
Better Counterexamples for Dafny

Aleksandar Chakarov1, Aleksandr Fedchin2(�) , Zvonimir Rakamarić1 , and
Neha Rungta1

1 Amazon Web Services, Seattle, WA, USA
aleksach,zvorak,rungta@amazon.com
2 Tufts University, Medford, MA, USA
aleksandr.fedchin@tufts.edu

Abstract. Dafny is a verification-aware programming language used at
Amazon Web Services to develop critical components of their access man-
agement, storage, and cryptography infrastructures. The Dafny toolchain
provides a verifier that can prove an implementation of a method satis-
fies its specification. When the underlying SMT solver cannot establish
a proof, it generates a counterexample. These counterexamples are hard
to understand and their interpretation is often a bottleneck in the proof
debugging process. In this paper, we introduce an open-source tool that
transforms counterexamples generated by the SMT solver to a more user-
friendly format that maps to the Dafny syntax and is suitable for further
processing. This new tool allows the Dafny developers to quickly identify
the root cause of a problem with their proof, thereby speeding up the
development of Dafny projects.

Keywords: Dafny · Counterexample · Verification · SMT

1 Introduction

Dafny [12,11,6] is a verification-aware programming language popular in the
automated reasoning community. Amazon Web Services (AWS), in particular,
uses Dafny to develop critical components of their access management, storage,
and cryptography infrastructures [5]. For these components, developers at AWS
are writing Dafny programs that include the specification and the corresponding
implementation. The advantage of using Dafny is that one can leverage the
built-in verifier during the development process to automatically prove that the
implementation of a method satisfies its specification. Finally, Dafny provides
compilers for generating executable code in different target languages, such as
C#, Java, and Go. For example, AWS developers have implemented the core
AWS authorization logic in Dafny, and generated production Java code using a
custom Java compiler. However, despite its advantages, Dafny has so far lacked
in debugging functionality that could guide the developer to the root cause of
a potential assertion (i.e., proof) failure. This was slowing down the developers,
and it prompted the work on counterexample extraction that we present in this
paper.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 404–411, 2022.
https://doi.org/10.1007/978-3-030-99524-9_23

http://orcid.org/0000-0003-0810-1941
http://orcid.org/0000-0001-7946-0162
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_23

To confirm that an assertion holds, Dafny verifier first translates Dafny source
into the Boogie [1,3] intermediate verification language. Boogie generates a ver-
ification condition and submits it to an SMT solver (in our case Z3 [13,15]).
When an assertion is violated, the solver provides a counterexample (i.e., a coun-
terexample model). Understanding such counterexamples is key to debugging a
failing proof. However, due to the two translation steps separating Dafny code
from the SMT query, the counterexamples provided by the solver are difficult
to understand and inhibit the debugging process. The scope of the problem be-
comes apparent from the fact that a counterexample extraction tool was once
developed for Boogie [10], a language that is much closer to the solver in the
verification pipeline than Dafny.

Prior attempts to present Dafny counterexamples in a human-readable for-
mat [9,8] have been successful with integers and Booleans but yielded unsatis-
fying results for other types. Our main contribution is a tool that improves the
readability of Dafny counterexamples for other basic types, user-defined types,
and collections. The tool converts a counterexample generated by the solver to
a format that is intuitive to Dafny developers. In addition to improving the user
experience, our tool lays the foundation for automatic test case generation, as
we discuss in Section 4.

2 Motivation

Fig. 1 shows our running example of a Dafny program. The program defines
a class Simple with an instance method Match that returns true if argument s
(of type string that is alias for seq<char>) matches the pattern p. For sim-
plicity, we only allow the '?' meta-character in the pattern, which matches any
character. The program also includes specifications in the form of preconditions,
postconditions, and loop invariants. The Dafny verifier uses these to prove the
correctness of the method implementation.

To demonstrate the usefulness of counterexamples and the need to present
them in a human-readable format, we introduce a bug into the Match method.
We do this by deleting the part of the guard highlighted on line 16, thereby
turning the method into a string equality check. The implementation of the
method and its specification are no longer in agreement, and the Dafny verifier
reports that the postcondition on line 7 might be violated on line 18. Even in
this simple case, the information that the verifier gives, although it might help
in localizing the problem, does not make the cause of the bug apparent. The
counterexample provided by the solver spans hundreds of lines and is difficult to
read. For example, Fig. 2 gives a slice of this counterexample showing just that
variable s has type seq<char>.

In contrast, our tool, released with Dafny v3.3.0, generates the following
counterexample that triggers the postcondition violation:

s:seq<char> = (Length := 1, [0] := 'A');
this:Simple = (p: @1);
@1:seq<char> = (Length := 1, [0] := '?');

Better Counterexamples for Dafny 405

1 class Simple
2 {
3 var p:string
4

5 method Match(s: string) returns (b: bool)
6 requires |p| == |s|
7 ensures b <==> forall n :: 0 <= n < |s| ==>
8 s[n] == p[n] || p[n] == ’?’
9 {

10 var i := 0;
11 while i < |s|
12 invariant i <= |s|
13 invariant forall n :: 0 <= n < i ==>
14 s[n] == p[n] || p[n] == ’?’
15 {

16 if s[i] != p[i] && p[i] != ’?’

17 {
18 return false;
19 }
20 i := i + 1;
21 }
22

23 return true;
24 }
25 }

Fig. 1: A Dafny program that matches a string against a pattern. The highlighted
code is removed to introduce a bug as described in Section 2.

Here, the first line indicates that argument s is a sequence of characters (i.e., a
string) of length 1, where the character at index 0 is A. Field p of the receiving
object (this) points to object @1, where @1 is a string of length 1 with the
? meta-character at index 0. With these inputs, the buggy implementation of
method Match returns false because the pattern and argument are not identical,
even though they should match according to the specification.

Before we incorporated our tool into Dafny, it would report the following
counterexample for this same program:

s = [Length 1](T@U!val!71); this = (T@U!val!75);

Clearly the counterexample generated by our tool is much more informative.
Among the tools in this space that we know of, only Why3 [7] has counterexample
generation functionality of similar complexity.

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta406

s#0 -> T@U!val!71 // Boogie variable s#0 has ID 71
BoxType -> T@T!val!15 // Boogie’s Box type has ID 15
type -> { // The Boogie type of variable s#0 has ID 22
T@U!val!71 -> T@T!val!22

}
SeqTypeInv0 -> { // Boogie type of s#0 is Seq Box:
T@T!val!22 -> T@T!val!15

}
$Is -> { // Dafny type of variable s#0 has ID 76
T@U!val!71 T@U!val!76 -> true

}
Tag -> { // Type with ID 76 is a subtype of a type with ID 13
T@U!val!76 -> T@U!val!13

}
TagSeq -> T@U!val!13 // Dafny type with ID 13 is seq
TChar -> T@U!val!1 // Dafny type with ID 1 is char
Inv0_TSeq -> { // Dafny type with ID 76 is seq<char>
T@U!val!76 -> T@U!val!1

}

Fig. 2: An extract of a counterexample model generated by Z3 for the code in
Fig. 1 that shows that variable s has type seq<char>.

3 Design and Implementation

We implemented our tool on top of the existing Dafny counterexample extraction
functionality by adding key new features such as the ability to extract types from
the Z3 model and support complex types (e.g., sequences) beyond just integers
and Booleans. Our type extraction supports type parameterization and type
renaming, and makes extracted counterexamples useful beyond improved user
experience, e.g., automatic test case generation (see Section 4).

We illustrate how the counterexample generation tool works using our run-
ning example from Fig. 1. Before the tool can look up the types and values of
specific variables, it must first identify the variables and program states1 relevant
to the given counterexample. In our example, there are four relevant program
states: the initial state, the state following the initialization of i, the state at the
loop head, and the state preceding the return statement. There are three rele-
vant variables: this, s, and i. Our tool inherits the extraction of this information
from the Z3 model from the existing counterexample generator.

Once we identify the relevant variables and states, we determine the type of
each variable. This is a two-step process. First, we extract the Boogie type of
a variable in the Boogie translation from the Z3 model (e.g., Seq Box for s in
Fig. 2). Then, we map it to its corresponding Dafny type (seq<char> for s in

1 Dafny to Boogie translator marks Dafny program states with the :capturedState
annotation in Boogie.

Better Counterexamples for Dafny 407

Variable Constraint Counterexample
b:bv6 b == 1 b:bv6 := 0

r:real r != 0.2 r:real := 1.0/5.0

c:char c != 'c' c:char := 'c'

c:char c == 'c' c:char := 'A'

d:M.DType d.i > 4 d:M.DType = A(i := -34)

a:array2?<int> a.Length0 < 2 ||
a.Length1 < 2 ||
a[1,1] != 3

a:_System.array2?<int> :=
(Length0 := 2, Length1 := 40,
[1,1] := 3)

s:set<int> 1 in s s:set<int> = {1 := false}

s:set<int> 1 !in s s:set<int> = {1 := true}

s:seq<int> |s| < 1 || s[0] != 3 s:seq<int> = [3]

s:seq<int> |s| < 2 || s[1] != 3 s:seq<int> = (Length := 2,
[1] := 3)

m:map<int, char> 1 !in m m:map<int,char> = (1 := 'A',
2 :='B', 3 :='C', 4 :='D')

Table 1: Counterexamples generated for different constraints.

Fig. 2). The latter step may require choosing among the different types listed by
the model (e.g., between string and seq<char>). We give preference to the orig-
inal type names (seq<char>) to clearly separate user-defined from built-in types.
We also take special care to extract type parameters and reconstruct the Dafny
type name from its Boogie translation, for example, Module.Module2.Class
from Module_mModule2.Class.

After determining the type of a variable, our tool extracts the string rep-
resentation of the variable’s value. The way the value is specified in the coun-
terexample model depends on the variable type. In method Match in Fig. 1, the
receiver is an instance of a user-defined class Simple, so the tool looks up the
value of its only field this.p. This field is itself a non-primitive variable, and so
we recurse into its definition until we reach a value of a primitive type, which we
then use to construct the non-primitive value. In case the model does not specify
a value for some variable of primitive type, the tool automatically generates an
adequate value that is different from any other value of that type in the model
or source code.

Our implementation of the counterexample extraction tool supports all ba-
sic types, user-defined classes, datatypes, arrays, and the three most commonly
used collections (sequence, sets, and maps). See Table 1 for concrete examples
of the tool’s output. Previously, the counterexample generator could only show
the values of integer and Boolean variables, constructor names used to create a
datatype, or the length of a sequence. The differences between our new imple-
mentation and past versions are mostly due to the support we added for new
types and collections (e.g., chars, bit vectors, maps). However, we also had to
revamp and bring up-to-date some of the previously implemented features that
have since ceased to function as intended. For instance, Krucker and Schaden [9]

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta408

show that they could once extract the values of object’s fields, but this function-
ality had not been maintained and it stopped working properly. We speculate
that the lack of automated testing likely contributed to the failure to adapt the
counterexample extraction to the rapidly evolving Dafny infrastructure. To en-
sure maintainability, we have developed an extensive test suite as part of this
work. The test suite contains 54 tests covering all supported types and collec-
tions, and is executed as part of the continuous integration process of Dafny.

To benefit from the counterexample extraction feature while working in Vi-
sual Studio Code IDE, the user needs only to install the Dafny plugin.2 In addi-
tion to visualizing counterexamples in the VS Code plugin, the counterexample
extraction tool provides a public API and can be imported as a dependency by
any C# project. Finally, we made our accompanying artifact publicly available
to improve the reproducibility of our contributions [4].

4 Conclusions and Future Work

This paper presents the new, improved version of Dafny’s counterexample ex-
traction tool, which now extracts values of all variables of basic or user-defined
types as well as variables representing algebraic datatypes, arrays, sequences,
sets, and maps. We integrated the tool into the Dafny plugin for Visual Studio
Code, and released it with Dafny v3.3.0. The tool has already been used by
Dafny developers to assist them during the proof debugging process.

Note that a counterexample reported by the Dafny verifier might occasion-
ally be a spurious one. This is a well-known problem that users of these veri-
fiers struggle with. It is typically due to the incompleteness of the underlying
SMT solver, for example, in the presence of quantifiers. A possible solution to
identifying spurious counterexamples is to generate a concrete test case from
the counterexample, execute the program concretely using the test case, and
observe whether the concrete execution violates the same property [2,14]. The
counterexample extraction tool presented in this paper, with its ability to extract
the type and concrete value of any variable, can be used for test case generation
as well. As future work, we plan to build on this functionality and implement
extensions for identifying spurious counterexamples as well as for automatic unit
test generation.

Acknowledgements We thank Christoph Amrein, Rustan Leino, Bryan Parno,
Shaz Quadeer, Robin Salkeld, and Remy Wilems for reviewing our pull requests
to Boogie and Dafny, as well as for their feedback that helped us to improve the
early versions of the tool. We also thank Sean McLaughlin, Matthias Schlaipfer,
and Jenny Xiang for their insights into the usability of the tool in practice, and
to Jeff Foster for reviewing the initial drafts of the paper.

2 Developed by the Correctness Lab at OST Eastern Switzerland University of Applied
Sciences [9,8].

Better Counterexamples for Dafny 409

References

1. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: International Sym-
posium on Formal Methods for Components and Objects. pp. 364–387 (2005).
https://doi.org/10.1007/11804192_17

2. Becker, B.F.H., Lourenço, C.B., Marché, C.: Explaining counterexam-
ples with giant-step assertion checking. In: Workshop on Formal Inte-
grated Development Environment. EPTCS, vol. 338, pp. 82–88 (2021).
https://doi.org/10.4204/EPTCS.338.10

3. Boogie, https://github.com/boogie-org/boogie
4. Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better counterexamples for

Dafny artifact (2021). https://doi.org/10.5281/zenodo.5571033
5. Cook, B.: Formal reasoning about the security of Amazon web services. In:

International Conference on Computer Aided Verification. pp. 38–47 (2018).
https://doi.org/10.1007/978-3-319-96145-3_3

6. Dafny, https://github.com/dafny-lang/dafny
7. Dailler, S., Hauzar, D., Marché, C., Moy, Y.: Instrumenting a weakest precondition

calculus for counterexample generation. Journal of Logical and Algebraic Methods
in Programming 99, 97–113 (2018). https://doi.org/10.1016/j.jlamp.2018.05.003

8. Hess, M., Kistler, T.: Dafny Language Server Redesign. Term project, HSR
Hochschule für Technik Rapperswil (2019)

9. Krucker, R., Schaden, M.: Visual Studio Code Integration for the Dafny Language
and Program Verifier. Bachelor’s thesis, HSR Hochschule für Technik Rapperswil
(2017)

10. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie verification debugger (tool
paper). In: International Conference on Software Engineering and Formal Methods.
pp. 407–414 (2011). https://doi.org/10.1007/978-3-642-24690-6_28

11. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning. pp. 348–370 (2010). https://doi.org/10.1007/978-3-642-17511-4_20

12. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Software 34(6),
94–97 (2017). https://doi.org/10.1109/MS.2017.4121212

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Nilizadeh, A., Calvo, M., Leavens, G.T., Le, X.B.D.: More reliable test suites for
dynamic APR by using counterexamples. In: IEEE International Symposium on
Software Reliability Engineering (2021), to appear

15. Z3, https://github.com/Z3Prover/z3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta410

https://doi.org/10.1007/11804192_17
https://doi.org/10.4204/EPTCS.338.10
https://github.com/boogie-org/boogie
https://doi.org/10.5281/zenodo.5571033
https://doi.org/10.1007/978-3-319-96145-3_3
https://github.com/dafny-lang/dafny
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1007/978-3-642-24690-6_28
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
http://creativecommons.org/licenses/by/4.0/

material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Better Counterexamples for Dafny 411

	Better Counterexamples for Dafny
	1 Introduction
	2 Motivation
	3 Design and Implementation
	4 Conclusions and Future Work
	References

