
Accelerating AES in JavaScript with WebGL

Yang Yang1,2,3, Zhi Guan1,2,3,�, Jiawei Zhu1,2,3,
Qiuxiang Dong1,2,3, and Zhong Chen1,2,3

1 Institute of Software, School of EECS, Peking University, China
2 MoE Key Lab of High Confidence Software Technologies (PKU)

3 MoE Key Lab of Network and Software Security Assurance (PKU)
{yangyang,guanzhi,chen}@infosec.pku.edu.cn

Abstract. Cryptography is a fundamental building block for security
sensitive Web applications. Because the architecture of JavaScript can
not provide sufficient performance, the client-side web applications still
lacks high performance cryptography primitives. In this paper we studied
the feasibility of a new Web standard, i.e., the WebGL API for accelerat-
ing AES in JavaScript by exploiting the ability of GPU. We design and
implemented AES using 128-bit key length. We compared the perfor-
mance of our approach to the currently reported fastest pure JavaScript
implementation and found our approach runs more than ten times faster
in major browsers on all platform. Our work showed the potential opti-
mization of using GPU via WebGL to accelerate JavaScript code.

Keywords: AES, WebGL, GPGPU, JavaScript.

1 Introduction

Recent years, the fast development of cloud computing makes it much easier for
users to synchronize their personal data with the cloud to access the data any-
where for convenience. Since the service provider are untrusted, the unencrypted
users’ privacy may leak to curious employees or even the government, according
to the recent report from Guardians1. It is necessary for many applications to
encrypt the data before uploading to the cloud to preserve the privacy of users,
especially sensitive photos, documents, musics, etc. As web browser is becoming
a universal tool for interacting with remote servers, almost all popular applica-
tions provides a web interface, it is important to provide efficient cryptographic
primitives for web applications to enhance their security, especially symmetric
cryptography such as AES.

Although the performance of JavaScript has been experienced a continuous
increasing recent years, there is still a remarkable gap between the performance
of JavaScript code and native code because of the nature of a untyped scripting
language dynamically interpreted running in a virtual machine. Unless a promi-
nent improvement on the architecture of JavaScript occurs in the future, the gap

� Corresponding author.
1 http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 275–287, 2013.
c© Springer International Publishing Switzerland 2013

http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

276 Y. Yang et al.

may still exist for a long time. Another restriction for JavaScript is it doesn’t
support parallel computing. This means even the performance gap has been nar-
rowed, pure JavaScript code can still not make full use of the processing power
of the CPU. Since the performance of the single core has almost reached the
limit, manufacturers tend to increase the performance mainly by increasing the
number of cores in one CPU instead of increasing the performance of each core.
This means unless there is a significant change in the architecture of JavaScript,
the increasing of performance of JavaScript may be limited.

The poor performance of cryptographic primitives in JavaScript may deter
potential users. In the experiment conducted by Chandra etc.[1], it takes more
than 3 seconds to encrypt and transfer a file of 1MB in JavaScript, while about
90% of the time was consumed on encryption and decryption. Due to the exis-
tence of these restrictions in JavaScript, increasing the performance of crypto-
graphic primitives in JavaScript is not simply a engineering problem, because
the improvements is limited within the framework of pure JavaScript and the
framework prevents the JavaScript code to make full use of the computation
power of processors.

The emergence of WebGL(Web Graphics Library) provides us a choice to get
rid of the restriction of JavaScript for more performance. WebGL is a web stan-
dard designed and maintained by the non-profit Khronos Group. It provides a
JavaScript API based on OpenGL ES 2.0 for GPU accelerated rendering of 3D
graphics within web browsers. The API is exposed through the HTML5 Can-
vas element as Document Object Model(DOM) interfaces. Developers can use
WebGL to create shaders, textures, framebuffers in the graphics memory run
shaders on GPUs directly. This indicates that we can run certain arithmetics on
GPU directly by using WebGL APIs exposed in JavaScript. As GPU(Graphics
Processing Unit) has been widely deployed as a de facto unit of personal com-
puter and mobile devices, and provides highly parallel specialized processors the
total throughput of which has surpassed CPU, the developers may gain great
benefits on both performance and portability using WebGL for computation.
This approach works similarly as the legacy GPGPU(General-Purpose Compu-
tation on Graphics Hardware)2 technique which uses graphics APIs and shader
language for general purpose programming and has been replaced by more ded-
icated GPGPU framework such as CUDA, OpenCL, etc. But in JavaScript, we
found this technique showed us more advantages than it used to.

The aim of this work is to investigate how the WebGL can be used to acceler-
ate browser side JavaScript cryptography computation. We selected the AES[2]
as the focal algorithm to demonstrate the possibility and efficiency of WebGL
acceleration. We made following contributions in this work:

– We analyzed the features provided by WebGL and discussed some issues
that may lead to mistakes when using WebGL for GPGPU.

– We designed and implemented a WebGL version of AES that use the power
of GPU for accelerating the AES encryption in JavaScript through WebGL
API.

2 http://www.gpgpu.org/

http://www.gpgpu.org/

Accelerating AES in JavaScript with WebGL 277

– We evaluated the performance of our implementation and compare the result
with the leading AES implementation in pure JavaScript.

We found that our implementation runs several times faster than AES im-
plementation in pure JavaScript on the platform with a powerful graphics card.
Even on a machine with a low end integrated graphics card our implementation
also runs well and performs almost as fast as the pure JavaScript Implementa-
tion. Our research demonstrates that it is possible and efficient to use WebGL
to accelerate the general purpose computing in browsers, and provides a way to
make the encryption and decryption practical in browsers.

The remainder of this paper is organized as follows. Section 2 gives a overview
of related work. Section 3 gives a brief introduction toWebGL and detailed several
important issues in general purpose computing usingWebGL. Section 4 introduced
the standard approachand the fast approachof AES algorithm. Section 5 describes
how we design and implemented the WebGL version of AES. Section 6 shows how
we conducted the experiment and the result of experiment. At last we conclude our
paper and talk about our future work.

2 Related Work

There is no cryptographic primitives and high performance general computa-
tion APIs currently available in major browsers. Web cryptography API is try-
ing to provide common cryptographic services in JavaScript through the object
window.crypto, but there is only a draft at the moment and no browser has
announced a time table to support this standard.

Some modern browsers also provide other ways to implement the logic of
web applications besides JavaScript, such as programmable plug-ins and Java
Applets, while all these techniques are not portable for browsers on all platform,
such as smart phones, and the extra installations they require also bothers users.

Asm.js3 provides a framework to compile the JavaScript code to a well defined
subset of JavaScript instructions which are easier to optimize. It reduce the
performance gap between JavaScript code and native code greatly, but it doesn’t
support parallel computing, either. WebCL4 is a JavaScript binding to OpenCL
for heterogeneous parallel computing, but there are only several prototypes at
the moment. Native Client[3] gives browser-based applications the computational
performance of native applications without compromising safety, but currently
only Chrome on X86 platform is supported.

There has been several cryptography libraries implemented in pure
JavaScript5,6. The most effective research previous published on accelerating
symmetric cryptography in JavaScript was done by Stark et al.[4]. They studied
a few optimizations and trade-offs for implementing AES effectively in JavaScript

3 http://asmjs.org/
4 http://www.khronos.org/webcl/
5 http://people.eku.edu/styere/Encrypt/JS-AES.html
6 https://code.google.com/p/crypto-js/

http://asmjs.org/
http://www.khronos.org/webcl/
http://people.eku.edu/styere/Encrypt/JS-AES.html
https://code.google.com/p/crypto-js/

278 Y. Yang et al.

and built a highly optimized AES implementation in JavaScript. Their AES im-
plementation is both faster and smaller than any other AES implementation
in JavaScript before their work, but still dozens of times slower than native
implementation.

D. Cook et al. [5] firstly implemented AES-128 on GPU by mapping the
AES cipher to the standard fixed graphics pipeline using OpenGL, but their
performance was only 184Kbps–1.53Mbps on Geforce3 Ti200, which was 40 to
100 times slower compared with CPU. Harrison et al.[6] used the shader-based
programmable pipeline to implement AES and got a much better performance
than Cook’s research, but still under performed compared to some optimized
implementations on standards CPU. Fleissner[7] accelerated the Montgomery
exponentiation with OpenGL to more than 100 times faster than the standard
algorithm. Moss[8] implemented RSA using an RNS based approach using
OpenGL and gave results comparable to the fastest CPU implementation.

The emergence of dedicated GPGPU frameworks such as CUDA[9], Brooks[10]
and OpenCL[11] inspired the research on accelerating crypto primitives with
GPU. Manavski[12] implemented AES using CUDA and showed GPU can per-
form as an efficient cryptographic accelerator for the first time, their solution was
20 times faster than the native implementation. Szerwinski et al.[13] used CUDA
to accelerated DSA, RSA and ECC. Zhang et al.[14] accelerated composite order
bilinear pairing with CUDA.

3 WebGL Background

WebGL is a standard of graphics APIs based on OpenGL ES 2.0 developed by
Khronos group, the version 1.0 of the WebGLspecification was released March
2011[15]. Until the time of this paper writing, most major desktop browsers and
mobile browsers have supportedWebGL officially or internally. This indicates our
approach can be used in most browsers across platforms without modification.

WebGL is a shader-based API using OpenGL Shading Language(GLSL),
which makes full use of programmable pipelines in GPUs and provides a great
convenience for general purpose computing. As illustrated in Figure 1, using
WebGL for general purpose computing works in similar as rending a frame in
graphics computing: developer passes bunch of input data into graphics memory
as textures, implements the computing logic in shaders, renders the computing
result into framebuffers, then read the result back to the main memory or use
the result as the input of the next iteration. These steps involves much glue code,
how to launch these steps and what these steps mean can be found at WebGL
tutorials and references books.

The key to general purpose computing in GPU via WebGL is how to map
the computing procedure to graphics rendering precisely and effectively. Since
WebGL is designed for graphics computing, it supports only limited data struc-
tures, especially for input and output, and it does not have full support of in-
teger arithmetics until now. This indicates that developers sometimes have to
map the unsupported arithmetics and data structures to supported ones in order

Accelerating AES in JavaScript with WebGL 279

JavaScript Vertex Shader Fragment Shader

Texture

Framebuffer

Convert
To

Assembly/
Rasterization

Display on
Web page

Allocated in Graphics Memory

Calculated on GPU

Read back to JavaScript

Fig. 1. A simplified view of WebGL pipeline model of computation

to leverage WebGL and GPU for computing. And any computing that is used
in shaders must take the precision that shaders supported into consideration in
order to prevent the unexpected truncation affect the result. As GPU is not ef-
fective at executing the serial control logic, the algorithm of the computing must
be optimized for parallel. From our observation and experiments, the following
concrete principles are helpful when using WebGL and GPU for general purpose
computing.

Simplify the logic of shaders. As we have mentioned, GPU is not good at
executing the control logics, such as the conditional branch. Another reason
is complex logic may consume much longer time to compile. A possible mit-
igation is to complete the computing with multiple renders, and use CPU to
execute the control flow between renders.

Reduce the number of data transfers on bus. As the bandwidth of the
bus is limited, transfer data between the main memory and the graphics
memory is time consuming.

Batch processing the data. Because of the executing model of GPU, com-
puting with a block of input may take the same time as computing with
1,000 blocks.

Memory access pattern. As most circuits of GPU are used to implement the
arithmetic units, the space of cache and registers is relatively small, there
will be a great penalty on the performance if the cache miss occurs too much.
It is important for the developer to optimize the memory access pattern, for
example, try not to access a large part of data randomly.

Number conversion. In WebGL, the data supplied to the texture in
JavaScript should be 8-bit integers, but the data got in GLSL are floating

280 Y. Yang et al.

numbers in [0, 1]. In brief, the integers are linearly mapped to the floating
number when they are transferred from main memory to graphics memory,
and mapped in the reverse way when floating numbers are transferred back
from graphics memory to main memory. So any linear transformations on
the floating form in GLSL would be equally applied to the integer form in
JavaScript. This is a feature or restriction in another word of GLSL, the
developers must be conscious of this.

Texture coordinate. In shaders, the texel is accessed by function texture2D()
using the coordinate (x, y). Each dimension of the coordinate is a floating
number within the range of [0, 1], which means there is not only one single
value can be used to look up any texel, but a range of coordinates. Gener-
ally speaking, any coordinate within the scope of the texel can be used to
look up the texel, but there is no guarantee for different hardware to be-
have totally the same for boundary values. For the texel at i-th column and
j-th row in a texture whose width is w and height is h, using (i

w−1 ,
j

h−1)
as the coordinate is acceptable in most cases, but since accuracy is critical
for general purpose computing, it is necessary to calculate the coordinate by
(2×i+1

2×w , 2×j+1
2×h) sometimes.

4 AES Background

AES(Advanced Encryption Standard) [2] is a symmetric block cipher that en-
crypt plain text blocks of 128 bits with various key length of 128 bits, 192 bits
or 256 bits. It is a restricted version of Rijndael symmetric block cipher that
can encrypt and decrypt blocks of 128 bits using a key size of 128-bit, 192-bit,
and 256-bit length. The cipher is basically a series of round transformations on
blocks with round keys expanded from the original key using a key schedule
algorithm [16,2], the output of each round is the input of the next round. The
number of the rounds is determined by the key length: 10 rounds for 128-bit, 12
rounds for 192-bit, and 14 rounds for 256-bit. The block is depicted as a 4 × 4
column-major order matrix of bytes, termed state.

The standard implementation of AES encryption starts with an AddRound-
Key operation on the state, followed by 10/12/14 round transformations depend-
ing on the length of the key. Each round transformation includes 4 successive
steps except the final round: SubBytes, ShiftRows, MixColumns and AddRound-
Key. The final round is similar except the lack of the MixColumns step. Decryp-
tion is done by reversing each step of encryption using the same key.

SubBytes. Each byte of the state is substituted independently using a prede-
fined substitution box(S-box) computed over the Galois Field GF (28) [2].

ShiftRows. Rows are rotated by 0, 1, 2 and 3 bytes, respectively, to the left.
MixColumns. A substitution that makes use of arithmetic over the Galois

Field GF (28).
AddRoundKey. A simple bitwise XOR of the state with a piece of the ex-

panded round key.

Accelerating AES in JavaScript with WebGL 281

For processors supporting 32-bit or greater word length, Daemen and Rijmen
detailed a fast implementation approach that combines the SubBytes, ShiftRows
and MixColumns transformations into four 256-entry(each entry is 4 bytes)
lookup tables(“T-Table”)[16,2]. The T-Table approach reduces the SubBytes,
ShiftRows, MixColumns operations in round transformation to simply updating
the j-th column of the state according to the Equation 1.

[s′j0, s
′j
1, s

′j
2, s

′j
3]

T =
3⊕

i=0
Ti[si,j + Ci], 0 ≤ j ≤ 3 (1)

where sj,k is the byte in the j-th row and k-th column of the state, and Ci

is a constant equivalently doing the ShiftRows in place. Each Ti is a rotation of
the other. After the state is updated, the step AddRoundKey is performed to
complete the round operation. As we can see from the equation, there are only
XORs and table lookups needed in this technique.

The block cipher itself is not sufficient for the security of multiple blocks, a
mode of operation is needed. The cipher mode is important for both performance
and security for block ciphers. The CBC mode, OFB mode and other chained
modes are secure but not efficient for parallel computing since the computation
of the next block depends on the result of the previous one. The ECB mode
is efficient for parallel computing but insecure. CTR mode is both secure and
efficient for parallel computing as the counter can be precomputed efficiently
and simple to implement. Another advantage for CTR mode is that only the
encryption procedure of the cipher is needed for both encryption and decryption
in CTR mode.

5 WebGL Version of AES

5.1 Overview

We implemented AES encryption using 128-bit key length using WebGL. The
decryption and other key lengths can be implemented with minor modifications.
We implemented the ECB mode for plain text of various length, and other
modes such as CTR mode can be implemented simply with a extra shader. As
our purpose here is to demonstrate the feasibility and efficiency of WebGL for
cryptography, we just keep our implementation simple but convincing.

Specifically, the algorithm we implemented is the fast approach for 32-bit
processors as mentioned in section 4, because this approach mainly involves
two types of operation: table lookup and XOR. Since the arithmetic operation
supported by GLSL is limited, this feature will facilitate our work. We did not
implement the key scheduling in WebGL, because this procedure is a serial of
limited operations that can be done in no time in JavaScript in CPU. And once
the key schedule is expanded, it can be used repeatedly to encrypt message of
any length. The key schedule, the plain text and other parameters would be
packed into textures as input to shaders, the cipher text would be written to the
framebuffer by shaders and read back into JavaScript. We can encrypt multiple
blocks in the same time with GPU and WebGL in order to exert the power of

282 Y. Yang et al.

high throughput of GPU. We denote the blocks we encrypt at the same time as
a packet.

The multiple-target technique is not supported in WebGL, so the output of
a shader could be only a texel which is no more than four bytes. As the size of
one block is 16 bytes, it takes four shader instances to produce the result of one
block. As each round operation requires the whole state output by the previous
round operation, there should be a synchronization after each round, or each
shader instance has to execute all the rounds completely before the final one.
The too complex logic takes much more time to compile and run, therefore we
decided to split the encryption logic into 3 independent shader programs: the
first implemented the initial round which just combines the key with the state
by a XOR operation, the second implemented the round operation between the
state and a piece of round key that can be specific by a parameter, the third
implemented the final round operation. In this case, we have to render for 11
times in total to encrypt a packet regardless of the size of the packet with a
128-bit key: 1 for the initial round, 9 for round operations, and 1 for the final
round. As we don’t want to read the intermediate result back into main memory,
we used two framebuffers alternatively: the one holding the result of the previous
round will be used as the input to the next round, since the framebuffer of one
render can also be used as the texture to another render.

5.2 XOR Operation

The AES fast approach requires to calculate the XOR of two 32-bit unsigned
integers, while both 32-bit integer and XOR operation are not supported in
GLSL. Although each texel can hold up to 32-bit data, it actually consists of
four 8-bit floating numbers in GLSL or four 8-bit integer in JavaScript. As XOR
of two integers is just the combination or XOR of each bits at corresponding
position, we can just hold the 32-bit integers in texels and calculate the XOR
of two texels by just calculating each 8-bit component of them. Therefore we
can construct a table whose element at i-th column and j-th row is i ⊕ j, then
the calculation of i ⊕ j can be transformed to looking up the element at i-th
column and j-th row in the table. In GLSL, the situation is a little sophisticated:
there is slightly difference between the mapped floating number and the texture
coordinate as mentioned the Section 3, an integer i will be transformed to i/255.0
in GLSL, as the reliable coordinate to access the i-th column or row is i×2+1

256×2 , it
is better to convert the floating form fi of the integer i to the texture coordinate
by fi×255.0×2+1

256.0×2 for accuracy, especially on GPUs with lower precision.
For XOR of two 8-bit integers, there would be 256×256 = 65536 entries in the

table. The random access to a table of this size in GPU may cause plenty of cache
misses. An optimization has been proposed in the paper[17]: We can construct
a table holding the XOR of any two 4-bit integers instead of for any two 8-bit
integers. For any two 8-bit integers first we divide it equally into two 4-bit parts
and calculate the XOR of each part, then combine the result to get the XOR
of original 8-bit integer. This optimization reduces the table from 256× 256 to
16× 16 and has been proved to be much faster in the experiments[17].

Accelerating AES in JavaScript with WebGL 283

11

4

(a) Key Schedule

16

16

(b) XOR Table

256

1

(c) T-Table

H

W

a block

(d) States

Fig. 2. The memory layout of the key schedule, the XOR table, the T-Table, and the
state, each square in the figure stands for a texel

5.3 Memory Layout

We will discuss the memory layout of the input, output and parameters in graph-
ics memory and how to access them in this part. As the texture and the frame-
buffer has two dimension, there could be many possibilities for memory layout
and access pattern of the same piece of data, our purpose is to choose the most
efficient and easy-to-use one.

The key schedule is common for all plain text blocks encrypted using the
same key. For the key of the same length, there are 11 round keys including
the original one, each round key is 16 bytes. Each texel holds 4 bytes at most,
we use 4 continuous texels for one piece of round key, and each round key is
held in a row in sequence in a texture as shown in Figure 2(a). In this layout,
the coordinate used to access the i-th element of the j-th round key is easy to
calculate as (i×2+1

2×4 , j×2+1
2×11) as described in Section 3.

The original T-Table takes up 4KB memory in total. As the T-Table has to
be accessed randomly, it is better if we can reduce the memory usage to reduce
the cache miss. Since each T-Table is a rotation of the other, the Equation 1 can
be optimized to the Equation 2:

[s′j0, s
′j
1, s

′j
2, s

′j
3]

T = T0[s0,j + C0]⊕Rot(T0[s1,j + C1]⊕
Rot(T0[s2,j + C2]⊕Rot(T0[s3,j + C3])))

(2)

In this case, there is only one T-Table needed and takes up 1KB memory space
only. Each entry of the T-Table is 32-bit long and can be packed into one texel,
so we put the whole table in a texture whose size is 256 × 1. The layout of T-
Table is shown in Figure 2(c) The i-th element of the table can be looked up
with the coordinate (i×2+1

256×2 , 0.5).
The XOR table is a 16 × 16 matrix as shown in Figure 2(b) and mentioned

above, we use the alpha component of the texel to hold each XOR result.
The size of the state is 16 bytes, so we can keep it in sequence in a row in

the texture. Since it is not effective to encrypt just one block at one time, we
have to supply multiple blocks to the input texture. The difficulty is how to
locate the right block of state for each shader instance when there are multiple

284 Y. Yang et al.

blocks supplied. As the size of input and output of the encryption are same, we
can construct the framebuffers holding the result and the texture holding the
input of the same size, so there would be a one to one map between the input
and the output. This corresponding relation can be constructed by rendering a
rectangle to fill the viewport with a designed vertex shader program easily. A
simple approach is to place only one block in a row in the texture or framebuffer,
then for the shader instance outputting to (s, t) in the framebuffer, it can locate
the input to it at the t-th row of the input texture easily. Since the side length
of the texture and framebuffer that supported by GPU is limited to the order of
thousands, this approach can encrypt only thousands of blocks at the same time,
so it is necessary to put multiple blocks in each row as shown in Figure 2(d). In
this case, for the shader instance outputting to (s, t) in the framebuffer whose
size is w × h, the coordinate of the i-th column(0 ≤ i < 4) can be calculated
by Equation 3. In this approach, we can encrypt millions of blocks at the same
time.

si =
(floor(s× w × 2.0/8.0)× 8.0 + 2.0× i+ 1.0)

(w × 2.0)

ti = t

(3)

6 Experiment

Table 1. The configuration of test machines

Machine A B C

Platform Desktop Laptop Pad
Model Dell OptiPlex 990MT Lenovo Y400N Nexus 4
OS Ubuntu 12.04 Windows 8 Pro Android 4.2.2
CPU i7 2660 i5 3230M A5
GPU NVIDIA 560TI NVIDIA G750M PowerVR SGX 543

We expected to find out how fast the WebGL AES can be, and the impaction
of packet size on performance through the experiment. So we designed the ex-
periment as follows: We launched the the implementation with different packet
sizes, start from one block which is 16 bytes, up to 1M bytes, and the next packet
size is always four times of the previous one. We used the implementation to en-
crypt the randomly generated plain text whose length is 3 times of the packet
size, so the algorithm would run 3 times to finish the encryption. Then we get
the time consumed during the encryption and calculate the throughput of the
implementation. We also launched the experiment on SJCL(Stanford JavaScript
Crypto Library)[4] which is the fastest pure JavaScript AES implementation
currently reported in the same way for comparison.

Accelerating AES in JavaScript with WebGL 285

We launched the experiment in different browsers on different platforms in
order to have a comprehensive view of the implementation. We used two most
popular browsers of their latest version: Chrome(27.0) and Firefox(23.0). The
machines used belongs to different platforms: desktop, laptop and pad. The
major configuration are summarized in Table 1 and indexed by characters.

 0

 20

 40

 60

 80

 100

 120

16 256 4K 64K 1M

T
hr

ou
gh

pu
t(

M
B

/s
)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

 0

 10

 20

 30

 40

 50

 60

 70

16 256 4K 64K 1M

T
hr

ou
gh

pu
t(

M
B

/s
)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

16 256 4K 64K 1M
T

hr
ou

gh
pu

t(
M

B
/s

)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

Fig. 3. The throughput of different approaches with different packet size

The result of experiment is shown in Figure 3. We found that the WebGL
approach ran well on various operating systems and hardware platforms. The
speed of pure JavaScript AES implementation is almost stable regardless of
the packet size, while the speed of WebGL AES implementation continuously
increased as the packet size increased. From the figure we can see that when the
packet size is small, the WebGL version AES ran slowly, but when the packet
size became larger (more than 16K), the WebGL version AES ran much faster
than pure JavaScript version AES on all platforms. And when the packet size
is large enough(greater or equal than 1MB), the speed of WebGL version AES
could be more than 10 times of pure JavaScript version AES. Considering the
size of pictures, songs or other multimedia files users daily use could all be several
MBs or even dozens of MBs, the WebGL version AES could surely exert its full
power in modern Web applications.

7 Conclusion

In this paper, we proposed a new approach to accelerate AES in JavaScript
via WebGL. Our primary contribution is demonstrating the feasibility of using
GPU via WebGL to provide much better performance than pure JavaScript since
JavaScript is an untyped language and it doesn’t support parallel computing.

286 Y. Yang et al.

Our approach was more than ten times faster than pure JavaScript implementa-
tion of AES. The performance is sufficient for most cryptographic operations in
web applications to provide a smooth user interface. This also demonstrated that
legacy techniques such as using graphics API for GPGPU can be very powerful
in certain runtime environment.

Acknowledgement. I would like to thank my supervisor, Researcher Zhi Guan
and Professor Zhong Chen for their excellent guidance throughout the writing
of the paper.

References

1. Chandra, R., Gupta, P., Zeldovich, N.: Separating web applications from user data
storage with BSTORE. MIT web domain (June 2010)

2. NIST. Specification for the Advanced Encryption Standard (AES). Technical Re-
port Federal Information Processing Standards (FIPS) 197, National Institute of
Standards and Technology (November 2001)

3. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: A sandbox for portable, untrusted x86
native code. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 79–93
(2009)

4. Stark, E., Hamburg, M., Boneh, D.: Symmetric Cryptography in Javascript. In:
ACSAC, pp. 373–381. IEEE Computer Society (2009)

5. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: cryptographics: Secret key
cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

6. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-
modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

7. Fleissner, S.: GPU-accelerated montgomery exponentiation. In: Shi, Y., van Al-
bada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487,
pp. 213–220. Springer, Heidelberg (2007)

8. Moss, A., Page, D., Smart, N.P.: Toward acceleration of RSA using 3D graph-
ics hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

9. C. CUDA. Programming guide. NVIDIA Corporation (July 2012)
10. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanra-

han, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23(3), 777–786 (2004)

11. Munshi, A. (ed.): Khronos OpenCL Working Group. The opencl specification
(2008)

12. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: ICSPC 2007, pp. 65–68 (November 2007)

13. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric
Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 79–99. Springer, Heidelberg (2008)

Accelerating AES in JavaScript with WebGL 287

14. Zhang, Y., Xue, C.J., Wong, D.S., Mamoulis, N., Yiu, S.M.: Acceleration of com-
posite order bilinear pairing on graphics hardware. In: Chim, T.W., Yuen, T.H.
(eds.) ICICS 2012. LNCS, vol. 7618, pp. 341–348. Springer, Heidelberg (2012)

15. Marrin, C.: Webgl specification. Khronos WebGL Working Group (2011)
16. Daemen, J., Rijmen, V.: The design of Rijndael: AES–the Advanced Encryption

Standard. Springer, Berlin (2002)
17. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-

modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

	Accelerating AES in JavaScript with WebGL
	1 Introduction
	2 Related Work
	3 WebGL Background
	4 AES Background
	5 WebGLVersionofAES
	5.1 Overview
	5.2 XOR Operation
	5.3 Memory Layout

	6 Experiment
	7 Conclusion
	References

