
C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV

-C
O
M
P

CPALockator: Thread-Modular Analysis
with Projections

(Competition Contribution)

Pavel Andrianov ?1 , Vadim Mutilin1,3 , and Alexey Khoroshilov1,2,3,4

1 Ivannikov Institute for System Programming of RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow, Russia
4 Higher School of Economics, Moscow, Russia

Abstract. Our submission to SV-COMP’21 is based on the software
verification framework CPAchecker and implements the extension to the
thread-modular approach. It considers every thread separately, but in
a special environment which models thread interactions. The environ-
ment is expressed by projections of normal transitions in each thread.
A projection contains a description of possible effects over shared data
and synchronization primitives, as well as conditions of its application.
Adjusting the precision of the projections, one can find a balance between
the speed and the precision of the whole analysis.

Implementation on the top of the CPAchecker framework allows combining
our approach with existing algorithms and analyses. Evaluation on the
sv-benchmarks confirms the scalability and soundness of the approach.

Keywords: Multithreading · Projection · Thread-modular approach

1 Verification Approach

The main challenge for verification of industrial multithreaded software is to
consider a potential thread interaction efficiently. Our verification approach is
based on the thread-modular technique [4,5]. The approach allows avoiding a
cartesian product of thread states by considering each thread state separately.
Thus, an abstract state is not a complete one anymore and represents only one
thread in a partial abstract state. However, due to this, the analysis has no
information about transitions in other threads, which are strongly required for
the soundness of the analysis. Thus, to not lose soundness we have to take into
account the influence of other threads to the considered thread. For that purpose,
we compute a special representation of the environment, which consists of a set of
thread transitions, so-called projected transitions, or projections. The projections
may be more or less precise, which strongly affects the precision and speed of
the whole analysis. Note, the projections are independent and thus, a correct

? Representing jury member, corresponding author: andrianov@ispras.ru

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 423–427, 2021.
https://doi.org/10.1007/978-3-030-72013-1 25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_25&domain=pdf
http://orcid.org/0000-0002-6855-7919
http://orcid.org/0000-0003-3097-8512
http://orcid.org/0000-0002-6512-4632
https://doi.org/10.1007/978-3-030-72013-1_25


424 P. Andrianov et al.

sequence is missed. Potentially, all projections may affect the other thread in any
time. It is an overapproximation, leading to an imprecise analysis.

Let us explain, how we increase precision considering only compatible projec-
tions.

Thread1 Environment

x = 0

x = 1
x = 1; [x == 0] x = *

Thread2

x = 0

x = *
x = *;

...

...

...
...

...

...

Project Apply

Fig. 1. Computation of a thread environment and its application

The figure 1 shows one step of the analysis. After computation of an abstract
state in the first thread, we should spread the effect (x is a shared variable) to the
other threads. Thus, we compute a projection of the operation. The projection
is a part of the environment and affects the other threads through it. Then we
apply a new effect to the other threads.

In the example, we lose the precision of the effect, abstracting from the
assigned value (x = ∗). One of the key ideas of the proposed approach is to
extend abstraction not only to states but also to operations, i.e. transitions. Thus,
the projection may look like x = 1 and ∗ = ∗ in other configurations. That
allows adjusting the level of abstraction of the environment for a specific task.
By adjusting the configuration it is possible to vary not only an abstraction level
but also to construct an algorithm that may be closer either to data-flow analysis
or to software model checking.

To be able to construct precise analysis we suggest to encode not only abstract
operations but also some conditions of its application, so-called guards. The guards
are related to a predecessor abstract state, but they are not required to be equal
to it. The guards store some information about variable values, locks, threads, or
even abstract predicates. In the figure 1 the guard contains information about the
initial value of the modified variable x (x == 0). A projection may be applied to
a particular state if the guards allow it. We say, that the projection is compatible
to an abstract state of the other thread. In our example the effect x = ∗ may be
applied to the other thread only if the corresponding state does not contradict
the condition x == 0.

More information about the approach and theoretical preliminaries can be
found in [1]. Practical application of the theory to the Linux kernel drivers can
be found in [2].

2 Software Architecture

CPALockator is based on the CPAchecker framework and has the same software
architecture. Its key concept is CPA [3]. Each abstract domain is implemented in
its own CPA. CPAs in the framework, i.e. value analysis or predicate analysis,
can be combined to build an efficient and more precise approach. A configurable



CPALockator (competition contribution) 425

algorithm, CEGAR in case of CPALockator, uses CPAs to construct a set of
reachable states. In the figure 2 current configuration is presented. The highlighted
components are implemented and used only in CPALockator. Lock analysis
tracks acquired locks. It helps to compute thread effects that can be applied to
a particular thread. Thread analysis determines whether two code blocks may
be executed in parallel. Predicate analysis is extended to handle environment
actions. It allows constructing a predicate abstraction in a thread-modular case.
More information about CPALockator may be found in [1,2].

ThreadModularCPA
ARGCPA

CompositeCPA
LocationCPA CallstackCPA LockCPAThreadCPA PredicateCPA

Fig. 2. Different CPAs in CPALockator configuration

3 Strengths and Weaknesses

First, we need to emphasize that the tool is targeted and used in practice for
finding bugs in large industrial software systems, for example, operating system
cores. We applied the tool to the Linux kernel and a number of private kernels of
real-time OS. The main challenge is scalability there. And results on small but
tricky sv-benchmarks look poor, just because of trade-off scalability vs. precision.
Our tool is not so precise as other participants, but we show our scalability on a
small set of complicated sv-benchmarks. However, it is useful for the community
to have such comparison.

The thread-modular approach cannot solve tasks that contain control de-
pendencies in the environment, as we consider all projections independently
from each other and thus we lose their order. This is also a problem for witness
validation, as the tool provides a path only in a single thread. It is a limitation
of the approach, not only the tool itself. In practice we use more user-friendly
format to analyze, visualize and evaluate error traces than witness validation [6].
However, the approach allows to simplify thread interaction, and the benefit is
considerable for large complicated tasks, which cannot be analyzed with precise
model checkers.

As the approach shows benefit for complicated tasks, like in ldv-linux-3.14-
races directory. CPALockator correctly solves 4 of 7 those benchmarks and for
one more obtains an imprecise counterexample. The rest of two tasks may be
solved in the other, more faster, CPALockator configuration. The other tools
mostly have problems with the benchmarks due to their complexity and size.
The explanation of the results is rather evident. Most of the tools try to consider
precise interaction between threads, while CPALockator abstracts from it and
considers each thread separately. Note, the benchmarks have a strong hint for
verifiers: there is only one assert to check while in the real world nobody knows
where the bug may be located.



426 P. Andrianov et al.

Overall results are not so good because of problems related both to the
approach itself and its implementation. The majority of unknowns are related
to unsupported atomic operations, like atomic functions, compare and swap
and so on. Currently, our tool supports only synchronization operations based
on locks, as the industrial software mostly contains them. Another problem is
related to predicate analysis and interpolation. The current implementation of
an interpolation procedure cannot produce interpolants for other threads, which
limits the power of predicate analysis. Other problems are also present, but they
are not so significant.

Anyway, CPALockator does not produce incorrect true verdicts, which
confirms the soundness of the approach. All produced true verdicts are confirmed
by validators, however, its amount is not so numerous, as we skip all tasks with
unsupported functions. Thus, the presented approach may be used in combination
with more precise techniques.

4 Tool Setup and Configuration

We submitted CPALockator5 built from svn revision 36155 for participation
in the category Concurrency. The tool requires a Java 11 runtime environment.
CPAchecker has to be executed with the following command line:

scripts/cpa.sh -svcomp21-lockator -spec reach.prp program.i

or via BenchExec tool.

5 Project and Contributors

The CPAchecker project is mainly developed by an international research group
from the Ludwig-Maximilian University of Munich. CPALockator is based on
CPAchecker and is developed and supported by researchers from Ivannikov
Institute for System Programming of the Russian Academy of Sciences. We thank
Dirk Beyer and the CPAchecker team for their work and fruitful discussions.

References

1. Andrianov, P.: Analysis of correct synchronization of operating system components.
Programming and Computer Software 46, 712–730 (2020)

2. Andrianov, P., Mutilin, V.: Scalable thread-modular approach for data race detection.
In: Bruel, J.M., et al. (eds.) Frontiers in Software Engineering Education. pp. 371–385.
Springer, Cham (2020)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Proceedings
of CAV. pp. 504–518. Springer (2007)

4. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for
multi-threaded programs. In: Proceedings of CAV. pp. 412–417. Springer (2011)

5 https://doi.org/10.5281/zenodo.4486117



CPALockator (competition contribution) 427

5. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Proceedings of CAV. pp. 262–274. Springer (2003)

6. Novikov, E., Zakharov, I.: Verification of operating system monolithic kernels without
extensions. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice. pp. 230–248 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

	CPALockator: Thread-Modular Analysis with Projections
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Project and Contributors
	References


