
Finding a Universal Execution Strategy for
Model Transformation Networks�

Joshua Gleitze , Heiko Klare(�) , and Erik Burger

KASTEL, Karlsruhe Institute of Technology, Karlsruhe, Germany
joshua.gleitze@student.kit.edu, klare@kit.edu, burger@kit.edu

Abstract. When using multiple models to describe a (software) system,
one can use a network of model transformations to keep the models
consistent after changes. No strategy exists, however, to orchestrate the
execution of transformations if the network has an arbitrary topology.
In this paper, we analyse how often and in which order transformations
need to be executed. We argue why linear execution bounds are too
restrictive to be useful in practice and prove that there is no upper bound
for the number of necessary executions. To avoid non-termination, we
propose a conservative strategy that makes execution failures easier to
understand. These insights help developers and users of transformation
networks to understand under which circumstances their networks can
terminate. Additionally, the proposed strategy helps them to find the
cause when a network cannot restore consistency.

Keywords: model consistency · model transformation networks

1 Introduction

When modelling systems, one is often confronted with the task of model consis-
tency : Since model-driven development aims at separating concerns by tailoring
models to the needs of the people working on the system, there are typically
different models, each one capturing the parts of the system that are relevant to
the model’s target audience. All those models taken together should describe a
coherent system and not contain contradictory information. We say that the mod-
els should be consistent. Automatic detection and resolution of inconsistencies is,
however, still poorly addressed in current development processes [12].

There are different means of maintaining consistency. A popular one is to define
incremental model transformations, which update models based on information
that was changed in one of them. While there has been significant research
on model transformations themselves, particularly on binary transformations,
maintaining consistency of multiple models is less researched [2]. There are
approaches for multiary model transformations which can transform between
multiple models by means of a single transformation. Nevertheless, one will likely
� This work was supported by funding of the Helmholtz Association (HGF) through

the Competence Center for Applied Security Technology (KASTEL).
© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 87–107, 2021.
https://doi.org/10.1007/978-3-030-71500-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_5&domain=pdf
http://orcid.org/0000-0002-0392-5338
http://orcid.org/0000-0002-9711-8835
http://orcid.org/0000-0003-2832-3349
https://doi.org/10.1007/978-3-030-71500-7_5

88 J. Gleitze et al.

also want to be able to combine multiple transformations—binary or multiary—to
maintain consistency, creating a transformation network. Unlike using a single,
overarching transformation, defining a network makes it possible to reuse modular
ones. Additionally, knowledge about consistency between certain types of models
is often distributed across domain experts [13]. This can be accommodated by
transformation networks, because every domain expert can define transformations
independently and according to their view on consistency.

To the best of the authors’ knowledge, no strategy that determines an execu-
tion order of transformations to maintain consistency in a network with arbitrary
topology has been presented yet. Existing work proposes, for example, defining
an execution order explicitly [23, 35] or deriving a topological order [30]. Most
approaches restrict the supported kinds of network topologies to such in which
each transformation only needs to be executed once.

In this paper, we research properties and limitations of a universal strategy
that executes a transformation network of arbitrary topology. We show that
strategies that apply each transformation only once are not useful in practice.
At the other end of the spectrum, we prove that not limiting the number of
transformation executions does, in general, lead to non-termination. Based on
the insight that a universal strategy can only operate conservatively, we derive a
practicable strategy. In detail, we make the following contributions:

Formalisation (C1): We formalise transformation networks and execution
strategies to precisely define their expected properties.

Conservativeness Proof (C2): We prove that a universal execution strategy
must operate conservatively to avoid non-termination.

Strategy Design (C3): We propose a strategy that improves explainability
whenever no consistent models are found.

The contributions establish fundamental knowledge about the design space of
network execution strategies, their undecidability, and difficulties in reducing
conservativeness. The proposed strategy helps transformation network developers
and users to find the reasons when an execution does not yield consistent models.

2 Problem Statement

In this section, we will further motivate our research by giving an example and
clarifying its context. We provide a formalisation for transformation networks
and execution strategies to generate a common understanding and formal basis
for transformation network orchestration, constituting contribution C1 .

2.1 Motivating Example

Figure 1 depicts a software project whose contributors take the roles of architects,
developers and user experience (UX) designers. One person can take multiple
roles, but every role has a particular view on the project and uses related tools.
Architects use a UML-based tool to analyse and plan the architecture. Developers

Finding a Universal Execution Strategy for Model Transformation Networks 89

PCM Java

developers

OpenApi

UI

UX designers

UML

architects

Fig. 1. Example for a transformation network in model-driven (software) development.

program the software in Java. These two models overlap: Although they cannot
be derived completely from each other, the implementation should follow the
architecture and architects want to see how code changes affect the architecture.

UX designers develop the UI for the software. Their designs overlap with
the UML model, because, first, the software’s requirements mandate certain
properties of the UI, and, second, the architecture may restrict which information
can be shown at which point in the interface. The UI design also overlaps with
the code, since static parts of the UI can be derived from the UI model. Ideally,
changes in the UI code can even be propagated back into the UI model.

The developers use OpenAPI™ [32] to exchange specifications of HTTP APIs.
These specifications overlap with the parsing and serialisation code. Architects
want to analyse how their architecture choices influence performance, using the
Palladio Component Model (PCM) [24]. The architecture specification used in
the PCM overlaps with the one defined in UML. Additionally, the PCM model
contains information about performance properties and the deployment structure,
which can partially be derived from the code.

Those relations can be encoded in transformations to avoid re-specification
of similar information, such as the architecture in PCM and UML, to derive
information, like appropriate Java stubs from OpenAPI specifications, and to
preserve information consistency. Figure 1 shows the resulting transformation
network. In this paper, we will find an execution strategy for such transformations,
which is needed to correctly propagate changes from one model to the others.

2.2 Context

We discuss model transformation networks in a specific usage context. We assume
that different roles are involved in a development project, each using some
models to describe their view of the system. The models are kept consistent
by model transformations. For the sake of simplicity, we only discuss binary
transformations between two models. To foster independent specification and reuse
of transformations, we assume that they are not tailor-made, but may be general-
purpose. As a consequence, we cannot assume that the models or transformations
are or can be aligned, for example, to ensure that their execution in a specific

90 J. Gleitze et al.

order always results in consistent models. Neither can we assume that the network
has a certain topology. We do, however, assume that all transformations are in
accordance to a well-defined overall notion of consistency (reaching a consistent
state would be impossible otherwise). This means that all requirements we pose
on the transformations must only concern a transformation itself. A requirement
like “no transformation overwrites the result of another” would not fit our context.

We require that transformations are synchronising [4], i.e., that they can deal
with the situation that both of their models have been changed. This is essential
to find an execution strategy: When propagating changes in a transformation
network that contains cycles, it will inevitably happen that both models that are
connected by a transformation will be changed. In addition, the well-researched
bidirectional transformations only change one of the models [28] and could in
such a situation be forced to overwrite changes to yield a consistent result. This
assumption also enables concurrent modifications by different project members.

2.3 Formalisation

We are not concerned with how models are structured, so we simply resort to
defining a universe M that contains all models. First, we define the kind of
transformations that we use:

Definition 1. A synchronising binary transformation (syncx) t�

�

is a function
that updates two models:

t�

�

: (M×M) → (M×M)

A syncx’ image consists of fixed points:

∀a ∈ M ∀b ∈ M : t�

�(
t�

�

(a, b)
)
= t�

�

(a, b)

The universe of all syncx for M is called T.

This formalisation is a simplification sufficient for the purposes of this paper.
In practice, transformations will, for example, be allowed to indicate an error
instead of being required to always produce appropriate new models.

In comparison to existing formalisms [28], there is no consistency relation in
the definition of a syncx. For our purposes, the consistency relation is not part
of a syncx, but rather encoded implicitly in the syncx’ behaviour. We assume
that the transformations are correct and hippocratic [28] with regard to their
implicit consistency relation and can then recover the relation:

Definition 2. The consistency relation R
t�

�

of syncx t�

�

is given by:

R
t�

�

=
{
(a, b) | t�

�

(a, b) = (a, b)
}

This paper focuses on transformation networks that are created when com-
bining multiple syncx:

Definition 3. A transformation network N =: ((V,E), T) consists of a directed,
connected, self-loop-free graph G = (V,E) and a syncx assignment T : E → T.
Any two vertices {a, b} ⊆ V have at most one edge between them: (a, b) ∈ E =⇒
(b, a) /∈ E. The universe of all model transformation networks for M is called U.

Finding a Universal Execution Strategy for Model Transformation Networks 91

A transformation network captures the topology and the used transformations.
There is no inherent reason to exclude multigraphs or self-loops. We use this
simpler definition because it makes it easier to argue about the networks without
restricting expressiveness. We use directed edges instead of undirected ones to
provide a notion of the “left” and “right” model for a syncx. The edges’ direction
does not indicate anything about the direction of change propagation. We will
usually regard the network as given and try to find suitable model assignments:

Definition 4. For a transformation network N =:((V,E), T), a model assign-
ment M is a function M : V → M.

Naturally, we are particularly interested in model assignments that are con-
sistent with the transformations:

Definition 5. For a transformation network N =: ((V,E), T), a model assign-
ment M is consistent if, and only if

∀(a, b) ∈ E : (M(a),M(b)) ∈ RT (a,b)

The set of all consistent model assignments for N is called RN .

We use the following additional notation in this paper:

– “A → B” for the set of functions from set A to set B
– “f: A '→ B” for a partial function f from A to B
– “f(x) = ⊥” to mean that a partial function f is not defined at x
– “Im(f)” to denote the image of a function f

2.4 Problem Description

Our goal is to find an algorithm that, given a transformation network N =:
((V,E), T) ∈ U and a model assignment M , finds a consistent model assignment
M ′ by applying transformations in Im(T). We call such an algorithm a “(trans-
formation network) execution strategy”. It is “universal” if it is parametrised by
and thus defined for every network.

Definition 6. A universal execution strategy determines an order (i.e., a per-
mutation with duplicates) of transformations in Im(T) for a given transformation
network N=:((V,E), T) ∈ U and model assignment M ∈ (V → M). It realises a
partial function S : U× (V → M) '→ (V → M).

An execution strategy finds a new model assignment only by executing the
transformations of the network, as more precisely defined by Klare et al. [15,
Definition 8]. If S(N,M) �= ⊥, we say that the strategy “resolves” N and M . If
S(N,M) = ⊥, we say that the strategy fails. We have further requirements:

Requirement 1. An execution strategy must be correct:

∀N=:((V,E), T) ∈ U ∀M ∈ (V → M) : S(N,M) ∈ RN ∪ {⊥}
Requirement 2. An execution strategy must be hippocratic:

∀N=:((V,E), T) ∈ U ∀Mc ∈ RN : S(N,Mc) = Mc

92 J. Gleitze et al.

An execution strategy will not always be able to find a consistent new model
assignment (i.e., there will be some N,M such that S(N,M) = ⊥). First, there
may not be a consistent model assignment at all (i.e., RN = ∅). Second, there may
be a consistent model assignment but no execution order of the transformations
that yields that assignment [30, 16]. We call such inputs “unresolvable” [30].
Conversely, if there is an execution order of the transformations that yields a
consistent model assignment, we call the inputs “resolvable”.

An execution strategy may even fail for resolvable inputs: The execution
strategy may not “find” a consistent model assignment, even though it is reachable.
For example, the strategy may abort before having executed the transformations
often enough, or finding the assignment might require an order of execution
which the strategy does not consider. We call such a strategy “conservative”:

Definition 7. An execution strategy S is conservative if it is correct and if there
can be resolvable inputs N,M with S(N,M) = ⊥.

The higher the probability that an execution strategy yields a result for
resolvable inputs (we also say the lower its “level of conservativeness”), the more
useful the strategy will be. It is, however, also desirable that the strategy is
predictable, meaning that one can determine beforehand for which inputs the
strategy will succeed. For example, it would be useful to know whether a strategy
yields a result for a given network for any resolvable model assignment. Informally
speaking, we would like to have an “easy-to-check” criterion for transformation
networks determining whether this is the case. An even better criterion could be
applied to a single syncx, such that the strategy can resolve all inputs with a
network of syncx that fulfil the criterion. This would be ideal for the motivated
context of independently developing and freely combining syncx to a network.

To summarise, we aim to find a correct, hippocratic execution strategy that is
able to keep models consistent via transformation networks. The strategy should
succeed for realistic inputs with a high probability. Additionally, we aim to find
criteria that determine the cases in which the strategy will succeed.

3 Related Work

Approaches for restoring model consistency have been subject to intensive research,
surveyed by Macedo et al. [21]. Model transformations are a well-researched option,
and several tools and languages have been developed to support them [27, 18, 25].
Research has, however, mainly focused on consistency between two models, which
also concerns theoretical properties like termination as one of the properties
that we investigate for the execution of transformation networks [7]. Maintaining
consistency between more than two models has recently gained more attention,
especially in terms of a dedicated Dagstuhl seminar [2]. The central approaches
of multiary transformations and networks of binary transformations can be
distinguished. In Section 1, we have discussed that multiary transformations are
complex to specify, whereas networks of binary transformations have limited
expressiveness [30], which does, however, not seem to be practically relevant [2].

Finding a Universal Execution Strategy for Model Transformation Networks 93

Multiary Transformations: Different approaches for multiary transformations
have been proposed. QVT-R [22] supports multidirectionality already by design,
but ambiguities in the standard limit practical applicability [20]. Triple Graph
Grammars (TGGs) [26] are bidirectional specifications, which are well-suited for
model transformations [1]. Extensions of TGGs to multiple models called Multi
Graph Grammars (MGGs) [17] and Graph Diagram Grammars [34, 33] consider
the specification of multidirectional rules. All these approaches, however, require
the transformation developer to know about and be able to express the relations
between all involved models, which we reasonably excluded by assumption.

Auxiliary Models: Not all multiary relations can be expressed by sets of binary
ones. Adding one auxiliary model makes it, however, theoretically possible to
express arbitrary multiary relations by binary ones [30]. Some work discussed
which kinds of relations can be expressed with such an approach and how they
can be formalised in the lenses framework [5, 31]. Other work discussed how
composing such auxiliary models to express commonalities of models can be
achieved [14]. Such auxiliary models actually encode a multiary transformation
in a model together with binary transformations to the models to keep consistent,
resulting in the same challenges as for transformation network. In consequence,
our work on transformation networks is also required and applicable there.

Binary Transformations: Although they cannot express all multiary relations,
there are arguments in favour of using networks of modular transformations,
especially binary ones: They are easier to develop when domain knowledge is
distributed [13] and they are easier to comprehend by a single developer [2, 30].
Additionally, binary transformations are researched well and a variety of tools sup-
porting different kinds of specifying them exist [27, 18, 25, 21]. Most formalisms
and tools consider bidirectional transformations, whereas networks require syn-
chronising transformations, as motivated in Section 2.2. Non-synchronising trans-
formations can, however, be adapted to become synchronising [37].

Transformation Chains: Transformation chains combine transformations to
derive low-level models from high-level ones across intermediate representations.
Languages like FTG+PM [19] and UniTI [35] enable the specification of such
chains. Transformation chains are, however, only a special case of general transfor-
mation networks. Etien et al. consider specific properties of transformation chains.
They investigate how conflicts in terms of results depending on the execution
order can be detected [8]. These results do, however, not aim to relieve developers
from the task of finding an execution order manually, as we do in this paper.

Transformation Composition: Transformation composition techniques are
a means to build networks of binary transformations. They can be separated
into internal, white-box approaches [36], and external techniques, which consider
transformations as black-boxes. Our contributions can be seen as an external
composition technique. However, composition usually considers transformations
between the same rather than different types of models. From a theoretical
perspective (see Section 2.3) this could be treated equally by not distinguishing
models by their metamodels. Practical approaches, however, consider transfor-
mations between specific metamodels rather than arbitrary models.

94 J. Gleitze et al.

UML Java OpenApi

«interface»
ExampleService

+ getExamples()

+

1.

interface ExampleService {
public List<Example> getExamples();

}

+

2.

GET /example

+

3.
class ExampleServer
implements ExampleService { ... }

+
3.

!

Fig. 2. Example yielding inconsistent models after executing each transformation once.
Numbers in italics indicate the order in which changes are performed.

Execution Strategies: Di Rocco et al. [3] describe a simple strategy for or-
chestrating transformations, but make strong assumptions requiring that each of
them is only applied once. Stevens [30] proposes a strategy that also executes each
transformation only once in one direction. It includes a notion of authoritative
models, which are not allowed to be changed, and does not consider synchronising
transformations. Likewise, Stevens [29] proposes to find an orientation model
defining in which direction transformations are executed. If, however, several
transformations modify the same model, the approach leaves it to the developer
to determine an execution order after which all consistency relations hold. Such
strategies are only correct if the network is a tree, or if no transformations interfere
with each other. We present a simple scenario in which this is already too limiting
in Section 4.1. We overcome this limitation by executing transformations more
than once and thereby letting them “negotiate” a result even if they interfere,
which yields a universal execution strategy for arbitrary network topologies.

4 Design Space

We approach the possibilities for designing an execution strategy by looking at
how often it executes syncx in the worst case. We consider the two extremes of
executing every syncx at most once and executing them an unlimited number of
times, and find that neither of them will do: While the first one is too limiting, the
second one cannot guarantee termination. As a consequential insight, a universal
execution strategy needs to be conservative, introduced as contribution C2 .

4.1 One Execution per Transformation

Several proposed strategies execute every transformation in a network at most
once [30, 35]. Since we expect that transformations are developed independently,
and are thus not necessarily aligned (see Section 2.2), restricting the number
of executions to one per transformation would, however, limit the possible
combinations of them, and models could not be kept consistent in desirable
scenarios. We give an example for this in the following.

Finding a Universal Execution Strategy for Model Transformation Networks 95

1 0 . . . 0 0 . . . 0
i�

�

2 i�

�

4 i�

�

n i�

�

1 i�

�

3 i�

�

n−1

Fig. 3. A transformation network with n transformations reacting to each other.

We use the example of Section 2.1, and focus on the UML, Java and OpenAPI
models to consider the scenario visualised in Figure 2: An architect creates a new
UML interface and applies an execution strategy that executes every transforma-
tion once. First, the UML-to-Java syncx creates an appropriate interface in Java.
The OpenAPI-to-Java syncx recognises that the interface should be exposed
via an HTTP API and creates a matching endpoint in the OpenAPI model.
Additionally, it creates a stub implementation with parsing and serialisation code
in Java. The stub implementation classes can, however, not be propagated back
to UML, because the UML-to-Java syncx has already been executed.

We see that if we limit the number of executions to one per transformation,
transformations cannot propagate back the changes that other transformations
have made. However, in the context described in Section 2.2, it is necessary that
transformations are able to “react” to the changes made by other transformations.
This offers, for instance, separation of concerns: The logic for a certain aspect of
consistency can be put in only one transformation and other transformations will
propagate it throughout the network. Without such a mechanism, all aspects of
consistency would need to be implemented in all transformations. This would
cause duplication of logic and reduce reusability of transformations, which would
be impractical and contradicts our assumption of independent development. If
we added the logic for creating implementations of relevant Java interfaces to
the UML-to-Java syncx, then it would implicitly assume the presence of the
Java-to-OpenAPI syncx. It could, thus, not be easily reused in networks where
the Java-to-OpenAPI syncx is not used.

We can generalise the previous example: Let the model universe be the natural
numbers: M = N0. Let further for any 1 ≤ j ≤ n the syncx i�

�

j be defined as

i�

�

j : (a, b) '→
{
(m+ 1,m+ 1) if m = j

(m,m) else
with m := max{a, b}

i�

�

j sets both models to the higher number of the two, except if that number is j.
Then i�

�

j increments the result by one. This is an abstraction of syncx “reacting”
to each other: The i�

�

js seek to set all models to the same value, except that after
i�

�

j−1 was executed, i�

�

j changes its behaviour and increments the value by one.
We now construct the transformation network Nn for n = 2k, k ∈ N+ (see

Figure 3) with n indicating the number of syncx within the network, and examine
how many executions it requires:

Tn = (i, i+ 1) '→
{
i�

�

2i if i ≤ n
2

i�

�

2i−n−1 else

Nn = (([1, n+ 1], {(i, i+ 1) | i ∈ [1, n]}), Tn)

96 J. Gleitze et al.

Lemma 1. i�

�

n must be executed at least n times to resolve Nn with the initial
model assignment

M1 : i '→
{
1 if i = 1

0 else

Proof. The only reachable model assignment that is consistent is Mn : i '→ n. It is
reached by having every i�

�

j increment the highest number in the model assignment
by one if that highest number currently is j. All transformations incrementing
even numbers are on one side of i�

�

n (except for i�

�

n itself), all transformations
incrementing uneven numbers are on the other side. Thus, the currently highest
number must be propagated to the other side of i�

�

n at least n−1 times. Additionally,
i�

�

n must increment n− 1 to n.

Theorem 1. For any execution strategy that uses O(1) executions of each trans-
formation, there are inputs that the execution strategy cannot resolve.

Proof. Follows directly from Lemma 1.

The example network in Figure 2 is a simplification of a realistic transformation
scenario, which we generalised to the network Nn. In consequence of Theorem 1,
we can expect that transformation networks can, in general, not be resolved with
O(1) executions of each transformation.

4.2 Unlimited Executions

We now consider an execution strategy that executes transformations as long as
they still change models, and terminates once no more changes occur. This over-
comes the shortcoming that we observed with limiting the number of executions
to a constant; we will, however, see that we cannot guarantee termination of
such an execution strategy. By simulating Turing machines with transformation
networks, we prove that it is undecidable whether the strategy will terminate.

Given a Turing machine tm over some alphabet Σ, we construct a trans-
formation network Ntm =: ((V,E), Ttm) and a model assignment Mtm,x that
are resolvable if, and only if, tm halts on input x ∈ Σ∗. We assume that tm
contains no self-loops as well as no cycles of length 2, i.e., that each transition
and each sequence of two transitions changes the state of tm. This is without
loss of generality, since duplication and triplication of each state resolves such
self-loops and cycles, respectively. The constructed models consist of a times-
tamp, the tape content and the tape position (i.e., M = N0 × Σ∗ × N0). The
network Ntm has tm’s states as vertices and exactly one directed edge (in arbi-
trary direction) between each pair of states having a transition between them.
The transformations increment the timestamp, change the tape content and
update the tape position according to tm’s transition if, and only if, the source
model’s timestamp is higher than the target model’s timestamp. More formally,
let Tr(a, b) ⊆ Σ × {−1, 0, 1} ×Σ be the transitions defined between the states a

Finding a Universal Execution Strategy for Model Transformation Networks 97

and b (with −1, 0 and 1 indicating the head movements “left”, “stay” and “right”).
We define Ttm with w|p←r := w[0 .. p−1] · r · w[p+1 .. |w|−1] such that:

∀(a, b) ∈ E : Ttm(a, b)(α=:(ta, wa, pa), β=:(tb, wb, pb))

=

⎧⎪⎪⎨⎪⎪⎩
(α, (ta+1, wa|pa←r, pa+d)) if ta > tb ∧ ∃ (wa[pa], d, r) ∈ Tr(a, b)

((tb+1, wb|pb←r, pb+d), β) if ta < tb ∧ ∃ (wb[pb], d, r) ∈ Tr(b, a)

(α, β) else

Let s be the initial state of tm. We set

Mtm,x : v '→
{
(1, x, 0) if v = s

(0, ε, 0) else

Lemma 2. Executing the transformations of Ntm, with initial model assignment
Mtm,x, until no transformations change the model assignment anymore terminates
if, and only if, tm halts on input x. If executing the transformations terminates
with the final model assignment Mf , then the model with the highest timestamp
in Im(Mi) contains tm(x) as tape content.

Proof. We can see by induction over the model assignments Mi, i ∈ N0 created
while executing the transformations:

1. There is exactly one v ∈ V such that the model Mi(v) =: (t, x, p) has the
highest timestamp t of all models in Im(Mi).

2. There is at most one edge (a, b) ∈ E whose transformation is inconsistent, i.e.,
(Mi(a),Mi(b)) /∈ RTtm(a,b). This follows from the definitions of tm and the
last executed transformation. Additionally, a = v or b = v, because otherwise
there would have been two transformations to which models in Im(Mi−1) are
inconsistent. We assume without loss of generality a = v.

3. If (a, b) exists, then m′ :=Mi+1(b) will contain the same tape content and the
same tape position as would result if tm was executed one step from state v
with tape content x and tape position p. Additionally, m′ will be the model
with the highest timestamp of all models in Im(Mi+1).

4. (a, b) does not exist if, and only if, tm would halt in state v with tape content
x and tape position p.

Theorem 2. Let S be an execution strategy that executes transformations until
a consistent model assignment is reached. There are inputs for which it can not
be decided whether S will terminate.

Proof. It follows from Lemma 2 that deciding whether S terminates could decide
the halting problem for a universal Turing machine.

Even worse, this construction makes it unlikely that we will find a practicable
criterion that ensures success of an execution strategy like we have motivated in
Section 2.4. Because we want the criterion to apply to a single syncx, it would
need to restrict the syncx so much that it makes building a network simulating

98 J. Gleitze et al.

Turing machines out of the syncx impossible. But since the definition of the
syncx in Im(Ttm) is structurally simple, it seems unlikely that a syncx fulfilling
the hypothetical criterion would still be apt for most practical use cases.

We could avoid undecidability if we restricted the models’ size. The models
could then no longer store an unbounded tape and, thus, only simulate space-
restricted Turing machines. There is, however, no reasonable bound for a necessary
model size, to which they could be limited. In consequence, determining a universal
space bound for models would be an arbitrary and thus impractical restriction.

Finally, one could question whether it is relevant if an execution strategy can
be guaranteed to terminate. Execution strategies will be used to tell users whether
changes they made can be incorporated into the other models automatically.
In consequence, users should reliably and timely get a response. We might
compare this situation to merging changes in version control systems. There,
users also want a reliable and timely response on whether their changes could be
incorporated automatically, or whether they need to resolve conflicts manually.

5 Proposed Strategy

As a consequence of the previous findings, every universal execution strategy will
be conservative: there will be inputs for which it fails, even though there would
have been an execution order leading to a consistent model assignment. In this
section, we discuss how to find an appropriate execution order and bound, and
finally present the “explanatory strategy”, constituting contribution C3 .

5.1 Execution Order: Providing Explainability

Increasing the number of transformation executions an execution strategy permits,
lowers its level of conservativeness. In contrast, the effects of different orders in
which transformations can be executed are not as easy to categorise. The authors
developed a model transformation network simulator [11], whose source code
is available at GitHub [10]. It allows to construct transformation networks and
to define execution strategies, which can be applied step by step. All examples
presented in this paper are also modelled in the simulator. For each examined
systematic execution order, such as a depth-first or breadth-first selection, the
authors found categories of networks on which the order performed worse than
another one in terms of conservativeness. In consequence, conservativeness is not
a good sole criterion to evaluate orders by.

We know that a universal execution strategy will inevitably be conservative,
i.e., possibly fail for resolvable inputs. In practice, it will be important how well
an execution strategy provides explainability in such cases, i.e., helps users to
understand where and why the strategy failed with the selected execution order.
The order plays a decisive role in this regard, which is why we focus on finding a
strategy that improves the order. Imagine, for instance, that the strategy executed
transformations in an arbitrary order until some limit is reached. Users might
then be confronted with a situation where all transformations have been executed,

Finding a Universal Execution Strategy for Model Transformation Networks 99

but the last model assignment is only consistent with some of them. There would
be no clear pattern and little clues for users where to start investigating the
failure’s cause. To improve explainability, the authors thus propose the following
principle for an execution order:

Principle 1. Ensure consistency among the transformations that have already
been executed before executing a transformation that has not been executed yet.

Since a syncx can change both models, executing it may results in models that
are inconsistent with the syncx that have been executed previously. Following
Principle 1, these inconsistencies should be addressed first. In effect, a strategy
applying the principle will maintain a subnetwork of syncx with a consistent model
assignment and try to expand the subnetwork transformation by transformation.

To exemplify how Principle 1 provides explainability, suppose that an execution
strategy applying that principle fails after having executed the set of syncx E ⊆ T.
Let t�

�

∈ E be the last syncx that was executed for its first time. The strategy can
then inform users that integrating t�

�

into the subnetwork induced by E failed.
Furthermore, it can inform users that a result that is consistent with the syncx
in E \ {t�

�

} exists. By that, users gain valuable information for handling the error:
First, when trying to understand the error, they can ignore any syncx that is
not in E. Second, some aspect of consistency that is present in the consistency
relation realised by t�

�

, but absent in the consistency relations realised by the syncx
in E \ {t�

�

}, hinders the strategy from creating a consistent result. Third, when
users try to find a consistent model assignment manually, they can start with the
consistent result that exists for E \ {t�

�
} instead of having to start from scratch.

5.2 Execution Bound: Reacting to Each Other

As we have seen, we need to restrict the number of transformation executions
with a function in ω(m) (m being the number of syncx in the input network).
Such a limit must be reasonable to support most practical use cases: Not allowing
enough transformation executions reduces the usefulness of the strategy since not
all useful networks can be resolved. Allowing too many executions might make
the strategy run for a long time before aborting, without adding much value.

In Section 4.1, we have motivated that syncx should be able to “react” to
each other. We have seen that this excludes any bound in O(1) for the number
of executions per transformation, but to guarantee termination we can also not
allow transformations to react to each other indefinitely. If a syncx t�

�

changes the
models and the other already executed syncx have reacted to those changes by
adapting the models to be consistent with them as well, t�

�

should not react by
changing the models again. Because if t�

�

changed the models again, this could
easily result in executing the same sequences of transformations repeatedly and
there would likely be no consistent result.

We call transformations that behave in the described way N -converging. This
is not a property of a syncx on its own but relative to its network N . Thus, it
cannot be achieved just by proper construction of an individual transformation.

100 J. Gleitze et al.

Algorithm 1. The explanatory strategy in pseudocode.
1 Procedure propagate (network, changes):
2 executed ← ∅
3 accumulatedChanges ← changes

4 Invariant: accumulatedChanges applied to network consistent to executed
5 while network.contains (candidate | candidate /∈ executed

∧ accumulatedChanges.adjacentTo (candidate)) do
6 candidateChanges ← candidate.execute (accumulatedChanges)
7 subnetwork ← network.edgeInducedSubgraph (executed)
8 propagationChanges ←

propagate (subnetwork, accumulatedChanges ∪ candidateChanges)

9 candidateChanges ← candidate.execute (propagationChanges)
10 if candidateChanges.adjacentToAny (executed) then

// Only happens if candidate is not network-converging
11 fail (executed, propagationChanges)

12 accumulatedChanges ← propagationChanges ∪ candidateChanges
13 executed ← executed ∪ candidate
14 return accumulatedChanges

There is, unfortunately, also no simple way to check it statically. Nevertheless, it
captures the sensible expectation for transformations explained above. We yield
an execution bound for a strategy by only requiring it not to fail if all syncx
are N -converging. We will see how this execution bound behaves in combination
with Principle 1 in the subsequently presented execution strategy.

Definition 8. Let N=:(G,T) be a transformation network. A syncx t�

�

∈ Im(T)
is N-converging if for every initial model assignment and each subset of the
syncx Tp ⊆ Im(T) with t�

�

∈ Tp the resulting model assignment is consistent to t�

�

whenever t�

�

has been executed after a sequence of the syncx in Tp that contains
each permutation of those syncx as a (not necessarily continuous) subsequence.

We only require that the sequence of transformation executions contains each
permutation, but allow other executions in between. As an example, assume a
network N of N -converging syncx t�

�

1, t�

�

2 and t�

�

3. After executing them in the
order t�

�

1 t�

�

2 t�

�

3 t�

�

1 t�

�

2 t�

�

3, the current model assignment may still be inconsistent with
t�

�

1 because t�

�

1 was not executed after the order t�

�

3 t�

�

2. After executing t�

�

1 once more,
the resulting model assignment must now be consistent with all syncx: t�

�

1 was
executed after the two orders of other syncx t�

�

2 t�

�

3 and t�

�

3 t�

�

2. Likewise, t�

�

2 was
executed after t�

�

1 t�

�

3 and t�

�

3 t�

�

1, and t�

�

3 was executed after t�

�

1 t�

�

2 and t�

�

2 t�

�

1.

5.3 The Explanatory Strategy

We now turn to a concrete strategy that realises the discussed design choices.
Algorithm 1 gives pseudocode for such a strategy, which we call the “explanatory

Finding a Universal Execution Strategy for Model Transformation Networks 101

it

rec

it

rec

it

rec

it

rec

it

rec

it

rec

it

rec

candidate
executed

it
iteration step

rec recursion step

Fig. 4. Exemplary execution of the explanatory strategy for a change in the topmost
model, depicting the iterations (horizontal) and recursion steps (vertical).

strategy”. At a high level, it acts like this: Given a changed model assignment, the
strategy picks the next candidate syncx to execute. After executing the candidate,
the strategy calls itself on the subnetwork formed by the already executed syncx.
By that, it propagates the changes of the last execution throughout the sub-
network and ensures that they are consistent with the executed syncx. Finally,
the strategy executes the initial candidate again to ensure that the changes added
during the subnetwork propagation are consistent with the candidate. If that
repeated execution of the candidate generates new changes in any model that
is kept consistent by an already executed syncx, the execution fails, because
the candidate does not fulfil the definition of being N-converging, as we will
see in the following. In that case, the procedure returns the already executed
syncx to which consistency was restored by the also returned changes in order to
support a user in examining the reasons for the strategy to fail. If the models
are consistent with the candidate, the strategy picks the next one. In effect,
the strategy realises Principle 1 in a recursive fashion and ensures that each
permutation of all yet executed syncx is executed at every recursion level.

Figure 4 depicts an exemplary execution of the strategy for a network with
four models and four transformations. We assume that after an initially consistent
state of the models, the topmost one was modified. We can see that each recursion
only treats the subnetwork of previously executed transformations. Hence, the
network gets smaller at each recursion level.

Unlike the formalisation in Section 2.3, the presented algorithm is based on
changes instead of model states. Changes contain information that cannot be
recovered by comparing model states [6]. Thus in practice, we want to support
change-based execution. The algorithm also uses changes to determine potential
candidates for the next transformation to execute: It only picks candidates that
are adjacent to a model that was changed. The input changes describe all changes
that occurred since the last model assignment M that was known to be consistent.
The procedure returns accumulatedChanges that, when applied to M , yield a
new model assignment M ′. For our formalisation, M ′ is the algorithm’s output.

102 J. Gleitze et al.

We discuss some implementation details for the explanatory strategy further
below. First, we prove that the strategy has indeed the motivated properties. We
assert that it terminates always and determine its execution bound.

Theorem 3. The explanatory strategy terminates for every input.

Proof. Because all called functions terminate, only the loop (Line 5) and the
recursive call in Line 8 can lead to non-termination. Let m denote the number
of edges of network. The set executed is initialised to be empty (Line 2) and
grows by one element in every iteration of the loop. The loop is executed no more
than m times, because after m iterations there is no transformation that is not
in executed and, thus, the loop condition cannot be fulfilled.

The recursive call receives a network that is smaller than network in terms of
edges, because it does not contain the current candidate. If network is empty,
then the algorithm will not enter the loop and not make a recursive call. Hence,
the recursive stack never gets higher than m.

Theorem 4. The explanatory strategy executes syncx at most O(2m) times.

Proof. Let T (m) denote the number of syncx executions the algorithm invokes
for a network with m edges. The set executed is initialised to be empty and
grows by one syncx every loop iteration (Line 13). It follows that the recursive
call in Line 8 receives a network that is one syncx larger each time. Thus, we find

T (0) = 0, T (m) = 2m+
m−1∑
i=0

T (i) = 2 + 2T (m− 1) = 2 (2m − 1) ∈ O(2m)

Next, we show that the strategy fulfils the fundamental Requirements 1 and 2
regarding correctness and hippocraticness, which we defined in Section 2.4.

Theorem 5. The explanatory strategy is correct.

Proof. Assume the contrary, i.e., that the strategy produces a model assignment
M for network N such that M /∈ RN . That means that there is an edge (a, b) ∈ E
such that (M(a),M(b)) /∈ R

t�

�

, where t�

�

:= T (a, b). We distinguish these cases:

1. t�

�

was never executed. Then accumulatedChanges never contained any change
adjacent to a or b (Line 5). Since the initial changes were relative to a
consistent model assignment, we know that (M(a),M(b)) ∈ R

t�

�

.
2. t�

�

was executed and no other transformation adjacent to a or b was executed
afterwards. Then (M(a),M(b)) ∈ R

t�

�

per definition.
3. t�

�

was executed and another transformation u�

�

adjacent to a or b was executed
afterwards. Because u�

�

was executed after t�

�

, t�

�

was in executed when u�

�

was the
candidate. So t�

�

’s last execution was in the recursion after u�

�

’s first execution
in Line 6. Afterwards, u�

�

was only executed in Line 9. If u�

�

would have changed
M(a) or M(b), the strategy would have raised a failure. Hence, M(a) and
M(b) are the same as after the execution of t�

�

, and (M(a),M(b)) ∈ R
t�

�

.

All cases lead to a contradiction.

Finding a Universal Execution Strategy for Model Transformation Networks 103

Theorem 6. The explanatory strategy is hippocratic.

Proof. The strategy only produces changes by executing syncx, which, per defini-
tion, only generate changes if the models are not in their consistency relations.

Finally, we verify that we have indeed realised Principle 1 and that the
strategy does not fail for a network N of only N -converging transformations.

Theorem 7. The explanatory strategy ensures consistency among the transfor-
mations that have already been executed before executing a transformation that
has not been executed yet (see Principle 1).

Proof. After the recursive call in Line 8, the current model assignment is consistent
with all executed syncx (Theorem 5) and no changes to models adjacent to an
executed syncx are allowed.

Theorem 8. If the input network of the explanatory strategy consists only of
network-converging syncx, then the explanatory strategy does not fail.

Proof. First, we note that when calling the algorithm on a network with m trans-
formations, the first m− 1 iterations of the loop act identically to executing the
algorithm on a network without the last candidate. Second, we note that the sec-
ond part of the loop condition, “accumulatedChanges.adjacentTo (candidate)”
(Line 5), does not change the algorithm’s result apart from controlling the order
in which the syncx are executed. If any syncx was never executed because of
this condition, then executing it would not have changed any model. Hence, we
assume w.l.o.g. that all syncx in network will get executed.

Now we show the following, stronger statement by induction over the number
m of edges in network: “After running the explanatory strategy, the sequence
of executed syncx contains each permutation of those syncx (not necessarily
continuously)”. Since the transformations are network-converging and because
of our first note above, proving this statement shows that the condition leading
to a failure (Line 10) will never evaluate to true. The statement is trivially true
for m=1. Assume that the statement is true for all networks of size 1 ≤ n < m
but not true for a network of size m. That means that after executing the last
iteration of the loop, there is an order o of the m syncx in network in which they
have not been executed yet. Let t�

�

be the candidate of the last iteration. Let j be
the index of t�

�

in o. Per induction assumption, the order o[1] . . . o[j−1] has been
executed in the previous iterations of the loop. Afterwards, t�

�

was executed in
Line 6. Per induction assumption, the order o[j+1] . . . o[m] has been executed in
the recursive call (Line 8) of the last iteration. This happened after Line 6. Hence,
the transformations have been executed in the order o. This is a contradiction.

The explanatory strategy only guarantees to produce a consistent model as-
signment if all syncx are N -converging. We can, unfortunately, not provide an ap-
proach to achieve N -convergence by construction or to determine N -convergence.
We have, however, also discussed that every universal execution strategy needs to
operate conservatively and thus fails in certain cases. Thus, even if a network N

104 J. Gleitze et al.

contains syncx that are not N -converging, the explanatory strategy still operates
conservatively and at least fails based on the notion of a sensible and well-defined
property. In addition, the exponential worst-case performance of the strategy is
no limitation, because it does only represent a bound to ensure termination. In
cases in which the strategy terminates, we expect the repeated execution of each
syncx to perform only few changes in reaction to the changes made by other syncx,
as otherwise they are unlikely to be N -converging. The interested reader can try
out the explanatory strategy using the previously mentioned simulator [11].

In its current formulation, the explanatory strategy does not prevent the
syncx from overwriting the initial user changes. This seems inappropriate, as
user changes should usually not be reverted. Other authors address this issue by
forbidding changes to models that have been edited by users [3, 30, 29], called
“authoritative models”. There are, however, practical use cases where such changes
should be allowed—the example in Section 4.1 is one of them. An option would
be to let the strategy fail as soon as a syncx execution overwrites a user change.

6 Conclusion

In this paper, we have discussed influencing factors for designing a universal exe-
cution strategy for model transformation networks. Such a strategy orchestrates
transformations to create a consistent set of models. It involves determining
an order to execute the transformations in, and a bound for the number of
executions. We have proven that every universal execution strategy that always
terminates needs to be conservative, i.e., it will fail for certain cases in which an
execution order of transformations that yields a consistent solution exists. We
have argued that providing explainability in cases where an execution strategy
fails should be a central design goal. As a result, we have proposed the explanatory
strategy, which is proven correct and terminates for every input. Additionally, it
improves explainability of failures and has a well-defined bound for the number
of transformation executions to ensure a reasonable level of conservativeness.

We have formalised our findings on execution bounds and the behaviour of
the proposed execution strategy to prove the insights and expected properties of
the strategy. In consequence, this paper provides fundamental knowledge about
the design space and relevant design goals of transformation network execution
strategies. While the statements on correctness and well-definedness are proven,
those on the usefulness of the strategy were derived by argumentation. To improve
evidence of the results, the authors plan to apply the strategy to realistic use
cases, involving larger networks of more complex transformations.

Furthermore, the authors want to examine how the strategy can be further op-
timised: It might, e.g., be improved by backtracking and trying further candidate
transformations, or by selecting the next candidate more carefully. Since early
executed transformations will be executed most often, starting with those that
will most unlikely cause conflicts might be beneficial. Finally, this paper assumes
transformations to be binary. Since the presented strategy does not require this,
future research could investigate transferability to multiary transformations.

Finding a Universal Execution Strategy for Model Transformation Networks 105

References

1. Anjorin, A., Rose, S., Deckwerth, F., and Schürr, A.: “Efficient Model Synchro-
nization with View Triple Graph Grammars”. In: Modelling Foundations and
Applications, pp. 1–17. Springer International Publishing (2014)

2. Cleve, A., Kindler, E., Stevens, P., and Zaytsev, V.: “Multidirectional Transforma-
tions and Synchronisations (Dagstuhl Seminar 18491)”. Dagstuhl Reports 8(12),
1–48 (2019)

3. Di Rocco, J., Di Ruscio, D., Heinz, M., Iovino, L., Lämmel, R., and Pierantonio, A.:
“Consistency Recovery in Interactive Modeling”. In: 3rd International Workshop on
Executable Modeling co-Located with ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems. Vol-2019, pp. 116–122.
CEUR-WS.org (2017)

4. Diskin, Z., Gholizadeh, H., Wider, A., and Czarnecki, K.: “A Three-Dimensional Tax-
onomy for Bidirectional Model Synchronization”. Journal of Systems and Software
111, 298–322 (2016)

5. Diskin, Z., König, H., and Lawford, M.: “Multiple Model Synchronization with
Multiary Delta Lenses”. In: Fundamental Approaches to Software Engineering,
pp. 21–37. Springer International Publishing (2018)

6. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., and Orejas, F.: “From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case”.
In: Model Driven Engineering Languages and Systems, pp. 304–318. Springer Berlin
Heidelberg (2011)

7. Ehrig, H., Ehrig, K., Lara, J. de, Taentzer, G., Varró, D., and Varró-Gyapay, S.:
“Termination Criteria for Model Transformation”. In: Fundamental Approaches to
Software Engineering, pp. 49–63. Springer Berlin Heidelberg (2005)

8. Etien, A., Aranega, V., Blanc, X., and Paige, R.F.: “Chaining Model Transforma-
tions”. In: First Workshop on the Analysis of Model Transformations, pp. 9–14.
ACM (2012)

9. Etien, A., Muller, A., Legrand, T., and Blanc, X.: “Combining Independent Model
Transformations”. In: 2010 ACM Symposium on Applied Computing, pp. 2237–2243.
ACM (2010)

10. Gleitze, J.: GitHub: Transformation Network Simulator, (2021). https://github.
com/jGleitz/transformationnetwork-simulator (visited on 01/14/2021)

11. Gleitze, J.: Transformation Network Simulator, (2021). https://jgleitz.github.io/
transformationnetwork-simulator (visited on 01/14/2021)

12. Guissouma, H., Klare, H., Sax, E., and Burger, E.: “An Empirical Study on the
Current and Future Challenges of Automotive Software Release and Configuration
Management”. In: 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 298–305. IEEE (2018)

13. Klare, H.: “Multi-model Consistency Preservation”. In: 21st ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, pp. 156–161. ACM (2018)

14. Klare, H., and Gleitze, J.: “Commonalities for Preserving Consistency of Mul-
tiple Models”. In: 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, pp. 371–378. IEEE (2019)

15. Klare, H., Kramer, M.E., Langhammer, M., Werle, D., Burger, E., and Reussner, R.:
“Enabling consistency in view-based system development – The Vitruvius approach”.
Journal of Systems and Software 171 (2020)

http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://ceur-ws.org/Vol-2019/exe_6.pdf
http://dx.doi.org/10.1016/j.jss.2015.06.003
http://dx.doi.org/10.1016/j.jss.2015.06.003
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-540-31984-9_5
http://dx.doi.org/10.1145/2432497.2432500
http://dx.doi.org/10.1145/2432497.2432500
http://dx.doi.org/10.1145/1774088.1774557
http://dx.doi.org/10.1145/1774088.1774557
https://github.com/jGleitz/transformationnetwork-simulator
https://github.com/jGleitz/transformationnetwork-simulator
https://jgleitz.github.io/transformationnetwork-simulator
https://jgleitz.github.io/transformationnetwork-simulator
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1145/3270112.3275335
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1016/j.jss.2020.110815

106 J. Gleitze et al.

16. Klare, H., Syma, T., Burger, E., and Reussner, R.: “A Categorization of Interoper-
ability Issues in Networks of Transformations”. In: 12th International Conference
on Model Transformations. Journal of Object Technology (2019)

17. Königs, A., and Schürr, A.: “MDI: A Rule-based Multi-document and Tool Integra-
tion Approach”. Software and Systems Modeling 5(4), 349–368 (2006)

18. Kusel, A., Etzlstorfer, J., Kapsammer, E., Langer, P., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W., and Wimmer, M.: “A Survey on Incremental Model
Transformation Approaches”. In: Workshop on Models and Evolution co-located
with ACM/IEEE 16th International Conference on Model Driven Engineering
Languages and Systems. Vol-1090, pp. 4–13. CEUR-WS.org (2013)

19. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., and Jukss, M.: “FTG+PM:
An Integrated Framework for Investigating Model Transformation Chains”. In:
SDL 2013: Model-Driven Dependability Engineering, pp. 182–202. Springer Berlin
Heidelberg (2013)

20. Macedo, N., Cunha, A., and Pacheco, H.: “Towards a Framework for Multi-
Directional Model Transformations”. In: 3rd International Workshop on Bidirec-
tional Transformations. Vol-1133. CEUR-WS.org (2014)

21. Macedo, N., Jorge, T., and Cunha, A.: “A Feature-Based Classification of Model
Repair Approaches”. IEEE Transactions on Software Engineering 43(7), 615–640

22. Object Management Group (OMG): “Meta Object Facility (MOF) 2.0—Query/
View/Transformation Specification”, Version 1.3 (2016)

23. Pilgrim, J. von, Vanhooff, B., Schulz-Gerlach, I., and Berbers, Y.: “Constructing and
Visualizing Transformation Chains”. In: Model Driven Architecture – Foundations
and Applications, pp. 17–32. Springer Berlin Heidelberg (2008)

24. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., and Krogmann, K.: “Modeling and Simulating Software Architectures
– the Palladio Approach”. MIT Press (2016)

25. Samimi-Dehkordi, L., Zamani, B., and Kolahdouz-Rahimi, S.: “Bidirectional Model
Transformation Approaches – A Comparative Study”. In: 6th International Confer-
ence on Computer and Knowledge Engineering, pp. 314–320. IEEE (2016)

26. Schürr, A.: “Specification of graph translators with triple graph grammars”. In:
Graph-Theoretic Concepts in Computer Science, pp. 151–163. Springer Berlin
Heidelberg (1995)

27. Stevens, P.: “A Landscape of Bidirectional Model Transformations”. In: Generative
and Transformational Techniques in Software Engineering II, pp. 408–424. Springer
Berlin Heidelberg (2008)

28. Stevens, P.: “Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions”. Software and Systems Modeling 9(1), 7 (2010)

29. Stevens, P.: “Connecting software build with maintaining consistency between
models: towards sound, optimal, and flexible building from megamodels”. Software
and Systems Modeling 19(4), 935–958 (2020)

30. Stevens, P.: “Maintaining consistency in networks of models: bidirectional transfor-
mations in the large”. Software and Systems Modeling 19(1), 39–65 (2020)

31. Stünkel, P., König, H., Lamo, Y., and Rutle, A.: “Multimodel Correspondence
through Inter-Model Constraints”. In: 2nd International Conference on Art, Science,
and Engineering of Programming Companion, pp. 9–17. ACM (2018)

32. The Linux Foundation: OpenAPI Initiative, (2021). https://www.openapis.org/
(visited on 01/14/2021)

http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.1007/s10270-006-0016-x
http://dx.doi.org/10.1007/s10270-006-0016-x
http://ceur-ws.org/Vol-1090/1.pdf
http://ceur-ws.org/Vol-1090/1.pdf
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://ceur-ws.org/Vol-1133/paper-11.pdf
http://ceur-ws.org/Vol-1133/paper-11.pdf
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2016.2620145
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://dx.doi.org/10.1109/ICCKE.2016.7802159
http://dx.doi.org/10.1109/ICCKE.2016.7802159
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-019-00736-x
http://dx.doi.org/10.1007/s10270-019-00736-x
http://dx.doi.org/10.1145/3191697.3191715
http://dx.doi.org/10.1145/3191697.3191715
https://www.openapis.org/

Finding a Universal Execution Strategy for Model Transformation Networks 107

33. Trollmann, F., and Albayrak, S.: “Extending Model Synchronization Results from
Triple Graph Grammars to Multiple Models”. In: Theory and Practice of Model
Transformations, pp. 91–106. Springer International Publishing (2016)

34. Trollmann, F., and Albayrak, S.: “Extending Model to Model Transformation
Results from Triple Graph Grammars to Multiple Models”. In: Theory and Practice
of Model Transformations, pp. 214–229. Springer International Publishing (2015)

35. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., and Berbers, Y.: “UniTI: A
Unified Transformation Infrastructure”. In: Model Driven Engineering Languages
and Systems, pp. 31–45. Springer Berlin Heidelberg (2007)

36. Wagelaar, D., Tisi, M., Cabot, J., and Jouault, F.: “Towards a General Composition
Semantics for Rule-Based Model Transformation”. In: Model Driven Engineering
Languages and Systems, pp. 623–637. Springer Berlin Heidelberg (2011)

37. Xiong, Y., Song, H., Hu, Z., and Takeichi, M.: “Synchronizing Concurrent Model
Updates Based on Bidirectional Transformation”. Software and Systems Modeling
12(1), 89–104 (2013)

Image Sources

paintingred: “Default Avatar Headshot Icons”, found on Vecteezy.
https://www.vecteezy.com/vector-art/141712-default-avatar-headshot-icons.
Vecteezy Free License.

Object Management Group: UML logo.
https://www.uml.org/index.htm.
Trademark.
Palladio logo.
https://sdqweb.ipd.kit.edu/wiki/File:Palladio-Logo-stilisiert-vektor.pdf.
Authorized use.
The Linux Foundation: OpenAPI™ logo.
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/
vector/OpenAPI_Logo_Black.svg. Trademark.

Freepik: “Computer”.
https://www.flaticon.com/free-icon/computer_1077701.
Flaticon Basic License.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/s10270-010-0187-3
http://dx.doi.org/10.1007/s10270-010-0187-3
https://www.vecteezy.com/vector-art/141712-default-avatar-headshot-icons
https://www.uml.org/index.htm
https://sdqweb.ipd.kit.edu/wiki/File:Palladio-Logo-stilisiert-vektor.pdf
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/vector/OpenAPI_Logo_Black.svg
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/vector/OpenAPI_Logo_Black.svg
https://www.flaticon.com/free-icon/computer_1077701
http://creativecommons.org/licenses/by/4.0/

	Finding a Universal Execution Strategy for Model Transformation Networks
	1 Introduction
	2 Problem Statement
	2.1 Motivating Example
	2.2 Context
	2.3 Formalisation

	3 Related Work
	4 Design Space
	4.1 One Execution per Transformation
	4.2 Unlimited Executions

	5 Proposed Strategy
	5.1 Execution Order: Providing Explainability
	5.2 Execution Bound: Reacting to Each Other
	5.3 The Explanatory Strategy

	6 Conclusion
	References

