10.1109/E-
SCIENCE.2007.48

33. Fukuta, N., Satoh, K., Yamaguchi, T.: Towards “Kiga-kiku” services on speculative computa-
tion. In: Yamaguchi, T. (ed.) PAKM 2008. LNCS (LNAI), vol. 5345, pp. 256–267. Springer,
Heidelberg (2008)

https://kepler-project.org/
http://www.trianacode.org/
http://www.povray.org/
http://www.imagemagick.org

	A Light-Weight Framework for Bridge-Building from Desktop to Cloud
	1 Introduction
	2 Related Work
	3 A Cloud-Based Framework for Scientific Applications
	3.1 Service Deployment
	3.2 Service Invocation and Execution
	3.3 The Data Staging Mechanism

	4 Evaluation
	4.1 Experiment on Usefulness and Usability
	4.2 Case Studies
	4.3 Comparison of Data Staging Performance

	5 Conclusion and Future Work
	References




