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Abstract The reliable operation of systems with both timing and energy require-
ments is a fundamental challenge in the area of safety-critical embedded systems.
In order to provide guarantees for the execution of tasks within given resource
budgets, these systems demand bounds of the worst-case execution time (WCET)
and the worst-case energy consumption (WCEC). While static WCET analysis
techniques are well established in the software development process of real-time
systems nowadays, these program analysis techniques are not directly applicable to
the fundamentally different behavior of energy consumption and the determination
of the WCEC. Besides the missing approaches for WCEC bounds, the domain
of worst-case analyses generally faces the problem that the accuracy and validity
of reported analysis bounds are unknown: Since the actual worst-case resource
consumption of existing benchmark programs cannot be automatically determined,
a comprehensive validation of these program analysis tools is not possible.

This summary of my dissertation addresses these problems by first describing
a novel program analysis approach for WCEC bounds, which accounts for tem-
porarily power-consuming devices, scheduling with fixed real-time priorities, syn-
chronous task activations, and asynchronous interrupt service routines. Regarding
the fundamental problem of validating worst-case tools, this dissertation presents
a technique for automatically generating benchmark programs. The generator
combines program patterns so that the worst-case resource consumption is available
along with the generated benchmark. Knowledge about the actual worst-case
resource demand then serves as the baseline for evaluating and validating program
analysis tools. The fact the benchmark generator helped to reveal previously
undiscovered software bugs in a widespread WCET tool for safety-critical systems
underlines the relevance of such a structured testing technique.
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1 Introduction

One central challenge of the 2020s in the domain of embedded computing systems
is the reliable operation of systems that face energy constraints due to harvesting
energy from the environment [4]. Additional to the existence of energy constraints,
applications increasingly come up with both energy and timing constraints, such as
medical devices (like implantable defibrillators) with harvesting mechanisms [16].
Such systems have to meet real-time guarantees on the timely execution of tasks,
and additionally, tasks have to be executed within given energy budgets due to
being battery-operated and dependent on energy-harvesting techniques. In order to
enable safe scheduling under consideration of available time and energy resources,
developers require the values of the worst-case execution time (WCET) as well as
the worst-case energy consumption (WCEC) of each task.

Static program analysis tools of the system’s program code are the fundamental
means in the domain of real-time systems to determine the tasks’ bound of the
WCET [32]. While practical analyses for the timing-related problem exist for
systems with fixed real-time priorities [1, 5], these techniques are not directly
applicable to the fundamentally different problem of energy consumption and the
assessment ofWCEC values. For example, for theWCEC-related problem, analyses
that only consider the real-time priorities of tasks are insufficient: Tasks with a
low real-time priority have the possibility to temporarily activate power-consuming
devices (e.g., transceivers). The activation of a device, in turn, influences the power
demand (and likewise the energy demand over time) of each task in the system
irrespective of their priority. Thus, worst-case energy-consumption analyses need to
consider such mutual influences between tasks in the whole system.

Besides the missing approaches for WCEC values, static worst-case analysis
tools generally face the fundamental problem of missing evaluations and validations
of the reported worst-case bounds: Based on sound abstraction, analysis tools yield
safe resource-consumption bounds. However, the actual WCET and likewise the
actual WCEC of arbitrary (benchmark) programs are unknown since such nontrivial
properties cannot be automatically extracted from existing programs [12, 20]. Due
to this missing knowledge, the assessment of the analysis tool’s accuracy (i.e., the
distance between reported bound and actual worst case) is not possible, and the
analysis pessimism remains unknown. Furthermore, the lack of the actual worst
case leaves the question unanswered whether the implemented analysis contains
software bugs since the actual baseline is not available.

The dissertation [33] addresses the mentioned problems of (1) determining
WCEC bounds, (2) validating static worst-case analyzer, and (3) operating energy-
and time-constrained embedded systems. Figure 1 illustrates the conceptual struc-
ture of the dissertation. The following three solutions are the main contributions of
the dissertation:
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Fig. 1 Conceptual structure of the dissertation: Runtime guarantees demand upper resource-
consumption bounds, which are determined by static worst-case tools. A benchmark-generation
technique reveals the expected degree of analysis pessimism and thereby validates the reported
results of the analysis tools. An operating-system kernel, which makes use of resource bounds,
eventually enables applications to operate safely

1. The WCEC analyzer SysWCEC determines upper bounds of the energy con-
sumption of tasks in systems that are scheduled with fixed priorities [24, 25,
27] (see Sect. 2).

2. The benchmark generator GenE allows for the first time comprehensive evalua-
tions and validations of static worst-case tools based on automatically generated
benchmarks, whose actual worst case is known [26, 28, 31] (see Sect. 3).

3. The operating-system kernel EnOS supports the reliable operation of systems
with both timing and energy constraints based on a priori knowledge of WCET
and WCEC bounds [29, 30].

While this chapter gives insight into the first two main contributions with the
focus on system-software engineering, the third aspect goes beyond the scope of
this chapter. The chapter is structured as follows: Sect. 2 first presents background
information on the problem of WCEC analyses and gives insight into the analyzer
SysWCEC. The fundamental problem of validating worst-case tools is discussed in
Sect. 3, along with the solution of GenE for this problem. Sect. 4 concludes this
chapter.

2 Worst-Case Analyses

The following Sect. 2.1 presents background information on static worst-case
analyses and the system model of the dissertation. The main problem statement
for WCEC analyses is discussed in Sect. 2.2. Section 2.3 introduces SysWCEC, an
analyzer for system-wide WCEC analyses.
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2.1 Background and System Model

Besides the analysis results’ validity, analysis pessimism is a core problem of static
worst-case analyses. The causes of this problem are outlined as follows.

2.1.1 Analysis Pessimism

Figure 2 depicts the resource consumption (either energy or execution time in this
scenario) for an example task. The resource consumption of the task varies, for
example, with different input data or different initial hardware states when starting to
execute the task. Static worst-case tools rely on pessimistic assumptions during their
analyses that eventually yield safe, however, overestimating bounds. The distance
between the actual worst case and the reported upper bound describes the analyzer’s
pessimism for a safe execution of the task. Static worst-case analysis techniques are
subdivided into the phase of (1) program-flow analysis and (2) hardware analysis.
The first phase, which also known as path analysis, explores the possible program
paths, determines value constraints of variables, and assigns loop bounds in order
to yield upper bounds on executed paths. For example, a mediocre path analysis
without the ability to precisely model path constraints is forced to pessimistically
include all branches with the highest resource demand, irrespective of whether the
combination of these branches is an actually feasible program path. The second
phase of hardware analysis uses the executable machine code of the application and
determines (under consideration of the target’s caching and pipelining behavior) the
actual cost (e.g., in mJ forWCEC or in ms for WCET) of each executed basic block.
Both the path- and hardware-analysis phase contribute to the overall pessimism of
this analysis. Section 3 gives further details on how to isolate and assess the factors
that contribute to an analyzer’s pessimism. Both analyses phases model the runtime
behavior of the executed program on the target platform; thus, analyses demand
detailed knowledge about the targeted system model, which is outlined as follows.

Fig. 2 Histogram of an example task’s resource consumptions
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2.1.2 System Model

All executed code of the application is available for the analysis. As usual for
embedded systems, the number of tasks is statically known. Due to the scenario
of resource-constrained embedded systems, the systems execute the (single) appli-
cation on one processing core as part of a microcontroller unit. In contrast to desktop
machines, these processing cores have limited complexity, which is a beneficial
property for static worst-case analyses and allows determining precise hardware
models. All tasks in the system are handled by the scheduler according to their fixed
priorities. The tasks have the possibility to acquire operating-system resources (e.g.,
mutexes) for synchronization purposes. These resources as well as their associated
users are statically known. Asynchronous interrupts are common in the targeted
systems, for example, in the case of timer interrupts for deadline monitoring. For
static worst-case analyses, these interrupts pose a considerable challenge since
analysis techniques have to encompass the possible dynamic behavior by static
means. A requirement for bounding the occurrence of interrupts is that their arrival
is bounded by a minimum inter-arrival time (i.e., the minimum timespan between
two successive interrupts). For the power consumption of the system (and thus
the energy demand over time), software-controlled devices play an essential role.
Devices are not necessarily external to the microcontroller unit, such as transceiver
devices for communication. Instead, numerous internal devices, such as timer
subsystems or analog-to-digital converters, are usually available. Both internal and
external devices have the same power-consumption behavior in view of a static
analysis tool: The activation of a device leads to an increase of the whole system’s
power demand and the deactivation, in turn, reduces the power, which is further
discussed as follows.

2.2 Problem Statement of WCEC Analysis

For the purpose of energy savings, devices are kept active only for the durationwhile
their service is required. Figure 3 illustrates such a temporary device activation,
for example, for sending out a packet via a transceiver device. This temporary
device activation is executed by the task τLOW with low priority in contrast to
the second task with higher priority τHIGH . The task τHIGH is, in turn, activated
through an interrupt service routine (ISR). ISRs generally preempt running tasks,
regardless of the tasks’ real-time priority. In the example, the low-priority task’s
device activation leads to an increase of the systems power demand from 5mW to
35mW. As illustrated on the right part of Fig. 3, two possible runtime scenarios
exist in view of the energy demand from the start until the completion of τLOW :
In scenario a (see Ea in Fig. 3), the interrupt occurs in the system state of lower
power demand (i.e.,5mW). In contrast, the ISR is serviced in scenario b (Eb) in the
state of the higher power demand. This second scenario is the worst case in terms
of the energy demand (i.e., area under the power demand). This worst-case scenario
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Fig. 3 The system-state–dependent power demand of the whole system influences the energy
demand of each task

is indeed the worst case for both τLOW (whole area) as well as for τHIGH (red
area below H ). The worst case of τHIGH is initiated by the fact that the task starts
executing with a higher initial power demand (caused by τLOW ). For the analysis of
theWCET, these context-sensitive power states are irrelevant, and only the unilateral
influence of lower- tasks by higher-priority tasks is of interest. In contrast, WCEC
analyses must account for system-wide de-/activations of devices as well as the
system’s total power state. When reconsidering the example, τHIGH influences
the energy demand of τLOW by a prolonged execution time. However, also τLOW

influences τHIGH due to τLOW ’s responsibility for τHIGH ’s higher power state.
To summarize the observations: WCEC analyses have to consider all device de-
/activations along the system-wide program paths in order to account for the mutual
influences between all tasks in the system.

2.3 SysWCEC: Whole-System WCEC Analysis

The dissertation proposes the SysWCEC approach [25] for solving the problems
mentioned above. In a nutshell, SysWCEC consists of four steps:

1. Decomposition: The code of the application is decomposed into blocks with a
common set of active devices and, thereby, a common power state.

2. Path Exploration: Based on the result of the decomposition, SysWCEC conducts
an explicit enumeration of all possible system-wide program paths.
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3. Problem Formulation: The knowledge about the program paths is the foundation
for the formulation of an integer linear program (ILP).

4. WCEC Determination: Solving the ILP, with its objective of the worst-case
behavior, eventually yields a WCEC bound of the analyzed task.

The following section gives further insight into SysWCEC’s working principle,
based on the example illustrated in Fig. 3.

2.3.1 Decomposition: Power Atomic Basic Blocks

The left part of Fig. 4 illustrates the original system with the three components of
τLOW , τHIGH , and the ISR. The step of the decomposition relies on the existing
technique of atomic basic blocks (ABBs) [21, 22]. The core concept of ABBs is
to split up the application’s code at a system-call location (e.g., task activation,
acquisition of mutex). In other words, each system call forms a terminator in the
atomic–basic-block graph. Each ABB thereby forms an atomically schedulable unit
from the perspective of the system’s real-time scheduler, whereas each ABB may be
executed inside a different system state. The SysWCEC approach extends this notion
of atomic basic blocks to support power-aware considerations. That is, SysWCEC
uses the device-related system calls (i.e., the calls that change the system’s active
device configuration) as additional terminators, which results in the graph of power
atomic basic blocks, or PABBs for short. As a result, the PABB graph holds blocks
with a common set of active devices and, thus, a common state of the power demand.
When considering the result of this decomposition in the running example (see right

Fig. 4 Decomposition into PABB Graph: The original system is decomposed into blocks with a
common set of active devices
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part in Fig. 4), the low-priority task τLOW now consists of three parts: the PABBa

with the code prior to the device activation, PABBb with the code with the active
device, and PABBc with the code after the device deactivation.

2.3.2 Path Exploration: Power-State–Transition Graph

The subsequent step after the decomposition of the original system into the
PABB graph is the path exploration. The input of this analysis step is the PABB
graph, and the output is a power-state–aware graph, named power-state–transition
graph (PSTG). Figure 5 illustrates the working principle of this path exploration
based on the running example: The algorithm starts with the initial power state of
the lower power consumption of 5mW. The path-exploration algorithm accounts for
the operating-system semantics (e.g., the fixed-priority scheduling strategy) and the
potentially occurring interrupts. For each possible state transition, the PSTG inserts
an edge to a corresponding PSTG node that describes the system state. Regarding
the handling of varying power demands, the algorithm accounts for device-state
changes and for the associated power-demand changes. If no power-state change
happens alongside a transition, the path exploration propagates the current power
state. The algorithm terminates when all possible states are visited, which is possible
due to the bounded number of system states in embedded systems with their fixed
number of tasks. As illustrated on the right side of Fig. 5, the PSTG finally holds
all context-sensitive program paths with their power consumptions. The knowledge

τ
LO

W

Fig. 5 Path Exploration: The SysWCEC approach uses the decomposed system (i.e., PABB graph)
and conducts an explicit enumeration of all possible system paths, which results in the power-state–
transition graph
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about these possible system-wide program paths enables SysWCEC to tackle the
problem of mutual influences between tasks.

2.3.3 ILP Formulation

The PSTG is the main input for the third analysis step in SysWCEC, the formulation
of an integer linear program. SysWCEC exploits the main technique for formulating
maximum flow problems from the well-established approach of the implicit path
enumeration technique (IPET) [14]. The IPET targets single-threaded executions
and uses the program’s control-flow graph as input. Based on the control-flow
graph’s branches, the IPET inserts constraints from the program’s flow into an ILP
formulation. With the same purpose of finding an upper bound of the cost through a
flow graph, the SysWCEC approach leverages the IPET’s single-threaded approach
to the system-state level. SysWCEC now uses the PSTG’s paths as constraints for
an ILP formulation. The objective function of the ILP is shown in the following
Eq. 1, which determines the maximum flow through the system’s state graph of the
analyzed task with its nodes (ν ∈ V) and transitions in between (ε ∈ E):

max
(
(
∑
ν∈V

WCEC(ν) · f (ν))

︸ ︷︷ ︸
nodes

+ (
∑
ε∈E

WCEC(ε) · f (ε))

︸ ︷︷ ︸
edges

)
(1)

The variables f (ν) and f (ε) denote the execution frequencies of the correspond-
ing nodes and edges. Finally, SysWCEC directs this problem formulation to an
optimizing solver (e.g., gurobi, lp_solve), which determines bounds on these
execution frequencies and yields the final WCEC bound for the analyzed task.

2.3.4 Cost Modeling

As shown in Eq. 1, the SysWCEC approach demands for the context-sensitive
costs of each node and each edge in the PSTG. Edge costs are often known
from documentation, such as the time and energy demand for the activation of
an analog-to-digital converter or transceiver. For the nodes V , SysWCEC extracts
the costs from the executed code within the PSTG node. For this cost modeling
of executed code, SysWCEC benefits from a synergy between WCET and WCEC
analysis: The multiplication of the maximum (context-sensitive) power demand,
which is available for each PSTG node, with the worst-case execution time of the
respective node results in an energy-consumption bound for the node. That is, the
cost modeling relies on the subsequent Eq. 2:

WCEC(ν) = Pmax(ν) · WCET (ν) (2)
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That way, the WCEC(ν) value is indirectly determined by means of the max-
imum power, instead of a direct instruction-level energy-consumption modeling
technique [17, 23]. For the determination of WCET (ν), existing timing-analysis
approaches are applied, which also account for the microarchitectural temporal
behavior (i.e., caching and pipelining behavior) on the target machine [19].

By employing these techniques, SysWCEC determines upper bounds on the
energy consumption of a task while considering all other tasks and power-related
activities. However, the question on the accuracy of these resource-consumption
estimates, from the view of the actual worst case, is left unanswered. The following
Sect. 3 focuses on the problem of the analysis accuracy ofWCET (ν) values, which,
in turn, contribute to the overall energy-related analysis pessimism according to
Eq. 2.

3 Validation of Worst-Case Analyses

The following Sect. 3.1 outlines the main problems of assessing the accuracy of
static worst-case analysis tools. One solution for these problems is GenE, which is
presented in Sect. 3.2.

3.1 Problem Statement of Validating Worst-Case Analyses

As previously illustrated in Fig. 2, the bound reported by the worst-case analysis
tool overestimates the actual worst-case resource consumption of the analyzed task.
This overestimating scenario assumes a bug-free implementation of the analysis
algorithm, which employs abstractions that make pessimistic assumptions on the
dynamic runtime behavior. Existing approaches for assessing the degree of analysis
pessimism use benchmark suites, which are written on the level of source code (e.g.,
C). The fundamental problem with this type of evaluation is that the actual baseline
is missing, which is the actual worst case serving as ground truth. This problem of
missing baselines also prevails when trying to validate if the reported bound actually
overestimates the actual worst case.

Unfortunately, the actual worst case as well as all relevant program facts, such as
loop bounds or mutually exclusive program paths, cannot be automatically extracted
from existing benchmark programs [12, 20]. Moreover, the manual extraction of
these program facts is labor-intensive and error-prone. Due to the lack of knowledge
on the actual baseline, existing evaluation and validation techniques have limited
significance since the absolute degree of over- or—in the presence of software
bugs—underestimation on a global scale is unknown.

A further problem when conducting evaluations based on existing benchmark
suites is that these programs usually consist of numerous challenges for the static
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analyzer. The task τsort in the following Listing 1 serves as an example to illustrate
this problem. This task’s code sorts the numbers held in the array values.

Listing 1 Listing with several program components that cause the analysis to potentially
overestimate the actual worst-case resource consumption
1 const size_t N = 1024;
2 int32_t values[N];
3

4 TASK(τsort){
5 ...
6 for(i = 0; i < N-1; i++){
7 for(j = 0; j < N-1-i; j++){
8 if(compare(values[j], values[j+1]))
9 swap(&values[j], &values[j+1]);

10

11 }
12 }
13 }

The outer loop in Line 6 has a constant iteration bound, while the inner loop’s bound
in Line 7 is decremented with each iteration of the outer loop. Thereby, this nested
loop has a rectangular loop shape (i.e., N-1·N-1). If analyzers are not able to
precisely bound this type of loop, a pessimistic assumption is a rectangular loop
shape, which overestimates the actual worst case. Furthermore, input-dependent
computations (as outlined in Line 8) cause overestimations if the analyzer cannot
automatically determine value constraints. Eventually, the task τsort is executed
on a hardware platform. Thus, the analyzer has to model the dynamic hardware
behavior (i.e., pipelining, caching) in order to report an accurate bound. All these
factors contribute to the overall analysis pessimism. When having a poor analysis
result, system developers face the problem that the individual causes for the high
degree of overestimation are unknown.

3.2 GenE: Benchmark Generator for WCET Tools

TheGenE benchmark [26, 28] is one possible solution for the problemof conducting
comprehensive evaluations and validations of worst-case tools. GenE generates
benchmarks in a way that all program facts are known. Based on this knowledge
about these facts, GenE is able to determine the actual WCET, which, in turn, serves
as ground truth for the validation of static analyzers.

The basic principle of GenE is explained best by using a metaphor: Benchmarks
are like mazes for analyzers, which need to find a way possible through the maze.
However, even if an analyzer finds a way (i.e., solution), it is still unknown if this
way is the optimal path.GenE follows a different approach: First,GenE predefines a
path and then successively inserts branches around this path. Thereby, GenE builds
the maze around this path. Due to GenE’s generative approach, the optimal (i.e.,
actual worst-case) path is known by construction.
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3.2.1 Program Pattern

For the process of benchmark generation, GenE relies on numerous program pat-
terns. These patterns are implemented inside the generator and have the following
properties and objectives:

• Worst-Case–Aware: The patterns have awareness of their worst-case path and
all relevant program facts, such as possible value constraints on introduced
variables.

• Composable: Patterns have so-called insertion points that offer the possibility to
insert further program patterns in order to generate new, complex benchmarks.

• Realistic: Although GenE produces synthetic benchmarks, it aims to output
realistic benchmark scenarios that pose realistic challenges for worst-case tools.
To solve this problem, GenE uses patterns from existing WCET benchmarking
suites [8, 9]. Other patterns originate from industry applications or from patterns
that are documented in literature to be challenging [3].

• Resilient: Compilers have the possibility to decisively change the programs’
structure when conducting aggressive optimizations. In order to account for such
optimizations, GenE uses patterns that already resemble optimized code.

GenE implements these patterns on the level of the LLVM intermediate representa-
tion [13]. However, for the sake of readability, the following Listing 2 illustrates a
pattern of GenE using the C programming language. This pattern, named init
-once, mimics a lazy initialization of components, which is often found in
embedded systems to initialize hardware components.

Listing 2 Pseudo code of GenE pattern with insertion points. The actual implementation of
program patterns relies on a lower abstraction level (i.e., LLVM intermediate representation).
1 static bool initialized = false;
2 void use_hardware(){
3 if (!initialized){
4 // init hardware
5 init(); // insertion point I1
6 initialized = true;
7 }
8 // use hardware:
9 ... // insertion point I2

10 }

The worst-case analyzer faces the challenge to model the global variable
initialized. If the analysis is not able to handle such value constraints, it
has to pessimistically include the (expensive) call of the function init(), which,
in turn, causes an overestimating WCET estimate.

Line 5 and 9 in this pattern highlight the two insertion points I1 and I2. At
these points in the benchmark, further possible patterns are inserted, which are
summarized in the following enumeration:

• Atomic Patterns: This class of patterns includes arithmetic operations and
assignments of constant or computed values.
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• Loop Patterns: GenE implements several shapes of loops, such as nested loops
or loops with an input-dependent/constant iteration count.

• Path Patterns: The pattern of Listing 2 is part of the path-pattern class. Addition-
ally, this class contains patterns with mutually exclusive paths due to the value
constraints or infeasible paths (i.e., dead code).

The fact that GenE implements these patterns on the low abstraction level of LLVM
intermediate representation gives GenE reasonable control over the generated code
on the machine-code level without the need to implement patterns directly with
a target-specific assembly language. For the mapping between the machine-code
representation and the LLVM representation, GenE relies on the technique of
control-flow–relation graphs [10], which are implemented in the Platin toolkit
for static analyses [18].

3.2.2 Pattern Suites

In order to tackle the problem of monolithic benchmarks, GenE has the notion of
pattern suites. These suites consist of a subset of all available patterns in GenE’s
pattern library. For example, the pattern suite hardware analysis voids the
influence of overestimations due to challenging loops or path constraints. Specifi-
cally, GenE produces here a single program path with the available patterns (i.e.,
introduction of variables, arithmetic operations) in the benchmark. This benchmark
then challenges the analyzers’ ability to model the target’s hardware behavior (i.e.,
caching, pipelining). Regarding the analysis stage of value analysis, GenE supports
a dedicated suite that inserts variables, arithmetic operations on these variables, and
branches based on the value constraints of the computed variables. This suite targets
the analyzers’ performance in view of the value-range–modelingproblem. The main
benefit of the pattern suites is the possibility to have benchmarks that are tailored
toward a specific scenario (i.e., hardware or path analysis). These scenarios then
help developers to reveal individual strengths and weaknesses of analyzers.

3.2.3 Inputs and Outputs of GenE

The configuration of the pattern-suite type is one input to the GenE generator,
as shown in Fig. 6. Besides the suites, GenE demands a path budget, which
approximates the number of instructions (on level of the LLVM intermediate
representation) along the generated worst-case path. Increasing the value of the path
budget leads to an increase of the benchmark’s complexity since a higher budget
allows GenE to insert more and longer patterns. A further input is the value for the
worst-case input value. This value is especially important for the generator because
using this value as input for the generated benchmark leads to an execution of the
designated worst-case path. This worst-case input value is an integer and also fulfills
the purpose of the generator’s seed value. That is, varying the worst-case input value
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Fig. 6 GenE generates benchmarks such that the actual WCET is available along with the
generated benchmark. This actual WCET value is necessary for comprehensive evaluations and
validations of static analysis tools

also changes the selection of the patterns in a pseudo-random way. By measuring
the execution of the worst-case path (either on the target platform or by means of
a cycle-accurate simulator), GenE determines the actual WCET for the generated
benchmark. Thus, GenE requires information about the selected target-hardware
platform. Besides this actual WCET value, GenE provides the generated program
along with the relevant flow facts (e.g., loop bounds).

3.3 Benchmark Weaving

As illustrated in Fig. 6, the benchmark-weaving algorithm selects a pattern from the
available subset of GenE’s pattern library. After inserting the next pattern into the
benchmark under construction, the algorithm updates the related flow facts.

An important aspect of the benchmark-weaving algorithm is the mechanism for
guaranteeing that the designated worst-case path is—in any case—longer than other
(non–worst-case) program paths through the benchmark. Specifically, GenE uses a
substantially larger path budget for the worst-case path when inserting a branch in
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the control flow. For example, along the worst-case path, GenE uses a factor of 25
more instructions compared to any other non-worst-case path. With that approach
of overweighting the branches of the worst-case path, GenE also compensates
for varying instruction times due to the target’s caching and pipelining behavior.
GenE supports the configuration of this overweighting factor as a target-specific
parameter.

3.4 MetricsWCA: Validation of GenE’s Benchmarks

The generation of synthetic benchmarks brings up the question of whether the
benchmarks are realistic and comparable, for example, with existing benchmark
suites in the context of WCET-analysis research. In order to assess the com-
plexity of GenE’s benchmarks with other benchmarks, the dissertation presents
MetricsWCA [31], code metrics for worst-case analyses.MetricsWCA relies on several
existing complexity measures (CM), which have partly been used in the context
of WCET analysis [9]. Some examples of these complexity measures are the
number of loops (including their nesting depths) CMloops, the depth of the longest
call chain CMcall, or McCabe’s cyclomatic complexity CMcc [15]. A novelty of
MetricsWCA is their property of accounting for the impact of compiler optimizations
on the benchmark under evaluation. That is, MetricsWCA compare the complexity
measures of an optimized version of the benchmark with its original (unoptimized)
variant. The result of this comparison is a resilience factor R for a specific
complexity measure CM:

RCM = CMafter optimization

CMbefore optimization
(3)

As an example, a benchmark has 12 loops (CMloops = 12) and all loops are
optimized out due to the compiler’s loop-unrolling optimization (i.e., CMloops = 0
in the optimized variant). As a consequence, this benchmark has a resilience of
Rloops = 0% against the loop-unrolling optimization. From the perspective of
assessing an analyzer’s performance for determining loop bounds, this benchmark
with zero resilience is unsuited since the problem of loop bounds is already
straightforward to solve for optimizing compilers. The main observations [26] when
applying MetricsWCA to GenE’s benchmarks are (1) a high resilience against com-
piler optimizations and (2) comparable complexities with respect to a benchmark
suite for WCET analysis [8]. These experiments used the standard configuration of
GenE’s path budget. A benefit of GenE’s generative approach is that an increase
of this configuration value leads to benchmarks with larger complexity measures.
Thus, the automatically generated benchmark’s complexity can be tuned in contrast
to existing benchmarks.
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Table 1 GenE detects individual strengths and weaknesses of the tools’ loop-bound analyses

constant input-dependent down-sampling triangular

loop loop loop loop

Analyzer aiT ✓ ✓ ✓ ✗
Analyzer Platin ✓ ✓ ✗ ✓

3.5 Determining Individual Strengths and Weaknesses of
Analyzers with GenE

GenE’s notion of pattern suites enables developers to identify the individual
strengths and weaknesses of analyzers. Table 1 shows results ofGenE’s loop-related
suites. The symbol ✓ expresses a successful solution to the respective loop-bound
challenge and ✗ indicates that the analyzer reported unbounded loops.

The constant loop suite inserts the patterns of variables, arithmetic
expressions, and loops with a constant iteration bound. Both WCET analyzers
Platin [18] and aiT [1] can solve this challenge. In the input-dependent
loop suite, the iteration bound is computed based on the benchmark’s input

value, and both analyzers find value constraints to bound these loops. The down
-sampling loop is a loop that decrements the iteration variable in the loop’s
body in addition to the loop’s header. That way, the iteration variable can no
longer be described as a closed-form expression. aiT solves this challenge while
Platin fails. The situation is inverted in the triangular loop suite: Platin
internally makes use of the LLVM compiler infrastructure, which supports scalar-
evolution expressions [2]. Due to the scalar-evolution analysis, Platin is able to
solve the challenge of the triangular loop suite.

3.6 Validation of the aiTWCET Analyzer

With knowledge of the ground truth, the actual WCET, GenE evaluates the
overestimation of analyzers and likewise validates that the reported estimate indeed
bounds the worst case. In order to conduct such evaluations,GenE generated 10,000
benchmarks for an ARM Cortex-M4 platform (Infineon XMC4500) and compared
the actual WCET with the value reported by the commercial analyzer aiT. Figure 7
shows a histogram of the occurrences of the overestimations. In these experiments,
the geometric mean of all overestimations is 23%. An overestimation of 0% would
indicate that all reported bound are equal to the respective actual worst case.
However, these experiments also revealed reported values where aiT erroneously
underestimated the actual WCET. Based on these benchmarks, AbsInt, the company
behind aiT, could confirm these underestimations. According to AbsInt, these
bugs were caused by an erroneous hardware model for memory accesses and the
pipelining behavior. Subsequently, AbsInt released a revised version of aiT, where
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Fig. 7 Histogram of over- and underestimations reported by aiT based on 10,000 automatically
generated benchmark programs. A value of 0% indicates the optimum (i.e., no analysis pessimism).
All (red) values smaller than 0% are underestimations and, consequently, show erroneous analysis
reports

no underestimation could be found with the help of GenE. With regard to the fact
that developers use static WCET analyses for highly safety-critical systems, the
benchmark generator GenE is a suitable software tool for testing analyzers and
increasing their quality.

3.7 Related Work and Generators in the GenE Family

The original idea for the development of the GenE benchmark generator is based
on the Csmith tool [34]: Csmith generates programs in the C programming
language (i.e., C99) for the purpose of stress-testing compilers. Using the bench-
marks generated by Csmith, 325 previously unknown bugs were revealed in both
open-source and commercial C compilers. These results emphasize the relevance of
such structured testing tools. With the same intention and the focus on evaluating
bug-detection tools, the program Bug-Injector [11] produces benchmarks by
relying on bug templates. In contrast to these tools, GenE targets comprehensive
evaluations of static WCET analyzers.

Besides the originalGenE tool for the main aim ofWCET analysis, we developed
GenEE, a benchmark generator that specifically targets WCEC analyses [7].
Furthermore, we proposed Taskers, a generator for whole real-time systems with
multiple tasks [6].
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3.7.1 Making Use of Analysis Pessimism on System Level

GenE supports with its specific pattern suites the assessment of individual strengths
and weaknesses of WCET analyzers. Although this assessment shows the specific
optimization potential of analysis techniques, pessimism remains in the safe upper
bounds. Analysis and runtime pessimism (due to not always executing the worst
case) then lead to slack resources during the system’s runtime (i.e., unused execution
time or energy resources). Slack is an undesired property of resource-constrained
systems since these systems aim to exploit best the available resources. In order
to mitigate this problem of slack and support efficient operation, the dissertation
presents the EnOS operating-system kernel [29, 30]. The basic idea of EnOS
is the awareness of mentioned analysis pessimism. That way, EnOS supports
optimistic scheduling for uncritical tasks (with the use of monitoring techniques)
and guarantees the reliable execution under both timing and energy constraints of
critical tasks.

4 Conclusion

The dissertation [33] targets the reliable operation of safety-critical systems with
both timing and energy constraints. The first main contribution is the program
analyzer SysWCEC that determines upper energy-consumption bounds of tasks.
SysWCEC implements an analysis technique for the modeling of temporarily active
power consumers. Furthermore, the analyzer accounts for the scheduling semantics
with fixed priorities, the tasks’ use of operating-system resources (e.g., mutexes),
synchronous task activations, and asynchronous interrupts.

Determining the degree of analysis pessimism is a fundamental problem in the
domain of worst-case analyses. The dissertation solves the problem of evaluating
and validating WCET analysis tools by means of the GenE benchmark generator.
GenE combines small program patterns while keeping track of program-flow facts
and, thereby, generates new complex benchmarks, whose worst-case behavior is
known. The fact that GenE’s generated benchmarks helped to discover previously
undetected software bugs in a commercial WCET analysis tool emphasizes the
relevance of such structured analysis-testing tools.

The source-code repositories of SysWCEC, GenE,MetricsWCA, and EnOS are
available online:
https://gitlab.cs.fau.de/syswcec
https://gitlab.cs.fau.de/gene
https://gitlab.cs.fau.de/enos

(continued)

https://gitlab.cs.fau.de/syswcec
https://gitlab.cs.fau.de/gene
https://gitlab.cs.fau.de/enos
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Dataset that helped to reveal software bugs in the aiT tool:
https://www4.cs.fau.de/Research/GenE/
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