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Abstract. In this paper, the theory of McCarthy’s extensional arrays
enriched with a maxdiff operation (this operation returns the biggest
index where two given arrays differ) is proposed. It is known from the
literature that a diff operation is required for the theory of arrays in
order to enjoy the Craig interpolation property at the quantifier-free
level. However, the diff operation introduced in the literature is merely
instrumental to this purpose and has only a purely formal meaning (it
is obtained from the Skolemization of the extensionality axiom). Our
maxdiff operation significantly increases the level of expressivity; how-
ever, obtaining interpolation results for the resulting theory becomes a
surprisingly hard task. We obtain such results via a thorough semantic
analysis of the models of the theory and of their amalgamation proper-
ties. The results are modular with respect to the index theory and it is
shown how to convert them into concrete interpolation algorithms via a
hierarchical approach.
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1 Introduction

Since McMillan’s seminal papers [31,32], interpolation has been successfully ap-
plied in software model checking, also in combination with orthogonal techniques
like PDR [38] or k-induction [29]. The reason why interpolation techniques are so
attractive is because they allow to discover in a completely automatic way new
atoms (improperly often called ‘predicates’) that might contribute to the con-
struction of invariants. In fact, software model-checking problems are typically
infinite state, so invariant synthesis may require introducing formulae whose
search is not finitely bounded. One way to discover them is to analyze spurious
error traces; for instance, if the system under examination (described by a tran-
sition formula Tr(x, x′)) cannot reach in n-step an error configuration in U(x)
starting from an initial configuration in In(x), this means that the formula

In(x0) ∧ Tr(x0, x1) ∧ · · · ∧ Tr(xn−1, xn) ∧ U(xn)

? The third author has been partially supported by the National Science Foundation
CCF award 1908804.

© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 268–288, 2021.
https://doi.org/10.1007/978-3-030-71995-1 14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71995-1_14&domain=pdf
http://orcid.org/0000-0001-6449-6883
http://orcid.org/0000-0003-4216-5199
http://orcid.org/0000-0003-2464-2895
https://doi.org/10.1007/978-3-030-71995-1_14


Interpolation and Amalgamation for Arrays with MaxDiff 269

is inconsistent (modulo a suitable theory T ). From the inconsistency proof, by
computing an interpolant, say at the i-th iteration, one can produce a formula
φ(x) such that, modulo T , we have

In(x0)∧
i∧

j=0

Tr(xj−1, xj) |= φ(xi) and φ(xi)∧
n∧

j=i+1

Tr(xj−1, xj)∧U(xn) |= ⊥.

(1)
This formula (and the atoms it contains) can contribute to the refinement of the
current candidate loop invariant guaranteeing safey. This fact can be exploited in
very different ways during invariant search, depending on the various techniques
employed. It should be noticed however that interpolants are not unique and that
different interpolation algorithms may return interpolants of different quality: all
interpolants restrict search, but not all of them might be conclusive.

This new application of interpolation is different from the role of interpolants
for analyzing proof theories of various logics starting with the pioneering works
of [15,24,34]. It should be said however that Craig interpolation theorem in first
order logic does not give by itself any information on the shape the interpolant
can have when a specific theory is involved. Nevertheless, this is crucial for the
applications: when we extract an interpolant from a trace like (1), we are typ-
ically handling a theory which might be undecidable, but whose quantifier-free
fragment is decidable for satisfiability (usually within a somewhat ‘reasonable’
computational complexity). Thus, it is desirable (although not always possible)
that the interpolant is quantifier-free, a fact which is not guaranteed in the gen-
eral case. This is why a lot of effort has been made in analyzing quantifier-free
interpolation, also exploiting its connection to semantic properties like amalga-
mation and strong amalgamation (see [9] for comprehensive results in the area).

The specific theories we want to analyze in this paper are variants of Mc-
Carthy’s theory of arrays [30] with extensionality (see Section 3 below for a de-
tailed description). The main operations considered in this theory are the write
operation (i.e. the array update) and the read operation (i.e., the access to the
content of an array cell). As such, this theory is suitable to formalize programs
over arrays, like standard copying, comparing, searching, sorting, etc. functions;
verification problems of this kind are collected in the SV-COMP benchmarks cat-
egory “ReachSafety-Arrays”4, where safety verification tasks involving arrays of
finite but unknown length are considered.

By itself, the theory of arrays with extensionality does not have quantifier
free interpolation [28]5; however, in [8] it was shown that quantifier-free interpo-
lation is restored if one enriches the language with a binary function skolemizing
the extensionality axiom (the result was confirmed - via different interpolation
algorithms - in [23,37]). Such a Skolem function, applied to two array variables

4 https://sv-comp.sosy-lab.org/2020/benchmarks.php
5 This is the counterexample (due to R. Jhala): the formula x = wr(y, i, e) is incon-

sistent with the formula rd(x, j) 6= rd(y, j) ∧ rd(x, k) 6= rd(y, k) ∧ j 6= k, but all
possible interpolants require quantifiers to be written (with diff symbols, instead, it
is possible to write down an interpolant without quantifiers, as shown in [8]).

https://sv-comp.sosy-lab.org/2020/benchmarks.php
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a, b, returns an index diff(a, b) where a, b differ (it returns an arbitrary value
if a is equal to b). This semantics for the diff operation is very undetermined
and does not have a significant interpretation in concrete programs. That is why
we propose to modify it in order to give it a defined and natural meaning: we
ask for diff(a, b) to return the biggest index where a, b differ (in case a = b
we ask for diff(a, b) to be the minimum index 0). Since it is natural to view
arrays as functions defined on initial intervals of the nonnegative integers, this
choice has a clear semantic motivation. The expressive power of the theory of
arrays so enriched becomes bigger: for instance, if we also add to the language a
constant symbol ε for the undefined array constantly equal to some ‘undefined’
value ⊥ (where ⊥ is meant to be different from the values a[i] actually in use),
then we can define |a| as diff(a, ε). In this way we can model the fact that a
is undefined outside the interval [ 0, |a| ] - this is useful to formalize the above
mentioned SV-COMP benchmarks.

The effectiveness of quantifier-free interpolation in the theory of arrays with
maxdiff is exemplified in the simple example of Figure 1: the invariant certifying
the assert in line 7 of the Strcpy algorithm can be obtained taking a suitable
quantifier-free interpolant out of the spurious trace (1) already for n = 2. In
more realistic examples, as witnessed by current research [2,3,4,5,16,22,25,13], it
is quite clear that useful invariants require universal quantifiers to be expressed
and if undecidable fragments are invaded, incomplete solvers must be used. How-
ever, even in such circumstances, quantifier-free interpolation does not lose its
interest: for instance, the tool Booster [5]6 synthesizes universally quantified
invariants out of quantifer-free interpolants (quantifier-free interpolation prob-
lems are generated by negating and skolemizing universally quantified formulae
arising during invariants search, see [4] for details).

1 int a[N];
2 int b[N];
3 int I = 0;
4 while I < N do
5 b[I] = a[I];
6 I + +;

7 assert(a = b);

– In(a, b, I) ≡ I = 0∧|a| = N−1∧|b| = N−1∧N > 0
– Tr(a, b, I, a′, b′, I ′) ≡ I < N ∧ I ′ = I + 1 ∧ a′ =
a ∧ b′ = wr(b, I, rd(a, I))

– U(a, b) ≡ a 6= b ∧ I = N

Fig. 1. Strcpy function: code and associated transition system (with program counter
missed in the latter for simplicity).
Loop invariant: a = b ∨ (N > diff(a, b) ∧ diff(a, b) ≥ I).

Proving that the theory of arrays with the above ‘maxdiff’ operation en-
joys quantifier-free interpolation revealed to be a surprisingly difficult task. In

6 Booster is no longer maintained, however it is still referred to in current experi-
mental evaluations [16,13].
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the end, the interpolation algorithm we obtain resembles the interpolation al-
gorithms generated via the hierarchic locality techniques introduced in [35,36]
and employed also in [37]; however, its correctness, completeness and termi-
nation proofs require a large détour going through non-trivial model-theoretic
arguments (these arguments do not substantially simplify adopting the complex
framework of ‘amalgamation closures’ and ‘W -separability’ of [37], and that is
the reason why we preferred to supply direct proofs).

This paper concentrates on theoretical and methodological results, rather
than on experimental aspects. It is almost completely dedicated to the correct-
ness and completeness poof of our interpolation algorithm: in Subsection 3.1 we
summarize our proof plan and supply basic intuitions. The paper is structured
as follows: in Section 2 we recall some background, in Section 3 we introduce
our theory of arrays with maxdiff; Sections 4 and 5 supply the semantic proof
of the amalgamation theorem; Sections 6 and 7 are dedicated to the algorith-
mic aspects, whereas Section 8 analyzes complexity for the restricted case where
indexes are constrained by the theory of total orders. In the final Section 9,
we mention some still open problems. The main results in the paper are Theo-
rems 2,4,5: for space reasons, all proofs of these theorems will be only sketched,
full details are nevertheless supplied in the online available extended version [21].
This extended version contains additional material on complexity analysis and
implementation. It contains also a proof about nonexistence of uniform inter-
polants (see [26,27,20,10,11,12] for the definition and more information on uni-
form interpolants).

2 Formal Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal,
formula, and sentence) and semantic (e.g., structure, sub-structure, truth, sat-
isfiability, and validity) notions of (possibly many-sorted) first-order logic. The
equality symbol “=” is included in all signatures considered below. Notations
like E(x) mean that the expression (term, literal, formula, etc.) E contains free
variables only from the tuple x. A ‘tuple of variables’ is a list of variables without
repetitions and a ‘tuple of terms’ is a list of terms (possibly with repetitions). Fi-
nally, whenever we use a notation like E(x, y) we implicitly assume not only that
both the x and the y are pairwise distinct, but also that x and y are disjoint. A
constraint is a conjunction of literals. A formula is universal (existential) iff it is
obtained from a quantifier-free formula by prefixing it with a string of universal
(existential, resp.) quantifiers.

Theories and satisfiability modulo theory. A theory T is a pair (Σ,AxT ), where
Σ is a signature and AxT is a set of Σ-sentences, called the axioms of T (we shall
sometimes write directly T for AxT ). The models of T are those Σ-structures
in which all the sentences in AxT are true. A Σ-formula φ is T -satisfiable (or
T -consistent) if there exists a model M of T such that φ is true in M under
a suitable assignment a to the free variables of φ (in symbols, (M, a) |= φ); it
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is T -valid (in symbols, T ` ϕ) if its negation is T -unsatisfiable or, equivalently,
ϕ is provable from the axioms of T in a complete calculus for first-order logic.
A theory T = (Σ,AxT ) is universal iff all sentences in AxT are universal. A
formula ϕ1 T -entails a formula ϕ2 if ϕ1 → ϕ2 is T -valid (in symbols, ϕ1 `T ϕ2 or
simply ϕ1 ` ϕ2 when T is clear from the context). If Γ is a set of formulæ and φ a
formula, Γ `T φ means that there are γ1, . . . , γn ∈ Γ such that γ1∧· · ·∧γn `T φ.
The satisfiability modulo the theory T (SMT(T )) problem amounts to establishing
the T -satisfiability of quantifier-free Σ-formulæ (equivalently, the T -satisfiability
of Σ-constraints). A theory T admits quantifier-elimination iff for every formula
φ(x) there is a quantifier-free formula φ′(x) such that T ` φ↔ φ′.

Some theories have special names, which are becoming standard in SMT-
literature; for instance, EUF(Σ) is the pure equality theory in the signature Σ
(this is commonly abbreviated as EUF if there is no need to specify the signature
Σ). More standard theory names will be recalled during the paper.

Embeddings and sub-structures The support of a structure M is denoted with
|M|. For a (sort, function, relation) symbol σ, we denote as σM the interpre-
tation of σ in M. An embedding is a homomorphism that preserves and re-
flects relations and operations (see, e.g., [14]). Formally, a Σ-embedding (or,
simply, an embedding) between two Σ-structures M and N is any mapping
µ : |M| −→ |N | satisfying the following three conditions: (a) it is a (sort-
preserving) injective function; (b) it is an algebraic homomorphism, that is
for every n-ary function symbol f and for every a1, . . . , an ∈ |M|, we have
fN (µ(a1), . . . , µ(an)) = µ(fM(a1, . . . , an)); (c) it preserves and reflects predi-
cates, i.e. for every n-ary predicate symbol P , we have (a1, . . . , an) ∈ PM iff
(µ(a1), . . . , µ(an)) ∈ PN . If |M| ⊆ |N | and the embedding µ : M −→ N is
just the identity inclusion |M| ⊆ |N |, we say that M is a substructure of N or
that N is a superstructure of M. As it is known, the truth of a universal (resp.
existential) sentence is preserved through substructures (resp. superstructures).

Combinations of theories. A theory T is stably infinite iff every T -satisfiable
quantifier-free formula (from the signature of T ) is satisfiable in an infinite model
of T . By compactness, it is possible to show that T is stably infinite iff every
model of T embeds into an infinite one (see, e.g., [17]). A theory T is convex iff
for every conjunction of literals δ, if δ `T

∨n
i=1 xi = yi then δ `T xi = yi holds

for some i ∈ {1, ..., n}. Let Ti be a stably-infinite theory over the signature Σi
such that the SMT (Ti) problem is decidable for i = 1, 2 and such that Σ1 and Σ2

are disjoint (i.e. the only shared symbol is equality). Under these assumptions,
the Nelson-Oppen combination result [33] says that the SMT problem for the
combination T1 ∪ T2 of the theories T1 and T2 is decidable.

Interpolation properties. Craig’s interpolation theorem [14] roughly states that
if a formula φ implies a formula ψ then there is a third formula θ, called an
interpolant, such that φ implies θ, θ implies ψ, and every non-logical symbol
in θ occurs both in φ and ψ. Our interest is to specialize this result to the
computation of quantifier-free interpolants modulo (combinations of) theories.
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Definition 1. [Plain quantifier-free interpolation] A theory T admits (plain)
quantifier-free interpolation (or, equivalently, has quantifier-free interpolants) iff
for every pair of quantifier-free formulae φ, ψ such that ψ ∧ φ is T -unsatisfiable,
there exists a quantifier-free formula θ, called an interpolant, such that: (i) ψ
T -entails θ, (ii) θ∧φ is T -unsatisfiable, and (iii) only the variables occurring in
both ψ and φ occur in θ.

In verification, the following extension of Definition 1 is considered more useful.

Definition 2. [General quantifier-free interpolation] Let T be a theory in a sig-
nature Σ; we say that T has the general quantifier-free interpolation property
iff for every signature Σ′ (disjoint from Σ) and for every pair of ground Σ∪Σ′-
formulæ φ, ψ such that φ∧ψ is T -unsatisfiable7, there is a ground formula θ such
that: (i) φ T -entails θ; (ii) θ ∧ ψ is T -unsatisfiable; (iv) all relations, constants
and function symbols from Σ′ occurring in θ also occur in φ and ψ.

By replacing free variables with free constants, it should be clear that general
quantifier-free interpolation (Definition 2) implies plain quantifier-free interpo-
lation (Definition 1); however, the converse implication does not hold.

Amalgamation and strong amalgamation. Interpolation can be characterized se-
mantically via amalgamation.

Definition 3. A universal theory T has the amalgamation property iff given
models M1 and M2 of T and a common submodel A of them, there exists a
further modelM of T (called T -amalgam) endowed with embeddings µ1 :M1 −→
M and µ2 :M2 −→M whose restrictions to |A| coincide.

A universal theory T has the strong amalgamation property if the above em-
beddings µ1, µ2 and the above model M can be chosen so to satisfy the following
additional condition: if, for some m1 ∈ |M1|,m2 ∈ |M2|, µ1(m1) = µ2(m2)
holds, then there exists an element a in |A| such that m1 = a = m2.

The first statement of the following theorem is an old result due to [6]; the
second statement is proved in [9] (where it is also suitably reformulated for
theories which are not universal):

Theorem 1. Let T be a universal theory. Then
(i) T has the amalgamation property iff it admits quantifier-free interpolants;
(ii) T has the strong amalgamation property iff it has the general quantifier-free

interpolation property.

We underline that, in presence of stable infiniteness, strong amalgamation is
a modular property (in the sense that it transfers to signature-disjoint unions of
theories), whereas amalgamation is not (see again [9] for details).

7 By this (and similar notions) we mean that φ∧ψ is unsatisfiable in all Σ′-structures
whose Σ-reduct is a model of T .
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3 Arrays with MaxDiff

The McCarthy theory of arrays [30] has three sorts ARRAY, ELEM, INDEX (called
“array”, “element”, and “index” sort, respectively) and two function symbols rd
(“read”) and wr (“write”) of appropriate arities; its axioms are:

∀y, i, e. rd(wr(y, i, e), i) = e

∀y, i, j, e. i 6= j → rd(wr(y, i, e), j) = rd(y, j).

The McCarthy theory of arrays with extensionality has the further axiom

∀x, y.x 6= y → (∃i. rd(x, i) 6= rd(y, i)), (2)

called the ‘extensionality’ axiom. The theory of arrays with extensionality is
not universal and quantifier-free interpolation fails for it [28]. In [8] a variant
of the McCarthy theory of arrays with extensionality, obtained by Skolemizing
the axioms of extensionality, is introduced. This variant of the theory turns out
to be universal and to enjoy quantifier-free interpolation. However, the Skolem
function introduced in [8] is generic, here we want to make it more informative,
so as to return the biggest index where two different arrays differ. To locate our
contribution in the general context, we need the notion of an index theory.

Definition 4. An index theory TI is a mono-sorted theory (let INDEX be its
sort) satisfying the following conditions:

- TI is universal, stably infinite and has the general quantifier-free interpola-
tion property (i.e. it is strongly amalgamable, see Theorem 1);

- SMT (TI) is decidable;
- TI extends the theory TO of linear orderings with a distinguished element 0.

We recall that TO is the theory whose only proper symbols (beside equality) are
a binary predicate ≤ and a constant 0 subject to the axioms saying that ≤ is
reflexive, transitive, antisymmetric and total (the latter means that i ≤ j∨ j ≤ i
holds for all i, j). Thus, the signature of an index theory TI contains at least
the binary relation symbol ≤ and the constant 0. In the paper, by a TI -term,
TI -atom, TI -formula, etc. we mean a term, atom, formula in the signature of
TI . Below, we use the abbreviation i < j for i ≤ j ∧ i 6= j. The constant 0 is
meant to separate ‘formally positive’ indexes - those satisfying 0 ≤ i - from the
remaining ‘formally negative’ ones.

Examples of index theories are TO itself, integer difference logic IDL, integer
linear arithmetic LIA, and real linear arithmetics LRA. In order to match the
requirements of Definition 4, one must however make a careful choice of the
language, see [9] for details: the most important detail is that integer (resp. real)
division by all positive integers should be added to the language of LIA (resp.
LRA). For most applications, IDL (namely the theory of integer numbers with
0, ordering, successor and predecessor) 8 suffices as in this theory one can model
counters for scanning arrays.

8 The name ’integer difference logic’ comes from the fact that atoms in this theory
are equivalent to formulæ of the kind Sn(i) 1 j (where 1∈ {≤,≥,=}), thus they
represent difference bound constraints of the kind j − i 1 n for n ≥ 0.
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Given an index theory TI , we now introduce our array theory with maxd-
iff ARD(TI) (parameterized by TI) as follows. We still have three sorts
ARRAY, ELEM, INDEX; the language includes the symbols of TI , the read and write
operations rd, wr, a binary function diff of type ARRAY × ARRAY → INDEX, as
well as constants ε and ⊥ of sorts ARRAY and ELEM, respectively. The constant ⊥
models an undetermined (e.g. undefined, not-in-use, not coming from appropri-
ate initialization, etc.) value and ε models the totally undefined array; the term
diff(x, y) returns the maximum index where x and y differ and returns 0 if x
and y are equal. 9 Formally, the axioms of ARD(TI) include, besides the axioms
of TI , the following ones:

∀y, i, e. i ≥ 0→ rd(wr(y, i, e), i) = e (3)

∀y, i, j, e. i 6= j → rd(wr(y, i, e), j) = rd(y, j) (4)

∀x, y. x 6= y → rd(x, diff(x, y)) 6= rd(y, diff(x, y)) (5)

∀x, y, i. i > diff(x, y)→ rd(x, i) = rd(y, i) (6)

∀x. diff(x, x) = 0 (7)

∀x.i i < 0→ rd(x, i) = ⊥ (8)

∀i. rd(ε, i) = ⊥ (9)

In the read-over-write axiom (3), we put the proviso i ≥ 0 because we want all
our arrays to be undefined on negative indexes (negative updates makes no sense
and have no effect: by axiom (8), reading a negative index always produces ⊥).

We call ARext(TI) (the ‘theory of arrays with extensionality parameterized
by TI ’) the theory obtained from ARD(TI) by removing the symbol diff and
by replacing the axioms (5)-(7) by the extensionality axiom (2). Since the exten-
sionality axioms follows from axiom (5), ARD(TI) is an extension of ARext(TI).

As an effect of the above axioms, we have that an array x is undefined
outside the interval [0, |x|], where |x| is defined as |x| := diff(x, ε). Typically,
this interval is finite and in fact our proof of Theorem 3 below shows that any
satisfiable constraint is satisfiable in a model where all such intervals (relatively
to the variables involved in the constraint) are finite.

The next lemma is immediate from the axiomatization of ARD(TI):

Lemma 1. An atom of the form a = b is equivalent (modulo ARD(TI)) to

diff(a, b) = 0 ∧ rd(a, 0) = rd(b, 0) . (10)

An atom of the form a = wr(b, i, e) is equivalent (modulo ARD) to

(i ≥ 0→ rd(a, i) = e) ∧ ∀h (h 6= i→ rd(a, h) = rd(b, h)) . (11)

An atom of the form diff(a, b) = i is equivalent (modulo ARD(TI)) to

i ≥ 0 ∧ ∀h (h > i→ rd(a, h) = rd(b, h)) ∧ (i > 0→ rd(a, i) 6= rd(b, i)) . (12)

9 Notice that it might well be the case that diff(x, y) = 0 for different x, y, but in
that case 0 is the only index where x, y differ.
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For our interpolation algorithm in Section 7, we need to introduce iterated
diff operations, similarly to [37]. As we know diff(a, b) returns the biggest
index where a and b differ (it returns 0 if a = b). Now we want an operator
that returns the last-but-one index where a, b differ (0 if a, b differ in at most
one index), an operator that returns the last-but-two index where a, b differ
(0 is they differ in at most two indexes), etc. Our language is already enough
expressive for that, so we can introduce such operators explicitly as follows.
Given array variables a, b, we define by mutual recursion the sequence of array
terms b1, b2, . . . and of index terms diff1(a, b), diff2(a, b), . . . :

b1 := b; diff1(a, b) := diff(a, b1);

bk+1 := wr(bk, diffk(a, b), rd(a, diffk(a, b))); diffk+1(a, b) := diff(a, bk+1)

Intuitively, bk+1 is the same as b except for all k-last indexes on which a and b
differ, in correspondence of which bk+1 has the same value as a. A useful fact is
that conjunctions of formulae of the kind

∧
j<l diffj(a, b) = kj can be eliminated

in favor of universal clauses in a language whose only symbol for array variables
is rd. In detail:

Lemma 2. A formula like

diff1(a, b) = k1 ∧ · · · · · · ∧ diffl(a, b) = kl (13)

is equivalent modulo ARD to the conjunction of the following five formulae:

k1 ≥ k2 ∧ · · · ∧ kl−1 ≥ kl ∧ kl ≥ 0 (14)∧
j<l(kj > kj+1 → rd(a, kj) 6= rd(b, kj)) (15)∧

j<l(kj = kj+1 → kj = 0) (16)∧
j≤l(rd(a, kj) = rd(b, kj)→ kj = 0) (17)

∀h (h > kl → rd(a, h) = rd(b, h) ∨ h = k1 ∨ · · · ∨ h = kl−1) (18)

3.1 Our roadmap

The main result of the paper is that, for every index theory TI , the array the-
ory with maxdiff ARD(TI) indexed by TI enjoys quantifier-free interpolation
and that interpolants can be computed hierarchically by relying on a black-box
quantifier-free interpolation algorithm for the weaker theory TI∪EUF (the latter
theory has quantifier free interpolation because TI is strongly amalgamable and
because of Theorem 1). In this subsection, we supply intuitions and we give a
qualitative high-level view to our proofs: more technical details and full proofs
can be found in [21].

The algorithm.

By general easy transformations (recalled in Section 7 below), it is sufficient
to be able to extract a quantifier-free interpolant out of a pair of quantifier-free
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formulae A,B such that (i) A∧B is ARD(TI)-inconsistent; (ii) both A and B are
conjunctions of flat literals, i.e. of literals which are equalities between variables,
disequalities between variables or literals of the form R(x),¬R(x), f(x) = y
(where x, y are variables, R is a predicate symbol and f a function symbol).

Let us call common the variables occurring in both A and B. The fact that a
quantifier-free interpolant exists intuitively means that there are two reasoners
(an A-reasoner operating on formulae involving only the variables occurring in A
and a B-reasoner operating on formulae involving only the variables occurring in
B) that are able to discover the inconsistency of A∧B by exchanging information
on the common language, i.e. by communicating each other only the entailed
quantifier-free formulae involving the common variables.

A problem that can be addressed when designing an interpolation algorithm,
is that there are infinitely many common terms that can be built up out of
finitely many common variables and it may happen that some uncommon terms
can be recognized to be equal to some common terms during the deductions
performed by the A-reasoner and the B-reasoner.

As an example, suppose that A contains the literals c1 = wr(c2, i, e), c1 6=
c2, a = wr(c3, i, e), where only c1, c2, c3 are common (i.e. only these variables
occur in B). Then using diff operations, we can deduce i = diff(c1, c2), e =
rd(c1, i) so that in the end we can conclude that a is also ‘common’, being
definable in term of common variables. Thus, the A-reasoner must communicate
(via a defining common term or in some other indirect way) to the B-reasoner
any fact it discovers about a, although a was not listed among the common
variables since the very beginning. In more sophisticated examples, iterated diff
operations are needed to discover ‘hidden’ common facts.

To cope with the above problem, our algorithm gives names ik =
diffk(c1, c2) to all the iterated diffs of common array variables c1, c2 (the newly
introduced names ik are considered common and can be replaced back with their
defining terms when the interpolants are computed at the end of the algorithm).

The second component of our algorithm is instantiation. Both the A- and
the B-reasoner use the content of Lemmas 1 and 2 in order to handle atoms
of the kind a = b, a1 = wr(a2, i, e), i = diffk(a1, a2). Whenever they come
across such atoms, the equivalent formulæ supplied by these lemmas are taken
into consideration; in fact, whenever the lemmas produce universally quantified
clauses of the kind ∀hC, they replace in C the universally quantified index
variable h by all possible instantiations with their own index terms (these are
the terms built up from index variables occurring in A for the A-reasoner and
occurring in B for the B-reasoner respectively). Such instantiations can be read
as clauses in the language of TI ∪ EUF if we replace every array variable a by a
fresh unary function symbol fa and read terms like rd(a, i) as fa(i).

Of course both the production of names for iterated diff-terms and the instan-
tiation with owned index terms need to be repeated (possibly, infinitely many
times); we prove however (this is the content of our main Theorem 4 below)
that if A ∧ B is ARD(TI)-inconsistent, then sooner or later the union of the
sets of the clauses deduced by the A-reasoner and the B-reasoner in the restricted
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signature of TI ∪ EUF is TI ∪ EUF-inconsistent, i.e., the instantiation process
terminates. This means that an interpolant can be extracted, using a black-box
quantifier-free interpolation algorithm for the weaker theory TI ∪ EUF . In the
simple case where TI is just the theory TO of total orders, we shall prove in Sec-
tion 8 that a quadratic number of instantiations always suffices. In the general
case, however, the situation is similar to the statement of Herbrand theorem:
finitely many instantiations suffice to get an inconsistency proof in the weaker
logical formalism, but a bound cannot be given.

The proof.

Theorem 4 is proved in a contrapositive way: we show that if a TI ∪ EUF-
inconsistency never arises, then A∧B is ARD(TI)-consistent. This is proved in
two steps: if TI ∪ EUF -inconsistency does not arise, we produce two ARD(TI)-
models A and B, where A satisfies A and B satisfies B. Moreover, A and B
are built up in such a way that they share the same ARD(TI)-substructure. In
the second step, we prove the amalgamation theorem for ARD(TI), so that the
amalgamated model will produce the desired model of A ∧ B. In fact, the two
steps are inverted in our exposition: we first prove the amalgamation theorem in
Section 5 (Theorem 2) and then our main theorem in Section 7 (Theorem 4).

4 Embeddings

We preliminarily discuss the class of models of ARD(TI) and we make important
clarifications about embeddings between such models. A modelM of ARext(TI)
or of ARD(TI) is functional when the following conditions are satisfied:
(i) ARRAYM is a subset of the set of all positive-support functions from INDEXM

to ELEMM (a function a is positive-support iff a(i) = ⊥ for every i < 0);
(ii) rd is function application;
(iii) wr is the point-wise update operation (i.e., for i ≥ 0, the function wr(a, i, e)

returns the same values as the function a, except at the index i where it
returns the element e).

Because of the extensionality axiom, it can be shown that every model is iso-
morphic to a functional one. For an array a ∈ INDEXM in a functional modelM
and for i ∈ INDEXM, since a is a function, we interchangeably use the notations
a(i) and rd(a, i). A functional model M is said to be full iff ARRAYM consists of
all the positive-support functions from INDEXM to ELEMM.

Let a, b be elements of ARRAYM in a model M. We say that a and b are
cardinality dependent (in symbols, M |= ‖a − b‖ < ω) iff {i ∈ INDEXM | M |=
rd(a, i) 6= rd(b, i)} is finite. Cardinality dependency in M is obviously an equiv-
alence relation, that we sometimes denote as ∼M.

Passing to ARD(TI), a further remark is in order: in a functional model
M of ARD(TI), the index diff(a, b) (if it exists) is uniquely determined: it
must be the maximum index where a, b differ (it is 0 if a = b). We say that
diff(a, b) is defined iff there is a maximum index where a, b differ (or if a = b).
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An embedding µ : M −→ N between ARext(TI)-models is said to be diff-
faithful iff whenever diff(a, b) is defined so is diff(µ(a), µ(b)) and it is equal
to µ(diff(a, b)). Since there might not be a maximum index where a, b differ, in
principle it is not always possible to expand a functional model of ARext(TI) to
a functional model of ARD(TI), keeping the set of indexes unchanged. Indeed,
in order to do that in a diff-faithful way, one needs to explicitly add to INDEXM

new indexes including at least indexes representing the missing maximum indexes
where two given array differ. This idea is used in the following lemma (proved
in the online available extended version [21]):

Lemma 3. For every index theory TI , every model of ARext(TI) has a diff-
faithful embedding into a model of ARD(TI).

5 Amalgamation

We now sketch the proof of the amalgamation property for ARD(TI). We recall
that strong amalgamation holds for models of TI (see Definition 4).

Theorem 2. ARD(TI) enjoys the amalgamation property.

Proof. Take two embeddings µ1 : N −→M1 and µ2 : N −→M2. As we know,
we can suppose—w.l.o.g.—that N ,M1,M2 are functional models; in addition,
via suitable renamings, we can freely suppose that µ1, µ2 restricts to inclusions
for the sorts INDEX and ELEM, and that (ELEMM1\ELEMN )∩(ELEMM2\ELEMN ) = ∅,
(INDEXM1\INDEXN )∩(INDEXM2\INDEXN ) = ∅. To build the amalgamated model
of ARD(TI), we first build a full model M of ARext(TI) with diff-faithful
embeddings ν1 : M1 −→ M and ν2 : M2 −→ M such that ν1 ◦ µ1 = ν2 ◦ µ2.
If we succeed, the claim follows by Lemma 3: indeed, thanks to that lemma, we
can embed in a diff-faithful wayM (which is a model of ARext(TI)) to a model
M′ of ARD(TI), which is the required ARD(TI)-amalgam.

We take the TI -reduct of M to be a model supplied by the strong amal-
gamation property of TI (again, we can freely assume that the TI -reducts of
M1,M2 identically include in it); we let ELEMM to be ELEMM1 ∪ ELEMM2 . We
need to define νi :Mi −→M (i = 1, 2) in such a way that νi is diff-faithful and
ν1◦µ1 = ν2◦µ2. We take the INDEX and the ELEM-components of ν1, ν2 to be just
identical inclusions. The only relevant point is the action of νi on ARRAYMi : since
we have strong amalgamation for indexes, in order to define it, it is sufficient to
extend any a ∈ ARRAYMi to all the indexes k ∈ (INDEXM \ INDEXMi). For in-
dexes k ∈ (INDEXM \ (INDEXM1 ∪ INDEXM2)) we can just put νi(a)(k) = ⊥.
If k ∈ (INDEXM \ INDEXMi) and k ∈ (INDEXM1 ∪ INDEXM2), then k ∈
(INDEXM3−i \ INDEXN ); the definition for such k is as follows:
(*) we let νi(a)(k) be equal to µ3−i(c)(k), where c is any array c ∈ ARRAYN for

which there is a′ ∈ ARRAYMi such that a ∼Mi
a′ and such that the relation

k > diffMi(a′, µi(c)) holds in INDEXM;10 if such c does not exist, then we
put νi(a)(k) = ⊥.

10 This should be properly written as k > νi(diff
Mi(a′, µi(c))), however recall that the

INDEX-component of νi is identity, so the simplified notation is nevertheless correct.
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Definition (*) is forced by some constraints that νi(a)(k) must satisfy. Of course,
definition (*) itself needs to be justified: besides showing that it enjoys the re-
quired properties, we must also prove that it is well-given (i.e. that it does not
depend on the selected c and a′). It is easy to see that, if the definition is correct,
then we have ν1 ◦ µ1 = ν2 ◦ µ2; also, it is clear that νi preserves read and write
operations (hence, it is a homomorphism) and is injective. For (i) justifying the
definition of νi and (ii) showing that it is also diff-faithful, we need to show
the following two claims (the proof is not easy, see the extended version [21] for
details) for arrays a1, a2 ∈ ARRAYM1 , for an index k ∈ (INDEXM2 \ INDEXN ) and
for arrays c1, c2 ∈ ARRAYN (checking the same facts in M2 is symmetrical):
(i) if a1 ∼M1 a2 and k > diffM1(a1, µ1(c1)), k > diffM1(a2, µ1(c2)), then

µ2(c1)(k) = µ2(c2)(k).
(ii) if k > diffM1(a1, a2), then ν1(a1)(k) = ν1(a2)(k). a

6 Satisfiability

The key step of the interpolation algorithm that will be proposed in Sec-
tion 7 depends upon the problem of checking satisfiability (modulo ARD(TI))
of quantifier-free formulæ; this will be solved in the present section by adapting
instantiation techniques, like those from [7].

We define the complexity c(t) of a term t as the number of function symbols
occurring in t (thus variables and constants have complexity 0). A flat literal L
is a formula of the kind x1 = t or x1 6= x2 or R(x1, . . . , xn) or ¬R(x1, . . . , xn),
where the xi are variables, R is a relation symbol, and t is a term of complexity
less or equal to 1. If I is a set of TI -terms, an I-instance of a universal formula
of the kind ∀i φ is a formula of the kind φ(t/i) for some t ∈ I.

A pair of sets of quantifier-free formulae Φ = (Φ1, Φ2) is a separated pair iff
(1) Φ1 contains equalities of the form diffk(a, b) = i and a = wr(b, i, e); more-

over if it contains the equality diffk(a, b) = i, it must also contain an
equality of the form diffl(a, b) = j for every l < k;

(2) Φ2 contains Boolean combinations of TI -atoms and of atoms of the forms:

rd(a, i) = rd(b, j), rd(a, i) = e, e1 = e2, (19)

where a, b, i, j, e, e1, e2 are variables or constants of the appropriate sorts.
The separated pair is said to be finite iff Φ1 and Φ2 are both finite.

In practice, in a separated pair Φ = (Φ1, Φ2), reading rd(a, i) as a func-
tional application, it turns out that the formulæ from Φ2 can be translated
into quantifier-free formulæ of the combined theory TI ∪ EUF (the array vari-
ables occurring in Φ2 are converted into free unary function symbols). TI ∪EUF
enjoys the decidability of the quantifier-free fragment and has quantifier-free in-
terpolation because TI is an index theory (see Nelson-Oppen results [33] and
Theorem 1): we adopt a hierarchical approach (similar to [35,36]) and we rely
on satisfiability and interpolation algorithms for such a theory as black boxes.

Let I be a set of TI -terms and let Φ = (Φ1, Φ2) be a separated pair; we let
Φ(I) = (Φ1(I), Φ2(I)) be the smallest separated pair satisfying the following
conditions:
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- Φ1(I) is equal to Φ1 and Φ2(I) contains Φ2;
- Φ2(I) contains all I-instances of the two formulæ

∀i rd(ε, i) = ⊥, ∀i (i < 0→ rd(a, i) = ⊥),

where a is any array variable occurring in Φ1 or Φ2;
- if Φ1 contains the atom a = wr(b, i, e) then Φ2(I) contains all the I-instances

of the formulae (11);

- if Φ1 contains the conjunction
∧l
i=1 diffi(a, b) = ki, then Φ2(I) contains the

formulae (14), (15), (16), (17) as well as all I-instances of the formula (18).
For M ∈ N ∪ {∞}, the M -instantiation of Φ = (Φ1, Φ2) is the separated pair
Φ(IMΦ ) = (Φ1(IMΦ ), Φ2(IMΦ )), where IMΦ is the set of TI -terms of complexity
at most M built up from the index variables occurring in Φ1, Φ2. The full in-
stantiation of Φ = (Φ1, Φ2) is the separated pair Φ(I∞Φ ) = (Φ1(I∞Φ ), Φ2(I∞Φ ))
(which is usually not finite). A separated pair Φ = (Φ1, Φ2) is M -instantiated iff
Φ = Φ(IMΦ ); it is ARD(TI)-satisfiable iff so it is the formula

∧
Φ1 ∧

∧
Φ2

11

Example 1. Let Φ1 contain the four atoms

{ diff(a, c1) = i1, diff(b, c2) = i1, a = wr(a1, i3, e3), a1 = wr(b, i1, e1) }

and let Φ2 be empty. Then (Φ1, Φ2) is a separated pair; 0-instantiating it adds
to Φ2 the following formulae (we delete those which are redundant)

i1 ≥ 0

rd(a, i1) = rd(c1, i1)→ i1 = 0 rd(b, i1) = rd(c2, i1)→ i1 = 0

i3 > i1 → rd(a, i3) = rd(c1, i3) i3 > i1 → rd(b, i3) = rd(c2, i3)

i3 ≥ 0→ rd(a, i3) = e3 i1 ≥ 0→ rd(a1, i1) = e1

i1 6= i3 → rd(a, i1) = rd(a1, i1) i1 6= i3 → rd(a1, i3) = rd(b, i3)

The following results are proved in the extended version [21]:

Lemma 4. Let φ be a quantifier-free formula; then it is possible to compute
finitely many finite separation pairs Φ1 = (Φ1

1, Φ
1
2), . . . , Φn = (Φn1 , Φ

n
2 ) such that

φ is ARD(TI)-satisfiable iff so is one of the Φi.

Lemma 5. The following conditions are equivalent for a finite separation pair
Φ = (Φ1, Φ2):
(i) Φ is ARD(TI)-satisfiable;
(ii)

∧
Φ2(I0Φ) is TI ∪ EUF-satisfiable.

Theorem 3. The SMT (ARD(TI)) problem is decidable for every index theory
TI (i.e. for every theory satisfying Definition 4).

11 This might be an infinitary formula if Φ is not finite. In such a case, satisfiability
obviously means that there is a modelM where we can assign values to all variables
occurring in the formulæ from Φ1 ∪ Φ2 in such a way that such formulæ become
simultaneously true.
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Concerning the complexity of the above procedure, notice that the satisfia-
bility of the quantifier-free fragment of common index theories (like IDL, LIA,
LRA) is decidable in NP; as a consequence, from the above proof we get (for such
index theories) also an NP bound for our SMT (ARD(TI)))-problems because
0-instantiation is clearly finite and polynomial. The fact that 0-instantiation
suffices is a common feature of the above satisfiability procedure and of the
satisfiability procedures from [7]. Unfortunately, when coming to interpolation
algorithms in the next section, there is no evidence that 0-instantiation suffices.

7 An interpolation algorithm

Since amalgamation is equivalent to quantifier-free interpolation for universal
theories like ARD(TI) (see Theorem 1), Theorem 2 ensures that ARD(TI) has
the quantifier-free interpolation property. However, the proof of Theorem 2 is not
constructive, so in order to compute an interpolant for an ARD(TI)-unsatisfiable
conjunction like ψ(x, y) ∧ φ(y, z), one should enumerate all quantifier-free for-
mulæ θ(y) which are logical consequences of φ and are inconsistent with ψ (mod-
ulo ARD(TI)). Since the quantifier-free fragment of ARD(TI) is decidable by
Theorem 3, this is an effective procedure and, since interpolants of jointly un-
satisfiable pairs of formulæ exist, it also terminates. However, such kind of an
algorithm is not practical.

In this section, we improve the situation by supplying a better algorithm
based on instantiation (à-la-Herbrand). In the next section, using the results of
the present section, for the special case where TI is just the theory of linear
orders, we identify a complexity bound for this algorithm.

Our problem is the following: given two quantifier-free formulae A and B
such that A ∧B is not satisfiable (modulo ARD(TI)), to compute a quantifier-
free formula C such that ARD(TI) |= A → C, ARD(TI) |= C ∧ B → ⊥ and
such that C contains only the variables (of sort INDEX, ARRAY, ELEM) which occur
both in A and in B.

We call the variables occurring in both A and B common variables, whereas
the variables occurring in A (resp. in B) are called A-variables (resp. B-
variables). The same terminology applies to terms, atoms and formulae: e.g.,
a term t is an A-term (B-term, common term) iff it is built up from A-variables
(B-variables, common variables, resp.).

The following operations can be freely performed (see [9] or [8] for details):
(i) pick an A-term t and a fresh variable a (of appropriate sort) and conjoin A

to a = t (a will be considered an A-variable from now on);
(ii) pick a B-term t and a fresh variable b (of appropriate sort) and conjoin B

to b = t (b will be considered a B-variable from now on);
(iii) pick a common term t and a fresh variable c (of appropriate sort) and

conjoin both A and B to c = t (c will be considered a common variable from
now on);

(iv) conjoin A with some quantifier-free A-formula which is implied (modulo
ARD(TI)) by A;
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(v) conjoin B with some quantifier-free B-formula which is implied (modulo
ARD(TI)) by B.

Operations (i)-(v) either add logical consequences or explicit definitions that
can be eliminated (if desired) after the final computation of the interpolant. In
addition, notice that if A is the form A′ ∨ A′′ (resp. B is of the form B′ ∨ B′′)
then from interpolants of A′ ∧ B and A′′ ∧ B (resp. of A ∧ B′ and A ∧ B′′), we
can recover an interpolant of A ∧B by taking disjunction (resp. conjunction).

Because of the above remarks, using the procedure in the proof of Lemma 4,
both A and B are assumed to be given in the form of finite separated pairs.
Thus A is of the form

∧
A1 ∧

∧
A2, B is of the form

∧
B1 ∧

∧
B2, for separated

pairs (A1, A2) and (B1, B2). Also, by (iv)-(v) above, A and B are assumed to
be both 0-instantiated. We call A (resp. B) the separated pair (A1, A2) (resp.
(B1, B2)). We also use the letters A1, A2, B1, B2 both for sets of formulae and
for the corresponding conjunctions; similarly, A represent both the pair (A1, A2)
and the conjunction

∧
A1 ∧

∧
A2 (and similarly for B).

The formulæ from A2 and B2 are formulæ from the signature of TI ∪ EUF
(after rewriting terms of the kind rd(a, i) to fa(i), where the fa are free function
symbols). Of course, if A2∧B2 is TI∪EUF -inconsistent, we can get our quantifier-
free interpolant by using our black box algorithm for interpolation in the weaker
theory TI∪EUF : recall that TI∪EUF has quantifier-free interpolation because TI
is an index theory and for Theorem 1. The remarkable fact is that A2∧B2 always
becomes TI ∪EUF -inconsistent if sufficiently many diffs among common array
variables are introduced and sufficiently many instantiations are performed.

Formally, we shall apply the loop below until A2∧B2 becomes inconsistent : the
loop is justified by (i)-(v) above and Theorem 4 guarantees that A2∧B2 eventu-
ally becomes inconsistent modulo TI ∪EUF , if A∧B was originally inconsistent
modulo ARD(TI). When A2∧B2 becomes inconsistent modulo TI∪EUF , we can
get our interpolant using the interpolation algorithm for TI ∪ EUF . [Of course,
in the interpolant returned by TI ∪ EUF , the extra variables introduced by the
explicit definitions from (iii) above need to be eliminated.] We need a counter M
recording how many times the Loop below has been executed (initially M = 0).

Loop (to be repeated until A2 ∧ B2 becomes inconsistent modulo TI ∪ EUF).

Pick two distinct common ARRAY-variables c1, c2 and n ≥ 1 and s.t. no conjunct
of the kind diffn(c1, c2) = k occurs in both A1 and B1 for some n ≥ 1 (but s.t.
for every l < n there is a conjunct of the form diffl(a, b) = k occurring in both
A1 and B1). Pick also a fresh INDEX constant kn; conjoin diffn(c1, c2) = kn to
both A1 and B1; then M -instantiate both A and B. Increase M to M + 1.

Notice that the fresh index constants kn introduced during the loop are con-
sidered common constants (they come from explicit definitions like (iii) above)
and so they are considered in the M -instantiation of both A and B.

Example 2. Let A be the formula
∧
Φ1 from Example 1 and let B be

i1 < i2 ∧ i2 < i3 ∧ rd(c1, i2) 6= rd(c2, i2)

B is 0-instantiated; 0-instantiating A produces the formulæ shown in Exam-
ple 1. The loop needs to be executed twice; it adds the literals diff0(c1, c2) =
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k0, diff1(c1, c2) = k1; 0-instantiation produces formulae A2, B2 whose conjunc-
tion is TI∪EUF-inconsistent (inconsistency can be tested via an SMT-solver like
z3 or MathSat, see the ongoing implementation [1]). The related TI ∪ EUF-
interpolant (once k0 and k1 are replaced by diff0(c1, c2) and diff1(c1, c2), re-
spectively) gives our ARD(TI)-interpolant. a

Theorem 4. If A∧B is ARD(TI)-inconsistent, then the above loop terminates.

Proof. Suppose that the loop does not terminate and let A′ = (A′1, A
′
2) and

B′ = (B′1, B
′
2) be the separated pairs obtained after infinitely many executions of

the loop (they are the union of the pairs obtained in each step). Notice that both
A′ and B′ are fully instantiated.12 We claim that (A′, B′) is ARD(TI)-consistent
(contradicting the assumption that (A,B) was already ARD(TI)-inconsistent).

Since no contradiction was found, by compactness of first-order logic, A′2∪B′2
has a TI ∪ EUF -model M (below we treat index and element variables oc-
curring in A,B as free constants and the array variables occurring in A,B as
free unary function symbols). M is a two-sorted structure (the sorts are INDEX

and ELEM) endowed for every array variable a occurring in A,B of a function
aM : INDEXM −→ ELEMM. In addition, INDEXM is a model of TI . We build three
ARD(TI)-structures A,B, C and two embeddings µ1 : C −→ A, µ2 : C −→ B
such that A |= A′, B |= B′ and such that for every common variable x we have
µ1(xC) = xA and µ2(xC) = xB. The consistency of A′ ∪ B′ then follows from
the amalgamation Theorem 2. The two structures A,B are obtained by taking
the full functional model induced by the restriction of M to the interpretation
of A-terms and B-terms (respectively) of sort INDEX, ELEM and then by applying
Lemma 3; the construction of C requires some subtleties, to be detailed in the
extended version [21], where the full proof of the theorem is provided. a

8 When indexes are just a total order

Comparing the results from Sections 7 and 6, a striking difference emerges:
whereas variable and constant instantiations are sufficient for satisfiability check-
ing, our interpolation algorithm requires full instantiation over all common
terms. Such a full instantiation might be quite impractical, especially in in-
dex theories like LIA and LRA (it is less annoying in theories like IDL: here
all terms are of the kind Sn(x) or Pn(x), where x is a variable or 0 and S, P are
the successor and the predecessor functions). The problem disappears in simpler
theories like the theory of linear orders TO, where all terms are variables (or the
constant 0). Still, even in the case of TO, the proof of Theorem 4 does not give
a bound for termination of the interpolation algorithm: we know that sooner or
later an inconsistency will occur, but we do not know how many times we need
to execute the main loop. We now improve the proof of Theorem 4 by supplying
the missing bound. In this section, the index theory is fixed to be TO and we
abbreviate ARD(TO) as ARD. The full proof of the theorem below is in [21].

12 On the other hand, the joined pair (A′
1 ∪B′

1, A
′
2 ∪B′

2) is not even 0-instantiated.
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Theorem 5. If A ∧ B is inconsistent modulo ARD, then the above loop ter-

minates in at most (m
2−m
2 ) · (n + 1) steps, where n is the number of the index

variables occurring in A,B and m is the number of the common array variables.

Proof. We sketch a proof of the theorem: the idea is that if after N := (m
2−m
2 ) ·

(n+1) steps no inconsistency occurs, then we can run the algorithm for infinitely
many further steps without finding an inconsistency either. Let AN = (AN1 , A

N
2 )

and BN = (BN1 , B
N
2 ) be obtained after N -executions of the loop and letM be a

TO∪EUF -model of AN2 ∧BN2 . Fix a pair of distinct common array variables c1, c2
to be handled in Step N +1; since all pairs of common array variables have been
examined in a fair way, AN1 and BN1 contain the atom diffn+1(c1, c2) = kn+1

(in fact N := (m
2−m
2 ) · (n+ 1) and (m

2−m
2 ) is the number of distinct unordered

pairs of common array variables, so the pair (c1, c2) has been examined more
than n times). In M, some index variable kl for l ≤ kn+1, if not assigned to 0,
is assigned to an element x which is different from the elements assigned to the
n variables occurring in A,B. This allows us to enlarge M to a superstructure
which is a model of AN+1

2 ∧ BN+1
2 by ’duplicating’ x. Continuing in this way,

we produce a chain of TO ∪ EUF -models witnessing that we can run infinitely
many steps of the algorithm without finding an inconsistency. a

9 Conclusions and further work

We studied an extension of McCarthy theory of arrays with a maxdiff symbol.
This symbol produces a much more expressive theory than the theory of plain
diff symbol already considered in the literature [8,37].

We have also considered another strong enrichment, namely the combina-
tion with arithmetic theories like IDL,LIA,LRA, . . . (all such theories are
encompassed by the general notion of an ‘index theory’). Such a combination
is non trivial because it is a non disjoint combination (the ordering relation is
in the shared signature) and does not fulfill the T0-compatibility requirements
of [17,19,18] needed in order to modularly import satisfiability and interpolation
algorithms from the component theories.

The above enrichments come with a substantial cost: although decidability
of satisfiability of quantifier-free formulae is not difficult to obtain, quantifier-
free interpolation becomes challenging. In this paper, we proved that quantifier-
free interpolants indeed do exist: the interpolation algorithm is indeed rather
simple, but its justification comes via a complicated détour involving semantic
investigations on amalgamation properties.

The interpolation algorithm is based on hierarchic reduction to general
quantifier-free interpolation in the index theory. The reduction requires the in-
troduction of iterated diff terms and a finite number of instantiations of the
universal clauses associated to write and diff-atoms. For the simple case where
the index theory is just the theory of total orders, we were able to polynomially
bound the depth of the iterated diff terms to be introduced as well as the num-
ber of instantiations needed. The main open problem we leave for future is the
determination of analogous bounds for richer index theories.
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