
XLRF: A Cross-Layer Intrusion Recovery

Framework for Damage Assessment
and Recovery Plan Generation

Eunjung Yoon1 and Peng Liu2

1 Department of Computer Science and Engineering
Pennsylvania State University, PA, USA

eyoon@cse.psu.edu
2 College of Information Sciences and Technology

Pennsylvania State University, PA, USA
pliu@ist.psu.edu

Abstract. Recovering mission-critical systems from intrusion is very
challenging, where fast and accurate damage assessment and recovery
is vital to ensure business continuity. Existing intrusion recovery ap-
proaches mostly focus on a single abstraction layer. OS level recovery
cannot fully meet the correctness criteria defined by business process
semantics, while business workflow level recovery usually results in non-
executable recovery plans. In this paper, we propose a cross-layer recovery
framework, called XRLF, for fast and effective post-intrusion diagnosis
and recovery of compromised systems using the dependencies captured at
different levels of abstraction; business workflow level and OS level. The
goal of our approach is two-fold: first, to bridge the semantic gap between
workflow-level and system-level recovery, thus enable comprehensive in-
trusion analysis and recovery; second, to automate damage assessment
and recovery plan generation, thus expedite the recovery process, an
otherwise time-consuming and error-prone task.

Keywords: cross-layer intrusion recovery, recovery plan, dependency
graph, system calls.

1 Introduction

Intrusion, especially in mission-critical, enterprise systems, often results in the
corruption of important data causing devastating effects to serious consequences
such as significant financial loss. In fact, many mission critical systems have
rather strict business continuity and availability requirements, and thus demand
fast and efficient recovery from intrusion, which is essential for minimizing fi-
nancial losses from cyber attacks.

Although a lot of effort has been devoted to the detection and prevention of
malicious attacks, perfect prevention is still unobtainable. Intrusion detection
can prevent the effects of the intrusion from spreading but cannot guarantee
the integrity and availability of the compromised system. In some situations, an

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 194–212, 2013.
c© Springer International Publishing Switzerland 2013

XLRF: A Cross-Layer Intrusion Recovery Framework 195

intrusion detection system (IDS) is also unable to discover all damage to the
system and the damage can be spread without being detected by the IDS. We
recognize that perfect intrusion detection is hard to achieve and some damage to
the system even after the detection of the attack is always possible. To this end,
we believe that an effective intrusion response and recovery scheme is essential
for repairing compromised systems from the damage.

There has been growing interest in studies of intrusion recovery ([1], [8–10],
[12], [14,15], [18], [20]), however most of intrusion recovery research has focused
on a single layer of abstraction: Operating System (OS) level, Application level,
or Business workflow level. None of them considered the problem of the semantic
gap in infection diagnosis and recovery between high-level business workflow and
the underlying infrastructure. Besides, there is a significant difference between
business workflow-level semantics and OS-level semantics. Different abstraction
layers may provide different granularity levels and different semantic views of
the attack.

Due to the significant semantic gap between the two layers, an effective and
comprehensive recovery may be very difficult. Most business-critical systems
adopt the workflow management system with mission-critical processes [3] and
thus, these systems, when intrusion detected either at workflow level or OS
level, would require combined damage assessment and recovery by cooperation
between the workflow layer and the underlying system layer.

In this paper, we present a Cross-Layer Intrusion Recovery framework, called
XLRF, based on a combination of workflow-level and OS-level view. A cross-
layer architecture allows us to have a global view about the intrusion and a
more comprehensive understanding about recovery from the intrusion. Primary
goal of our framework is to close the gap between business workflow-level and
OS-level recovery semantics by focusing on two levels of abstraction in both,
thus preserving workflow integrity, as well as system integrity. To the best of our
knowledge, this is the first cross-layer recovery approach that focuses on both at
business workflow level and OS level.

OS-level recovery approaches focus on low-level system events and do not
take into account high-level business workflow implications. Due to the lack of
higher workflow-level abstraction, OS-level intrusion recovery alone may cannot
provide the comprehensive recovery solution, thus in many situations, needs
manual work.

Similarly, workflow-level recovery approaches do not have enough information
about low-level system activities that are very useful for fine grained intrusion
analysis. Workflow-level recovery actions are generally performed at the gran-
ularity of business workflow tasks while OS-level recovery actions are generally
performed at a granular file level, and thus workflow-level recovery approaches
cannot handle the OS-level attacks (such as compromised processes, unautho-
rized data modification) properly. For example, workflow-level recovery performs
task-level recovery actions (e.g., undo and redo of tasks), and thus task-level
recovery actions cannot guarantee the removal of all the effects of the attack
(compromised components) at the OS layer. As a result, workflow-level recovery

196 E. Yoon and P. Liu

often results in non-executable recovery plan. In order for a recovery plan to
be effective, it must be executable in reality, which consists of low-level system
recovery operations. Therefore, neither the OS-level recovery nor the workflow-
level recovery can provide a comprehensive and effective recovery solution.

Our cross-layer recovery framework explores the association between two dif-
ferent levels of abstraction by extracting information about the relationships be-
tween a business workflow and system call invocations from system call traces.
We perform an automated analysis of system call log to semantically map OS-
level dependencies to workflow-level dependencies. The damage assessment and
recovery plan generation using dependency information is performed in both a
top-down and bottom-up fashion between OS layer and workflow layer by ex-
ploiting the hierarchical relationship between the two layers.

Another goal of our recovery framework is to maximize automation in damage
assessment and recovery plan generation. Traditionally, the recovery from an
attack is manually performed by system administrators, which is time-consuming
and error-prone. Automated response to intrusions has become a major issue in
defending mission-critical systems, in which it is important to know how fast a
problem can be resolved after it is detected, and distributed systems, in which
manual diagnosis and repair is difficult. To this end, we propose automated
recovery plan generation framework for fast recovery.

This paper makes the following contributions:

– We develop a cross-layer recovery framework that bridges the semantic gap
between business workflow-level recovery and OS-level recovery. To the best
of our knowledge, this work is the first to develop a cross-layer recovery
framework that considers business workflow layer and OS layer.

– We provide automated damage assessment and generation of recovery plan
that is executable.

– We point out the inherent problems with single layer intrusion recovery
schemes.

The remainder of the paper is organized as follows. We describe related
work in Section 2. Section 3 describes our running workflow example. Section
4 presents an overview of our cross-layer recovery framework, called XLRF. We
present the details of XLRF design and implementation of three phases in Sec-
tion 5, and the evaluation of XLRF in Section 6. In Section 7, we briefly re-
visit the limitations of single layer recovery Finally, we conclude the paper in
Section 8.

2 Related Work

Existing intrusion analysis and recovery approaches focus either on the OS layer
or the workflow layer (single-layered approach), whereas our work focuses on
both the OS layer and the workflow layer (cross-layered approach).

OS-level Recovery. OS-level recovery approaches only focus on low-level
system events and do not take into account high-level abstraction of workflow-
level recovery, which is essential for most business and mission-critical systems.

XLRF: A Cross-Layer Intrusion Recovery Framework 197

ReVirt [5] focuses on intrusion analysis by using Virtual Machine logging and
replay. ReVirt provides recovery capability using checkpoint and roll back, how-
ever, it removes both affected and legitimate changes. BackTracker [13] provides
intrusion analysis tool of tracking the sources of an intrusion. BackTracker cap-
tures and uses system calls for analyzing problems on the process and file system
level. BackTracker uses previously recorded system calls and constructs the de-
pendency graph by using system call dependencies from the detection point and
traces affected system events on files or processes. XLRF is closely related to
BackTracker for computation of system call dependencies and the dependency
graph generation. Taser [8] is an intrusion recovery system that determines the
set of tainted file system-operations and reverts the tainted operations but pre-
serves legitimate operations. Taser logs all process, file and network operations
to identify the file system modification after intrusion and provides selective redo
of legitimate file-system operations after an attack occurs. RETRO [12] analyzes
OS-level system events to determine the source of an intrusion by recording ac-
tion history graph. RETRO tries to minimize re-execution (selective redo) by
predicates, refinement, and shephered re-execution. SHELF [18] is a self-recovery
system that leverages the Virtual Machine Monitor and taint-analysis for dy-
namic dependency tracking and quarantine. SHELF logs system-level events to
track the dependencies among the events, maintains the dependency graph, and
quarantine the infected and malicious objects.

Workflow-level Recovery. As discussed in Section 1, workflow-level re-
covery approaches often result in non-executable recovery plan. Yu et al. [20]
introduced theories and analytical experiments for on-line attack recovery of
workflows. Their recovery system identifies all damages caused by the malicious
tasks that are detected by an IDS and automatically repairs the damages based
on data and control dependencies among workflow tasks. Our workflow-level
damage assessment using workflow-level dependencies are based on this work.
Eder et al. [6] introduced workflow recovery concepts for reliable and consistent
execution of business processes in the presence of failures and excetions. They
integrate workflow transactions into WFMSs so that processes are treated as
workflow transactions and in the event of failures, a running process is aborted
and compensated. However, this approach mainly focuses on workflow failure
recovery, which is different from the intrusion recovery that removes the effects
of intrusions.

Other Recovery Approaches. Polygraph [14] is a software layer that ex-
tends the functionality of weakly consistent replication systems to support com-
promise recovery. Polygraph is based on the replication technique and tries to
recover from data corruption in weakly consistent replicated storage systems.
Ammann et al. [1] presented the recovery approch to the problem of remov-
ing undesirable but committed transactions from databases. They detect the
flow of contaminated transactions through a database and roll back those trans-
actions that are affected directly or indirectly by contaminated transactions.
Solitude [10] is an application-level isolation and recovery system that uses a

198 E. Yoon and P. Liu

copy-on-write filesystem to limit attack propagation by sandboxing untrusted
applications and providing an explicit file sharing.

3 Example

For our case study in this work, we develop a simplified version of travel reser-
vation system running on the Apache web server. Our travel reservation system
can be represented as a business workflow that consists of six tasks as follows.

T1: Input travel information
T2: Reserve a flight ticket and sign in or sign up
T3: If the customer is signed as a member, reserve a hotel as a member.
T4: If the customer is a member, apply any credit or promo code.
T5: If the customer is a guest, reserve a hotel as a guest.

T6: Make a payment

Figure 1 shows the workflow graph that represents our travel reservation system
example. This model is based on [2] and [20]. The workflow has two choices of
execution paths, P1: T1T2T3T4T6 and P2: T1T2T5T6, but in each execution, only
one path can be selected by T2. An attack can change the execution path of the
workflow. In this example, P1 is the execution path led by an attack, and P2 is
the normal execution path without an attack.

The workflow shows control and data dependencies between tasks. For exam-
ple, if task T1 is a malicious task, tasks T2 and T4 would be affected by T1 as
they will read corrupted data from task T1, and thus calculating wrong results
as T2 is data dependent on T1 and T4 is data dependent on T2. Consequently, T2

would make a wrong decision to execute tasks on path P1, resulting in changing
the normal execution path as T3 and T5 are control dependent on T2.

T1 T2

T3

T5

T4

T6

Fig. 1. Workflow of Travel Reservation System

4 XLRF Overview

We propose a Cross-Layer Recovery framework, called XLRF, an automated in-
trusion analysis and recovery plan generation framework. Our approach consid-
ers two different levels of abstraction: workflow level and OS level, and provides
multi-level damage assessment and comprehensive recovery plan generation.

XLRF: A Cross-Layer Intrusion Recovery Framework 199

4.1 Assumptions

In this work, we assume the integrity of the system call log and checkpoints is
preserved. We archive and send the system call logs collected on the web server
to the trusted host that will investigate the effects of the intrusion and generate
a recovery plan by using XLRF framework. We also assume that the adminis-
trator noticed an attack (i.e., system compromise) and identified at least one
intrusion point before using XLRF, which is similar to the assumption of Back-
tracker [13] A sophisticated attacker may be able to successfully evade the IDS
by manipulating a sequence of system calls (i.e., mimicry attack [17]). Recovery
from mimicry or evasion attacks is out-of-scope for this paper, if these attacks
have never been identified, as XLRF starts from the identified intrusion point.

4.2 Cross-Layer Recovery

Our cross-layer recovery framework (XLRF) is based on the analysis of workflow-
level and OS-level control and data dependencies. We use the dependency infor-
mation at each layer to analyze the effects of the intrusion and to automatically
generate a recovery plan which consists of recovery actions that will revert the
effects. XLRF takes inputs as a workflow specification, system call log recorded
by the operating system, and the intrusion point identified by the administrator
from IDS alerts. XLRF builds the association between workflow tasks and sys-
tem calls based on the dependencies at the both layers. From the workflow-level
perspective, each component at the OS layer has a corresponding task node at
the workflow layer, and vice versa.

Damage assessment is performed in a combined bottom-up (from OS level to
workflow level) and top-down (from workflow level to OS level) analysis. Once
XLRF has completed damage assessment, it starts to generate a recovery plan
with the result.

4.3 Workflow Level

A workflow typically represents a business process, which is composed of a se-
quence of tasks (i.e., business activities), and a set of dependencies that represent
the relationships between the tasks.

Workflow Dependencies. The task dependencies in a business workflow is
imperative to determine which tasks to recover and the order in which tasks
are recovered. In this paper, we consider two types of dependencies between
workflow tasks: data dependency and control dependency.

– Data dependency. Data dependencies (data flows) among tasks describe in-
puts and outputs of a task. Given a task Ti, we use R(Ti, f) and W (Ti, f)
to denote a read operation and a write operation of task Ti on file f , re-
spectively. Task Tj is data dependent on task Ti if W (Ti, f) happens before
R(Tj, f) or W (Tj, f).

For example, if Ti modified file f and then Tj uses (reads or writes) the
file for performing the task, task Tj is data dependent on task Ti. That is,

200 E. Yoon and P. Liu

the state of Tj would depend on the value of the input file f as Ti has
modified the file f that is shared by the two tasks. In Figure 1, dotted red
lines represent data dependencies between tasks.

– Control dependency. The control dependency specifies the control flow of the
workflow. Given two tasks Ti and Tj within a workflow, the task Tj is control
dependent on Ti if Tj can be activated depending on the outcome of Ti. The
output value of Ti determines the execution path of the workflow, either to
execute Tj or another task. Thus, control dependencies of a workflow decide
the execution order of tasks. In our running example shown in Figure 1, T3

and T5 are control dependent on T2.

Workflow Dependency Graph (WDG). A workflow can be represented as a
directed graph G(V, E), called workflow dependency graph (WDG), comprising V
a set of nodes and E a set of directed edges, in which each node represents a task
and directed edges represent dependencies between tasks, as shown in Figure 1.
The WDG also can be generated by using workflow mining technique [16].

4.4 Operating System Level

XLRF uses OS-level information to identify system-level causal events (i.e., infor-
mation flow) that connect OS objects, such as processes and files. The OS-level
information can provide finer grained auditing and view of underlying system
activities. For OS-level analysis, we are particularly interested in system calls
and the data dependencies among system calls, which is similar to the approach
that is generally used for behavioral malware detection in [4] and [19]. XLRF
records all or selected system call invocations at run-time to extract system call
dependencies from the system call traces.

System Call Dependencies. Every system call operation has a list of argu-
ment values and the return value, which we use for exploring data dependencies
among system calls. We also use the timestamp of each system call to determine
the temporal order of system calls. We extract dependencies among system calls
for OS-level dependency analysis by analyzing each system call’s arguments and
the return value. In this paper, we only focus on data dependencies among sys-
tem calls, which allow us to effectively identify data flows between system calls
and to understand the semantics of the program and the effects of intrusion on
system objects.

Christodorescu et al. [4] describe three types of dependencies among system
calls: def-use, ordering, and value dependence but we only focus on data depen-
dency (same as their def-use dependency) in this paper.

– Data dependency: Data dependencies between system calls can be computed
by arguments (i.e., input) and a return value (i.e., output) of each system call.
The return value of a system call can be used as the argument of subsequent
system calls. For example, given two system calls sci and scj , system call
scj is data dependent on sci if scj uses the valid return value of sci as its
argument.

XLRF: A Cross-Layer Intrusion Recovery Framework 201

System Call Dependency Graph (SCDG). The data dependencies that
we extracted from system call traces are represented as a directed graph G(V,
E), called system call dependency graph (SCDG), such that nodes are system
calls and edges represent data dependencies among system calls. We compute
the dependencies by analyzing relationships between system call arguments and
return values.

5 Design and Implementation

The XLRF framework provides automated damage assessment and recovery plan
generation by analyzing dependencies within and across at the workflow layer
and at the OS layer, and by identifying affected workflow tasks and system
objects using the observed dependencies.

The XLRF framework consists of three main phases (Figure 2): dependency
analysis, damage assessment, and recovery plan generation. During the depen-
dency analysis phase, XLRF analyzes the system call log to determine depen-
dencies among system calls and workflow tasks and constructs a cross-layer
dependency graph, called XDG. In the damage assessment phase, XLRF identi-
fies all the malicious or affected workflow tasks and system objects by traversing
XDG from initially identified, malicious system objects (i.e., intrusion point). In
the recovery plan generation phase, XLRF automatically generates a recovery
plan based on the malicious or affected tasks and system objects that have been
identified.

Intrusion

Fig. 2. The XLRF framework

202 E. Yoon and P. Liu

5.1 Input

Workflow Specification. One of the inputs to XLRF is the workflow specifi-
cation. The workflow specification contains the workflow type information that
describes the workflow task structure (control flow) and information exchange
between tasks (data flow) in a workflow. Each workflow is an instance of a work-
flow type. XLRF takes as input the workflow specification and system call traces
to identify current running workflow instances.

System Call Log. The second input to XLRF is the system call log. System
call traces are essential for XLRF to identify attack events and analyze depen-
dencies between system calls. Logging mechanism will be discussed further in
Section 5.3

Intrusion Point. Once an intrusion is detected by an IDS, the administrator
can identify the intrusion point from the IDS alerts. XLRF takes as input the
intrusion point and start to investigate the effects of the intrusion both at the
OS layer and at the workflow layer to generate a recovery plan.

5.2 Output

Recovery Plan. The output of XLRF is a recovery plan that consists of a set
of recovery actions. XLRF automatically generates a recovery plan which is very
useful not only by reducing the system administrator’s manual recovery process
but also by minimizing human errors, and thus ultimately reducing the recovery
time.

5.3 Logging

To build a proof-of-concept prototype of XLRF, we collect system call traces on
the Apache HTTP server (httpd) using DTrace framework during normal execu-
tion of our online travel reservation workflow to track system events on OS-level
objects such as processes, files and socket connections. DTrace is a dynamic
tracing framework developed by Sun Microsystems. DTrace can dynamically in-
strument the running operating system kernel and running applications without
rebooting the kernel or restarting applications. Gessiou et al. [7] also used DTrace
framework for collecting data provenance information.

Each entry of the system call log contains detailed system object informa-
tion such as process ID, file descriptor, and socket descriptor, the timestamp,
and/or session ID of each system call invocation. During the dependency analysis
phase, XLRF uses this information to construct a system call dependency graph
(SCDG) and a workflow dependency graph (WDG). XLRF then constructs a
cross-layer dependency graph (XDG) by associating the two graphs, SCDG and
WDG; mapping of each node of SCDG (system call operation) and each node
of WDG (workflow-level task).

XLRF can identify a user’s workflow instance that corresponds to a particular
system call and process. In our running example, once an authenticated session has
been established, the session ID can be identified for all web page (php code file)

XLRF: A Cross-Layer Intrusion Recovery Framework 203

SSS

T1 T2
T3 T4

T6
T1 T2

T5
T6

WA WB
Workflow-level

(WDG)

OS-level
(SCDG)

f1

f2

write

read

cross-edge

system call

execution path(W)

execution path(S)

S1

Fig. 3. Cross-Layer Depedency Graph

accesses. In addition, the entities involved in a workflow can be uniquely identified
by a combination of a username and the workflow ID that is generated for every
workflow of a user. This user identification allows us to observe whose workflow
instance ID matches the current workflow instance (i.e., the origin of a system call
and the corresponding workflow task), and thus enables selectively to recover only
affected workflow instances. For example, in Figure 3, Alice’s workflow instance
(WA) and Bob’s workflow instance (WB) at the workflow layer aremapped to each
system call node at the OS layer based on our approach.

5.4 Dependency Analysis

Once an IDS has detected an intrusion, XLRF takes as input the intrusion point
deduced by the administrator from the IDS alerts, the system call logs collected
during normal execution, and the workflow specification. The system call log
allows us to learn about the executed path of the workflow and dependencies
among system calls. XLRF preprocesses the system call log by focusing partic-
ularly on file and process operations and extracts the data dependencies, and
constructs dependency graphs. The dependency information is essential for our
recovery framework to identify directly or indirectly affected objects from the
intrusion which recovery is needed for. XLRF identifies current running workflow
instances and their workflow dependency graph (WDG) with the workflow spec-
ification and the system call trace. Similarly, XLRF constructs the system call
dependency graph (SCDG) with the dependencies among system calls extracted
from the system call trace. XLRF then correlates and combines the two layers of
dependency graphs as a single hierarchical graph, called cross-layer dependency
graph (XDG), by associating semantic links between two graphs.

Cross-Layer Dependency Graph. Cross-layer dependency graph (XDG)
enables cross-layer damage analysis, which allows us to identify the effects of

204 E. Yoon and P. Liu

Table 1. Association of file information to workflow tasks

T1 T2 T3 T4 T5 T6

index.php (GET) login.php (POST) check.php (POST) member.php (GET) guest.php (POST) payment.php (POST)
flight.dat (R) guestinfo.php (POST) users.dat (R) hotel.dat (R) hotel.dat(R) invoice.dat (R)

users.dat (R/W) promo.dat (R) discount.php (POST) credit.dat (R/W)
invoice.dat (W) promo.dat (R) payment.dat (W)

invoice.dat (W)

intrusion using dependencies collected both at the workflow layer and the OS
layer.

After we constructed WDG and SCDG, we find the semantic relationships
(links) between the two dependency graphs. Given WDG and SCDG, XLRF
adds the edges that cross the two layers so that each cross-edge in the resulting
XDG connects vertices of each graph at the two layers.

XLRF correlates the relationship between WDG and SCDG by analyzing the
system call log and the workflow specification. Having a good criteria to associate
each system call to a task of a particular workflow instance is challenging, as the
system call log consists of multiple workflow instances involving multiple clients.
XLRF separates the combined traces at the OS layer (SCDG) into separate
workflow instances at the workflow layer (WDG) for each user. The workflow
specification provides us information of interaction between a workflow task and
its operations on some input and output data (e.g., data files). Therefore, XLRF
takes both the workflow specification and system call logs as inputs and leverages
the information to find out the semantic relationships between workflow-level
and OS-level activities.

Table 1 shows the information obtained from the workflow specification used
for our running workflow example. Our workflow example separates a workflow
into a set of tasks with the semantic relationships between webpages, and data
files specified in the workflow specification. Each workflow task basically com-
prises of program code files (php files) and data files. In this work, for the sake of
simplicity, we use data files stored in file system instead of database. Using this
information along with system call traces, XLRF can generate XDG, as shown
in Figure 3, which is an integrated graph of WDG and SCDG, connected by the
cross-edges.

5.5 Damage Assessment

During the damage assessment phase, XLRF identifies which tasks at the work-
flow layer and which system objects at the OS layer have been affected by ma-
licious system objects. XLRF takes as inputs XDG that has been constructed
in the dependency analysis phase, and the intrusion points (i.e., identified mali-
cious objects) to create the recovery list of malicious or affected workflow tasks
and system-level objects, as shown in Algorithm 1. This information is essential
for deciding recovery actions that will be used for generating a recovery plan.
The overview of recovery actions (undo and redo) will be given in the following
section.

XLRF: A Cross-Layer Intrusion Recovery Framework 205

The analysis is performed on XDG, in both directions: bottom-up
(SCDG→WDG) and top-down (WDG→SCDG):

Bottom-up Analysis. XLRF starts from the detection point to diagnose
affected workflow tasks by using a bottom-up analysis.

At the OS layer (SCDG). Given the intrusion point, locate a malicious node
of SCDG.

OS layer (SCDG) → Workflow layer (WDG). From the malicious node of
SCDG, follow the cross-edge to locate the associated task node of WDG. Add
the task to the recovery list (workflow undo list).

At the workflow layer (WDG). From the malicious task node, identify all
affected tasks by using data and control dependencies (dependency edges). Add
all affected tasks to the recovery list (workflow undo list or workflow redo list).
For workflow-level analysis, we use the approach similar to Yu et al’s workflow
recovery [20] to determine which workflow tasks have been affected and need to
be repaired.

We explain the analysis by using our workflow example and XDG, shown in
Figure 1 and Figure 3. Suppose that file f1 has been identified as corrupted by an
intrusion. From XDG shown in Figure 3, the first system call node s1 of SCDG
(read f1) will read the corrupted data (a). The system call node has a cross-
edge to task node T1 of Alice’s workflow instance (WA), and thus T1 of WDG is
marked as bad (malicious or affected) and added to Alice’s workflow undo list,
WUA = {T1} because T1 needs to be undone in the recovery (b). At the workflow
layer (WDG), by the data dependencies shown in Figure 1, task T2 is infected
by task T1 because it is data dependent on T1, by reading a corrupted data (f1)
from T1 and then creating wrong results. Thus, T2 is added to undo list, WUA =
{T1, T2}. Similarly, T4 is data dependent on T2, and thus added to the undo list,
WUA = {T1, T2, T4}. Although task T3 is not affected, it needs to be undone
in case T3 performed data write operations (e.g., write f), because the data
will be corrupted if the execution path is changed by redo(T2) and T3 is not on
the new execution path. XLRF adds T3 to candidate undo list, CUA = {T3}. T6

is also added to CUA = {T3, T6} because it will be data dependent on T5 and get
a wrong result from the current execution if the execution path is changed by
redo(T2). From the WUA = {T1, T2, T4} and CUA = {T3, T6}, XLRF creates
redo list WRA = {T1, T2, T6}, because the tasks are not control dependent on
any malicious or affected tasks. If any task is not on the new executing path (T3,
T4), it does not need to be redone because it can create corrupted data (c).

Top-down Analysis. XLRF refines the workflow-level recovery list at the
high level of abstraction (WDG) and bottoms out in a set of directly executable
OS-level recovery actions at the low level of abstraction (SCDG) by using a top-
down analysis. This analysis allows us to derive a recovery plan from recovery
goals. XLRF can create the OS-level recovery list of affected system objects given
malicious or affected tasks of a particular workflow instance, which will be used
in the recovery plan generation phase.

206 E. Yoon and P. Liu

Algorithm 1. Damage Assessment

Input:
XDG: Cross-layer dependency graph

M : Malicious Objects (from IDS alerts)

Output:
WU : Workflow Undo list

WR: Workflow Redo list

CU : Candidate Undo list

SU : System-call Undo list

1: if SCDG node s of XDG is data-dependent

on M then
2: if cross-edge e(s, t) exists then
3: Follow e(s, t) and locate task node t
4: Add t to WU
5: while succ(t) exists do

6: for all succ(t) data-dependent on

t do
7: Add succ(t) to WU
8: t← succ(t)

9: if ti ∈ succ(t), not data-

dependent on t then
10: Add ti to CU

11: for each WDG node ti of XDG do
12: if ti is control-dependent on tj then
13: if (tj /∈ WU) or (tj ∈ WU , ti ∈

succ(redo(tj))) then
14: Add ti to WR

15: for each ti of WU do � backward

16: Follow cross-edgee(s, ti)
17: for all node s belongs to ti do
18: Add s to SU [ti]

Workflow layer (WDG) → OS layer (SCDG). Given a malicious or affected
task node of WDG, follow the cross-edges to identify the associated low-level
system call nodes of SCDG.

At the OS layer (SCDG). From the identified system call nodes and depen-
dencies among them, find all the affected system objects (files, in our example).

In our framework, redoing a workflow task will automatically re-execute all
system calls associated with the task. Thus, XLRF only maintains undo list for
system call-level operations (no redo list).

5.6 Recovery Plan Generation

The last phase of XLRF is to automatically generate a recovery plan based on
the dependency information and the damage analysis results. Generated recovery
plan describes executable recovery actions needed for reverting the effects of
intrusion both at the workflow layer and at the OS layer.

Before discussing our recovery plan generation scheme, we briefly describe
recovery actions.

Workflow Task Undo and Redo. To recover from intrusion, basically two
operations: undo and redo are used. To remove all effects of intrusion, XLRF
needs to undo malicious and affected tasks that have been identified during the
damage assessment phase. XLRF creates undo lists for workflow tasks to revert
all the effect and creates redo lists for tasks to restore legitimate but removed
operations that have been affected by the attack.

System-Call Undo and Redo. As far as we know, there is no known way
to actually undo the already executed system call. Alternatively, we could roll
back the object (e.g., file) affected by the system call to the last checkpoint,
which is commonly used for reverting write operation to a file, or we could
ideally use an inverse operation if supported. Executing inverse operations can
be substantially more efficient than checkpoint and rollback mechanism. A recent
work [11] presents a new technique for inverse operations but their approach is

XLRF: A Cross-Layer Intrusion Recovery Framework 207

still limited for linked data structures, which needs to be extended if it is to be
used in real systems.

In fact, XLRF generates a recovery plan for leveraging checkpoint and rollback
mechanism for system call undo and removing system-call level redo because the
task-level redo operation will automatically re-execute system calls that belong
to the specific task. From OS-level recovery perspective, the task-level redo is too
coarse-grained, resulting in some unnecessary system call redo operations can be
included in a recovery plan. However, we do not focus on efficient selective-redo
approach for system calls in this work. Nevertheless, our recovery plan generation
framework can be easily adapted to the advanced recovery technique as needed.

Algorithm 2. Recovery Plan Generation

Input:
WU : Workflow Undo list

WR: Workflow Redo list

CU : Candidate Undo list

SU : System-call Undo list

Output:
P : Recovery Plan

1: while WU is not empty do
2: Get task Ti from WU � backward

3: Add undo(Ti) to P
4: while SU [Ti] is not empty do
5: Get system call si from SU [Ti]

6: if si is write(f) then

7: Add rollback (f) to P

8: while WR is not empty do
9: Get task Ti from WR � forward

10: Add redo(Ti) to P
11: if redo(Ti) changes the execution path

then
12: while CU is not empty do
13: Get task Ti from CU
14: while SU [Ti] is not empty do
15: if si is write(f) then
16: if si is the first write then
17: Add undo(Ti) to P

18: Add rollback (f) to P

The Order of Recovery Actions. To preserve correctness during the repair,
the order of recovery actions needs to be correctly determined. The following
rules describe the correct order of recovery actions from a workflow perspective.

– undo actions are performed in reverse order.
– redo actions are performed by following the original order of the task oper-

ations.
– For any task , its undo action should be done before its redo action.
– For any two tasks that modify the same file in order, the later task should

be undone first before the earlier task is redone. For example, suppose that
both task ti and task tj modify the same file f , W (ti, f) precedes W (tj , f).
In this case, undo(tj) should be done before redo(ti).

XLRF automatically generates a recovery plan by the rules with undo list and
redo list obtained during the damage assessment phase (see Algorithm 2).

5.7 Implementation

We implemented a proof-of-concept prototype of the XLRF framework on Linux
based on the detailed design and algorithms that we have presented. We devel-
oped a simple web-based travel planning service in PHP running on Apache web

208 E. Yoon and P. Liu

server as our running example. Our implementation does not need to make any
changes to existing software components.

For logging system-level activities, we use DTrace framework to record se-
lected system call invocations (e.g., read(), write()) on httpd process. While we
do not focus on performance degradation problem in this work, logging overhead
using DTrace was not a big concern, as DTrace has been designed to operate with
low overheads when enabled, and zero or near-zero overhead when not enabled
(selective instrumentation). We store the logs collected from the web server on
a trusted platform that is isolated from the web server and we run the XLRF
framework on the trusted platform so it does not incur much overhead to the
HTTP server. We do not invent the wheel to prevent the integrity of the XLRF
framework in this work but it is also hard to compromise the XLRF framework
by the intrusion on the web server.

We implemented XLRF in Perl and XML for log analysis and automated
recovery plan generation. We selected Perl script language as Perl is powerful
for regular expressions processing. We generate dependency graphs using the de-
pendencies obtained in the dependency analysis phase. The dependency graphs
can be visualized using Graphviz as desired. XRLF then generates a recovery
plan as an XML file that is human-readable and machine-readable. XML pro-
vides a basic syntax that can be used for sharing information between different
platforms and applications. Manual or automated execution of a recovery plan
using scripts is also much easier with XML. Perl also provides the features of
XML parsing and converting it to Perl data structures.

6 Evaluation of Recovery Plan

We evaluated the correctness of our cross-layer recovery framework using sev-
eral intrusion scenarios. In this paper, we present the evaluation of two scenarios
due to space limit. We ran XLRF for each scenario on a trusted platform and
compared generated recovery plans with the manually derived dependencies and
expected recovery actions. We argue that XLF correctly generates a recovery
plan for each attack scenario based on the evaluation.

Scenario 1: Data File Compromise
In our running example, an attacker can modifty the content of an invoice

file (invoice.dat), in order to intentionally change the price of a particular travel
plan, for example, from $2000 to $1000. In this scenario, Alice’s workflow tasks
T4 and T6 will be affected by the compromise, and thus will lead to a financial
loss.

Recovery Goals. Revert invoice.dat and all affected files by rolling back the
file to the last checkpoint to remove the effect from compromise. Remove all the
effects and restore operations (undo and redo).

XLRF: A Cross-Layer Intrusion Recovery Framework 209

1. Generated Recovery Plan: (for Alice)

〈plan name= ”rWA”〉
〈action=”uT6”〉 undo(T6)

〈subaction=”T6w11”〉
rollback(payment.dat)

〈/subaction〉
〈/action〉
〈action=”uT4”〉 undo(T4)

〈subaction=”T4w12”〉
rollback(invoice.dat)

〈/subaction〉
〈 /action〉
〈action=”rT4”〉 redo(T4) 〈/action〉
〈action=”rT6”〉 redo(T6) 〈/action〉

〈/plan〉

2. Derived Dependencies (manual):
by Attacker:

write (invoice.dat, badInput)→invoice.dat′
by Alice’s workflow: from T6

read(payment.php)→read(invoice.dat′)→ read(credit.dat)
→write(payment.dat′)
Workflow level:

undo(T6) → undo(T4) → redo(T4) → redo(T6)

OS level (system call):

* Need undo? (Y/N)

T6: w(payment.dat):Y ⇒ rollback (payment.dat)

T6: r(credit.dat),r(invoice.dat), r(payment.php): N

T4: w(invoice.dat):Y ⇒ rollback(invoice.dat)
T4: r(promo.dat), r(hotel.dat), r(member.php): N

* Need redo? (Y/N)

T4: r(member.php), r(hotel.dat), w(invoice.dat): Y

System-call level redo actions are automatically performed by their task-level
redo, thus do not need to be added to a recovery plan.

Scenario 2: Execution Path Change. An attacker modifies login.php file
and changes the execution path, allowing a guest member to be redirected to the
webpage that only registered member can access. All guest members can benefit
from this attack by making her travel plan using a member-only promotion, but
resulting in a financial loss to the travel agency (workflow violation). Suppose
that Figure 3 shows Alice (guest member)’s new execution path after the at-
tack. Her original execution is T1 → T2 → T5 → T 6, but it has been changed to
T1 → T2 → T3 → T4 → T6, respectively.

Recovery Goals. Revirt all malicious (index.php) or affected files and op-
erations from the attack and restore original execution path.

1. Generated Recovery Plan: (for Alice)

〈plan name= ”rWA”〉
〈action=”uT6”〉 undo(T6)

〈subaction=”T6w11”〉
rollback(payment.dat)

〈/subaction〉
〈/action〉
〈action=”uT4”〉 undo(T4)

〈subaction=”T4w12”〉
rollback(invoice.dat)

〈/subaction〉
〈action=”uT2”〉 undo(T2)

〈subaction=”T2w11”〉
rollback(users.dat)

〈/subaction〉
〈 /action〉
〈action=”rT2”〉 redo(T2) 〈/action〉
〈action=”rT6”〉 redo(T6) 〈/action〉

〈/plan〉

2. Derived Dependencies (manual):
by Attacker:

write (users.dat, badInput) → users.dat′
by Alice’s workflow: from T2

read(login.php)→read(guestinfo.php)→ write(users.dat′)
→read(check.php)→ read(users.dat′)→read(member.php)→
read(hotel.dat)→read(promo.dat)→ write(invoice.dat′)
→read(payment.php)→read(invoice.dat′)→read(credit.dat)
→ write(payment.dat)
Workflow level:
undo(T6) → undo(T4) → undo(T2) → redo(T2) →
redo(T6)
OS level (system call):

* Need undo? (Y/N)
T6: w(payment.dat):Y ⇒ rollback (payment.dat)
T6: r(credit.dat), r(invoice.dat), r(payment.php): N
T4: w(invoice.dat):Y ⇒ rollback(invoice.dat)
T4: r(promo.dat), r(hotel.dat), r(member.php): N
T2: w(users.dat):Y ⇒ rollback (users.dat)
T2: r(guestinfo.php), r(login.php): N
* Need redo? (Y/N)
T2: r(login.php), r(guestinfo.php), r(users.dat): Y
T6: r(payment.php), r(invoice.dat), r(credit.dat), w (pay-

ment.dat): Y

Task T4 is not on the re-execution path, thus T4 needs not to be redone. The
generated recovery plan shows for each user after rollback(login.php) has been
done. The file login.php is shared by all users, so need to recover separately,
before recover any workflow instance. The comparison shows that the recovery
plan for Scenario 2 generated by XLRF is correct.

210 E. Yoon and P. Liu

In all the scenarios mentioned above, we show that our approach is effective
in damage assessment and recovery plan generation for intrusion recovery.

7 Revisiting the Limitations of Single Layer Recovery

As we discussed earlier, single layer recovery approaches cannot provide the
comprehensive damage assessment and recovery solution due to the semantic
gap between the high-level workflow abstraction and the low-level OS-level ab-
straction. Here we revisit and discuss the limitations of single layer recovery
approaches: workflow-level and OS-level recovery with our running example.

A host-based IDS can monitor system activities so the administrator can
identify the intrusion point such as a corrupted file, from the IDS alerts, which
is used for OS-level recovery. By using data dependencies among system calls,
all the affected files can be identified and recovered using the checkpoint and
roll-back scheme and some of system call redo operations. However, even after
all the corrupted files are recovered at the OS layer, the recovery still cannot
ensure the correctness in business workflow semantics.

Let’s revisit Scenario 1, OS-level recovery will do: rollback(payment.dat),
rollback(invoice.dat), and redo operations on the files, such as read

(invoice.dat), and write(payment.dat), however at the end of this OS-level re-
covery, only part of task T6 has been recovered; read(payment.php) of T6 will
not be redone. From a workflow perspective, the client’s payment process needs
to be cancelled and re-executed, thus the entire task needs to be undone and
redone for the client’s input (She can probably change her mind later due to the
price increase), so we need to redo the entire task T6. Without the association
between OS-level semantics and workflow-level semantics, the identification of
current workflow instances that are affected and need to be repaired, will be very
challenging. Therefore, we argue that OS-level recovery approach cannot provide
correct recovery actions for high-level business workflow as it cannot determine
the damage in the business workflow semantics correctly.

Workflow-level recovery scheme does not have the semantic information about
the low-level system activities such as system call invocations. Therefore, in
Scenario 1, when invoice.dat file has been compromised, workflow-level recov-
ery does not aware about the intrusion and the system-level damage until any
anomalous task of a workflow (e.g., task abortion) has been detected. It could
never been detected in case of normal execution of the task even with a ma-
licious data. Workflow-level approach provides task-level recovery so may can-
not perform fine-grained recovery actions such as single file operation. Most
workflow-level recovery approaches use workflow-level checkpointing resulting in
expensive coarse-grained recovery. Therefore, workflow recovery often results in
non-executable recovery plan as it cannot perform recovery actions at the OS
layer, which requires the system administrator’s manual process.

XLRF: A Cross-Layer Intrusion Recovery Framework 211

8 Conclusion

In this paper, we have first presented a cross-layer recovery framework for auto-
matically analyzing the damage caused by intrusion and generating a recovery
plan. We addressed the problem of single layer recovery approaches and pro-
posed a new cross-layer recovery approach that takes into account both business
workflow-level and OS-level recovery for providing a comprehensive recovery.
We developed a proof-of-concept prototype of our recovery framework, called
XLRF, that comprises dependency analysis, damage assessment, and recovery
plan generation phases. We evaluated the effectiveness of our cross-layer recovery
framework with several attack scenarios. XLRF correctly identified the effects
of the intrusion and generated recovery plans for reverting all the effects from
intrusion both at the workflow layer and at the OS layer.

Acknowledgments. This work was supported by ARO W911NF-09-1-0525
(MURI), AFOSR FA9550-07-1-0527 (MURI), NSF CNS-0905131, and AFOSR
W911NF1210055.

References

1. Ammann, P., Jajodia, S., Liu, P.: Recovery from malicious transactions. IEEE
Trans. on Knowl. and Data Eng. 14(5), 1167–1185 (2002)

2. Atluri, V., Ae Chun, S., Mazzoleni, P.: Chinese wall security for decentralized
workflow management systems. J. Comput. Secur. 12(6), 799–840 (2004)

3. Balzarotti, D., Cova, M., Felmetsger, V.V., Vigna, G.: Multi-module vulnerability
analysis of web-based applications. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS 2007, pp. 25–35. ACM, New York
(2007)

4. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC-FSE 2007, pp. 5–14. ACM, New York (2007)

5. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling
intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst.
Rev. 36(SI), 211–224 (2002)

6. Eder, J., Liebhart, W.: Workflow recovery. In: Proceedings of the First IFCIS
International Conference on Cooperative Information Systems, COOPIS 1996, pp.
124–134. IEEE Computer Society, Washington, DC (1996)

7. Gessiou, E., Pappas, V., Athanasopoulos, E., Keromytis, A.D., Ioannidis, S.: To-
wards a universal data provenance framework using dynamic instrumentation. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 103–114. Springer, Heidelberg (2012)

8. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery
system. In: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP 2005, pp. 163–176. ACM, New York (2005)

9. Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: A framework
for automatic malware removal and system repair. In: Proceedings of the 22nd
Annual Computer Security Applications Conference, ACSAC 2006, pp. 257–268.
IEEE Computer Society, Washington, DC (2006)

212 E. Yoon and P. Liu

10. Jain, S., Shafique, F., Djeric, V., Goel, A.: Application-level isolation and recovery
with solitude. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008, Eurosys 2008, pp. 95–107. ACM, New York
(2008)

11. Kim, D., Rinard, M.C.: Verification of semantic commutativity conditions and in-
verse operations on linked data structures. In: Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2011, pp. 528–541. ACM, New York (2011)

12. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using se-
lective re-execution. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, pp. 1–9. USENIX Association,
Berkeley (2010)

13. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP 2003, pp. 223–236.
ACM, New York (2003)

14. Mahajan, P., Kotla, R., Marshall, C.C., Ramasubramanian, V., Rodeheffer, T.L.,
Terry, D.B., Wobber, T.: Effective and efficient compromise recovery for weakly
consistent replication. In: Proceedings of the 4th ACM European Conference on
Computer Systems, EuroSys 2009, pp. 131–144. ACM, New York (2009)

15. Paleari, R., Martignoni, L., Passerini, E., Davidson, D., Fredrikson, M., Giffin, J.,
Jha, S.: Automatic generation of remediation procedures for malware infections.
In: Proceedings of the 19th USENIX Conference on Security, USENIX Security
2010, p. 27. USENIX Association, Berkeley (2010)

16. van der Aalst, W., Weijters, T., Maruster, L.: Workflowmining: Discovering process
models from event logs. IEEE Trans. on Knowl. and Data Eng. 16(9), 1128–1142
(2004)

17. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, pp. 255–264. ACM, New York (2002)

18. Xiong, X., Jia, X., Liu, P.: Shelf: Preserving business continuity and availability
in an intrusion recovery system. In: Proceedings of the 2009 Annual Computer
Security Applications Conference, ACSAC 2009, pp. 484–493. IEEE Computer
Society, Washington, DC (2009)

19. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS 2007,
pp. 116–127. ACM, New York (2007)

20. Yu, M., Liu, P., Zang, W.: Self-healing workflow systems under attacks. In: Pro-
ceedings of the 24th International Conference on Distributed Computing Systems
(ICDCS 2004), pp. 418–4025. IEEE Computer Society, Washington, DC (2004)

	XLRF: A Cross-Layer Intrusion Recovery Framework for Damage Assessmentand Recovery Plan Generation
	1 Introduction
	2 Related Work
	3 Example
	4 XLRF Overview
	4.1 Assumptions
	4.2 Cross-Layer Recovery
	4.3 Workflow Level
	4.4 Operating System Level

	5 Design and Implementation
	5.1 Input
	5.2 Output
	5.3 Logging
	5.4 Dependency Analysis
	5.5 Damage Assessment
	5.6 Recovery Plan Generation
	5.7 Implementation

	6 Evaluation of Recovery Plan
	7 Revisiting the Limitations of Single Layer Recovery
	8 Conclusion
	References

