
Computing Program Reliability using
Forward-Backward Precondition Analysis and

Model Counting

Aleksandar S. Dimovski 1 and Axel Legay2

1 Mother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, N. Macedonia
aleksandar.dimovski@unt.edu.mk

2 Université catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

Abstract. The goal of probabilistic static analysis is to quantify the
probability that a given program satisfies/violates a required property
(assertion). In this work, we use a static analysis by abstract interpretation
and model counting to construct probabilistic analysis of deterministic
programs with uncertain input data, which can be used for estimating
the probabilities of assertions (program reliability).
In particular, we automatically infer necessary preconditions in order a
given assertion to be satisfied/violated at run-time using a combination of
forward and backward static analyses. The focus is on numeric properties
of variables and numeric abstract domains, such as polyhedra. The ob-
tained preconditions in the form of linear constraints are then analyzed to
quantify how likely is an input to satisfy them. Model counting techniques
are employed to count the number of solutions that satisfy given linear
constraints. These counts are then used to assess the probability that the
target assertion is satisfied/violated. We also present how to extend our
approach to analyze non-deterministic programs by inferring sufficient
preconditions. We built a prototype implementation and evaluate it on
several interesting examples.

1 Introduction

Program verification is often concerned by only determining whether one assertion
always holds at a given program point. However, there are many applications
where we need to know a more fine-grained information about how likely a target
assertion (event) is to be satisfied/violated. Examples of other target events
include the invocation of a certain method, the access to confidential information,
etc. In those cases, we want to distinguish between what is possible event (even
with extremely low probability) and what is likely event (possible with higher
probability). In this work, we show how to calculate the reliability of programs
by using combination of static analysis by abstract interpretation and model
counting. In particular, we are interested to learn how the presence of uncertainty
in the inputs can affect the probability of assertions at the exit of the program.
c© The Author(s) 2020

H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 182–202, 2020.
https://doi.org/10.1007/978-3-030-45234-6 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_9&domain=pdf
http://orcid.org/0000-0002-3601-2631
https://doi.org/10.1007/978-3-030-45234-6_9

Computing Program Reliability 183

This is an important problem to consider, since uncertainty is a common aspect of
many real-world software systems today (e.g., medicine and aerospatial domains).

Abstract interpretation [6,7,8] is a general theory for approximating the
semantics of programs. It provides safe (all answers are correct) and efficient
(with a good trade-off between precision and cost) static analyses of run-time
properties of real programs. It is based on the idea of approximations between
concrete and abstract domains of program properties. Its practical success is
mainly enabled by the design of numerical abstract domains, which reason on
numerical properties of variables. For example, the interval domain [6], which
is non-relational, infers the information about the possible values of individual
variables; the octagon domain [25], which is weakly relational, infers unit binary
linear constraints between program variables; and the polyhedra domain [10],
which is fully relational, infers the linear constraints between all program variables.
Abstract interpretation is a powerful technique for deriving approximate, albeit
computable analyses, by using fully automatic algorithms. These abstract analyses
pay the price for finite computability (always terminate) by an inevitable loss of
precision. We use abstract analyses for automatic inference of (over-approximated)
invariants by forward analysis, and (over-approximated) necessary preconditions
by backward analysis. These two abstract analyses can be combined such that the
results of the first analysis refine the results of the second one. In this work, we use
a combination of forward and backward analyses to automatically generate the
necessary preconditions on input variables that lead to the satisfaction/violation
of a given assertion. If obtained preconditions are satisfied by some concrete values
for input variables, then they represent input values that will allow the given
assertion to be definitely satisfied/violated by all program executions branching
from them. In fact, we run two backward analyses: the first one determines
necessary preconditions for the given assertion to be satisfied, while the second
one determines necessary preconditions for the given assertion to be violated.

Model counting is the problem of determining the number of solutions of
a given constraint (formula). The LattE tool [1] implements state-of-the-art
algorithms for computing volumes, both real and integral, of convex polytopes as
well as integrating functions over those polytopes. More specifically, we use the
LattE tool to estimate algorithmically the exact number of points of a bounded
(possibly very large) discrete domain that satisfy given linear constraints.

In this paper, we describe a method which uses abstract interpretation-based
static analysis and model counting to perform a specific type of quantitative
analysis of deterministic programs, that is the calculation of program reliability.
Calculating the program reliability involves counting the number of solutions to
preconditions, which are given in the form of linear constraints between variables,
i.e. elements from the polyhedra domain, that ensure satisfaction/violation of a
given assertion by using model counting, and dividing it by the total space of
values of the inputs. We assume that the input values are uniformly distributed
within their finite discrete domain. Since the set of generated preconditions
represents an over-approximation, we compute the reliability of programs as
upper and lower bounds of exact probabilities that a given assertion is satisfied

184 A. S. Dimovski and A. Legay

or violated. The reported uncertainty is due to the approximation inherent in
abstract interpretation, which is introduced in order to obtain a scalable and
fully automatic analysis.

The focus here is on programs whose input values range over finite discrete
domains. Thus, we obtain a finite input domain and so we can use model counting
algorithms to compute the required probabilities. We also restrict ourselves to
the domain of linear integer arithmetic, since this is supported by LattE and
the polyhedra numeric domain we use.

We also consider an extension of our approach to non-deterministic programs.
For non-deterministic programs, sufficient and necessary preconditions no more
coincide [26]. Sufficient preconditions ensure that the target invariant holds for
all sequences of non-deterministic choices made at each execution step, whereas
necessary preconditions ensure that the target invariant holds for at least one
sequence of non-deterministic choices made at each execution step. In effect,
increasing the non-determinism will reduce the set of sufficient preconditions and
enlarge the set of necessary preconditions. Hence, for non-deterministic programs
we construct backward analyses for inferring (under-approximated) sufficient
preconditions that lead to the satisfaction/violation of a given assertion. The
calculation of reliability is then similar to the one for deterministic programs.

We have developed a prototype probabilistic static analyzer which uses the
APRON library [21] to implement numeric property domains and the LattE
tool [1] to implement model counting algorithms. APRON provides a common
high-level API to the most common numerical property domains, such as intervals,
octagons, and polyhedra. We have implemented a combination of forward and
backward analyses of deterministic (resp., non-deterministic) C programs for the
automatic inference of invariants and necessary (resp. sufficient) preconditions
in all program points. Our static analyzer has two components: (1) it computes
the required preconditions in the input program point for a given assertion to be
satisfied/violated, and (2) it then calls LattE to count the number of solutions
of those preconditions and calculates the program reliability.

The main contributions of this work are:

– We demonstrate how to calculate the program reliability of deterministic and
non-deterministic programs using static analysis by abstract interpretation
and model counting.

– We develop a probabilistic static analyzer, which uses numerical property
domains from the APRON library and the LattE model counting tool.

– Finally, we evaluate our method for probabilistic static analysis of C programs
and show how to handle a set of small but compelling benchmarks.

2 Motivating Examples

Consider the program P1 in Fig. 1. Suppose that the initial value of i ranges over
the integer domain [0, 19], and the initial value is independently and uniformly
distributed across this range. When (i ≥ 10) the variable k is assigned to 12,
otherwise k is assigned to 50. A forward invariant analysis will find the invariant

Computing Program Reliability 185

void main() {
1© : int i:=[0, 19]; linput :
2© : int k:=0;
3© : if (i ≥ 10) k:=12; else k:=50;
lfinal : assert (k ≤ 30);

}

Fig. 1: The program P1

void main() {
1© : int j:=[0, 9]; linput :
2© : int i:=0;
3© : while (i < 100) {
4© : i:=i+1;
5© : j:=j+1; }
lfinal : assert (j ≤ 105);

}

Fig. 2: The program P2

k = 12 ∨ k = 50 at point lfinal. Therefore, the assertion (k ≤ 30) can be satisfied
(when k = 12) and can be violated (when k = 50). We are interested in inferring
necessary preconditions on the input state at control point linput, when the
assertion is satisfied and when the assertion is violated. We back-propagate
necessary conditions of satisfaction and violation of the assertion from point lfinal
to linput. A backward necessary condition analysis will infer the precondition
i ≥ 10 at point linput assuming that the assertion is satisfied, and the precondition
i < 10 at point linput assuming that the assertion is violated. The size of the
input domain is 20, since i ∈ [0, 19]. By calling LattE to count the number of
solutions to the above preconditions, we can calculate that the probability for the
assertion to be satisfied (success probability) is: 10

20 = 50%, and the probability
for the assertion to be violated (failure probability) is: 10

20 = 50%.
Consider the program P2 in Fig. 2. A forward invariant analysis will find the

invariant 100 ≤ j ≤ 109 at point lfinal, so the corresponding assertion can be
satisfied (when 100 ≤ j ≤ 105) and can be violated (when 105 < j ≤ 109). A
backward necessary condition analysis will infer the precondition 0 ≤ j ≤ 5 at
point linput for the assertion to be satisfied, and the precondition 5 < j ≤ 9 at
point linput for the assertion to be violated. Therefore, we can calculate that the
success probability is: 6

10 = 60%, and the failure probability is: 4
10 = 40%.

3 Forward-Backward Precondition Analyses

We describe the combination of forward and backward analyses in the framework
of abstract interpretation for inferring necessary preconditions that a given
assertion is satisfied/violated. The principle of the combination is to use the
result of the forward invariant analysis in the subsequent backward necessary
condition analysis in order to get more precise results which are still sound.

Syntax. We consider a simple deterministic programming language that is a
subset of C, which will be used to exemplify our work. The control point (location)
before each statement and at the end of each block is associated to a unique label
l ∈ L. The syntax of the language is given by:

s ::=skip |x:=e |x:=[n, n′] | s;s | if (e) then s else s | while (e) do s |assert(e)
e ::= n | x | e⊕ e

186 A. S. Dimovski and A. Legay

where n ranges over integers, [n, n′] ranges over integer intervals, x ranges over
variable names Var, and ⊕ over arithmetic-logic operators. Non-deterministic
interval assignment x:=[n, n′] represents an input statement which assigns to the
input variable x a uniformly distributed random value from the interval [n, n′].
This interval assignment can occur only in the input section of the program,
and is used to model input uncertainties. The set of all generated statements s
is denoted by Stm, whereas the set of all expressions e is denoted by Exp. We
assume linput is the location after the input statements (i.e. it denotes the end of
the input section) and lfinal is the location at the end of the program, where an
assertion assert(ef) is posed. Without loss of generality, a program is a sequence
of statements followed by a single assertion.

Concrete semantics. A program state is given by a control location in L and
an environment in E : Var → Z mapping each variable to its value (integer
number). We write Σ = L× E to denote the set of all possible program states.
Programs are modelled as transition systems (Σ,−→), where Σ is a set of states
and −→⊆ Σ ×Σ is a transition relation modelling atomic execution steps. The
relation −→ is defined by local rules, such as the following:

assignment l0 : x:=e; l1 :: (l0, ρ) −→ (l1, ρ[x 7→ [[e]](ρ)]), where [[e]](ρ) ∈ Z is
the result of the evaluation of e in the environment ρ, and ρ[x 7→ n] denotes
the environment that updates ρ at variable x with the value n.

input l0 : x:=[n, n′]; l1 :: (l0, ρ) −→ (l1, ρ[x 7→ n′′]), where n′′ ∈ [n, n′].
conditional l0 : if (e) then {lt0 : s; lt1} else {lf0 : s′; lf1}; l1 :: (l0, ρ) −→ (lt0, ρ)

if [[e]](ρ) 6= 0 3, (l0, ρ) −→ (lf0 , ρ) if [[e]](ρ) = 0, (lt1, ρ) −→ (l1, ρ), and
(lf1 , ρ) −→ (l1, ρ).

loop l0 : while (e) do {lt0 : s; lt1}; l1 :: (l0, ρ) −→ (lt0, ρ) if [[e]](ρ) 6= 0, (l0, ρ) −→
(l1, ρ) if [[e]](ρ) = 0, and (lt1, ρ) −→ (l0, ρ). 4

Let E ⊆ E be the set of input environments obtained after executing the
input statements. The set of input states is I = {(linput, ρ) | ρ ∈ E}. The
invariant inference (reachability) problem consists of finding out the possible
environments (values of all variables) that may arise at each control location.
The concrete semantic domain is the complete lattice of the powerset of states
(P(Σ),⊆,∪,∩, ∅, Σ), and the concrete semantics in the form of invariant states
encountered branching from I, denoted inv(I), is:

inv(I) = lfpIλX.X ∪ post(X)

where post(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ′ −→ σ} and lfpIf is the least fixed point
of the function f greater than I.

In this work, we consider the problem of inferring necessary preconditions.
Assume that a program exits with lfinal : assert(ef). We want to distinguish
3 Following the convention popularized by C, we model Boolean values as integers,

with zero interpreted as false and everything else as true.
4 Note that control moves from the final label lt1 of s to the initial label l0 of while.

Computing Program Reliability 187

between program termination that leads to the satisfaction of the final assertion
at lfinal from the one that leads to the violation of the final assertion at lfinal.
Let Fsat = {(l, ρ) ∈ inv(I) | l = lfinal =⇒ [[ef]](ρ) 6= 0} and Fviol = {(l, ρ) ∈
inv(I) | l = lfinal =⇒ [[ef]](ρ) = 0} be the invariant sets which enforce the
assertion at the point lfinal to be satisfied and violated, respectively, and coincide
with inv(I) everywhere else. In the following, F may represent either Fsat or
Fviol. Given an invariant set F to obey, we want to infer the set of input states
cond(F) that guarantee that all program executions stay in F :

cond(F) = gfpFλX.X ∩ pre(X)

where pre(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ −→ σ′} is the set of predecessors of X, and
gfpFf is the greatest fixed point of the function f smaller than F . The above
two fixed points (lfp and gfp) exist according to Tarski, as the corresponding
functions are monotone and continuous in the complete lattice of state sets.

Given a set of input environments E ⊆ E , we can compute the subsets Esat
and Eviol of input environments that lead to satisfaction and violation of the
final assertion as:

Esat = E ∩ {ρ |(linput, ρ)∈cond(Fsat)},Eviol = E ∩ {ρ |(linput, ρ)∈cond(Fviol)}

Abstract semantics. Transition systems can become large or infinite for real
programs, so that neither inv(I) nor cond(F) can be computed at all. Therefore,
we seek for sound approximations. The actual computable abstract analyses can
be defined as over-approximations of the concrete semantics. A static analyzer will
infer over-approximated necessary preconditions so that all program executions
that lead to satisfaction (resp., violation) of the final assertion are taken into
account, thus computing an over-approximation of Esat (resp., Eviol).

We consider an abstract domain (D,vD), such that there exist a Galois
connection 5 〈P(E),⊆〉 −−−→←−−−

αD

γD 〈D,vD〉. We assume that the abstract domain
D is equipped with sound operators for ordering vD, least upper bound (join)
tD, greatest lower bound (meet) uD, bottom ⊥D, top >D, widening OD, and
narrowing MD, as well as sound transfer functions for assignments −−−−→assignD :
Var × Exp × D → D, tests −−−−→filterD : Exp × D → D, and backward assignments←−−−−−−
b-assignD : Var × Exp × D × D → D. We let lfp# (resp., gfp#) denote an
abstract post-fixpoint (resp., pre-fixpoint) operator, derived using widening OD
and narrowing MD, that over-approximates the concrete lfp (resp., gfp) [8].
Finally, the concrete domain on which concrete semantics is defined (P(Σ),⊆) is
abstracted using a Galois connection 〈P(Σ),⊆〉 −−−→←−−−α

γ
〈L→ D, v̇〉 where α(R) =

λl ∈ L. tD {d ∈ D | (l, ρ) ∈ R,αD(ρ) = d}. Hence, each control point l ∈ L is
associated with an element d ∈ D in the abstract semantics.

5 〈L,≤L〉 −−−→←−−−α
γ
〈M,≤M 〉 is a Galois connection between complete lattices L and M

iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all
l ∈ L,m ∈M . Here 6L and 6M are the pre-order relations for L and M , respectively.

188 A. S. Dimovski and A. Legay

We define a family of forward transfer functions
−→
δ l,l′ : D→ D that compute

the effect of any concrete transition at the abstract level. The definition of
−→
δ l,l′

for some statements is:

assignment l0 : x:=e; l1 ::
−→
δ l0,l1(d) = −−−−→assignD(x, e, d)).

conditional l0 : if (e) then {lt0 : s; lt1} else {lf0 : s′; lf1}; l1 ::
−→
δ l0,lt0(d) =

−−−−→
filterD(e, d),

−→
δ l0,lf0

(d) = −−→filterD(¬e, d),
−→
δ lt1,l1(d) = d,

−→
δ lf1 ,l1

(d) = d.

loop l0 : while (e) do {lt0 : s; lt1}; l1 ::
−→
δ l0,lt0(d) = −−−−→filterD(e, d),

−→
δ l0,l1(d) =

−−→filterD(¬e, d), and
−→
δ lt1,l0(d) = d.

The soundness of {
−→
δ l,l′ | l, l′ ∈ L} is written as: ∀d ∈ D, ∀ρ ∈ γD(d), (l, ρ) −→

(l′, ρ′) =⇒ ρ′ ∈ γD(
−→
δ l,l′(d)).

Suppose that the abstract element αD(E) = dinput ∈ D is at the input control
point linput. We can collect the abstractions of possible environments at each
program control point using the following forward interpreter:

−→
F # = λI.λ(l ∈ L). tD {

−→
δ l′,l(I(l′)) | l′ ∈ L}

such that the result of the forward analyzer is −→I # = lfp#
I0

−→
F #, where I0(linput) =

dinput. Assume that lfp#
I0

−→
F #(lfinal) = dfinal. Let dsatfinal = −−→filterD(e, dfinal) and

dviolfinal = −−→filterD(¬e, dfinal). We want to design two backward abstract interpreters
that propagate backwards the invariants ensuring that the final assertion is
satisfied dsatfinal and violated dviolfinal, respectively. The backward interpreters refine
the invariants found by −→F #. Thus, they take two elements of D as inputs: an
invariant to refine and an invariant to propagate backwards. They are based
on a family of backward transfer functions

←−
δ l,l′ : D × D → D, which map

a precondition to refine and a postcondition into a refined precondition. The
definition of

←−
δ l,l′ for some statements is:

assignment l0 : x:=e; l1 ::
←−
δ l0,l1(d, d′) =←−−−−−−b-assignD(x, e, d, d′).

conditional l0 : if (e) then {lt0 : s; lt1} else {lf0 : s′; lf1}; l1 ::
←−
δ l0,lt0(d, d′) = dud′,

←−
δ l0,lf0

(d, d′) = d u d′,
←−
δ lt1,l1(d, d′) = d u d′,

←−
δ lf1 ,l1

(d, d′) = d u d′.

loop l0 : while (e) do {lt0 : s; lt1}; l1 ::
←−
δ l0,lt0(d, d′) = dud′,

←−
δ l0,l1(d, d′) = dud′,

and
←−
δ lt1,l0(d, d′) = d u d′.

The soundness of {
←−
δ l,l′ | l, l′ ∈ L} is written as: ∀d, d′ ∈ D, ∀ρ ∈ γD(d), ρ′ ∈

γD(d′), (l, ρ) −→ (l′, ρ′) =⇒ ρ ∈ γD(
←−
δ l,l′(d, d′)). That is, d is refined into a

stronger precondition by taking into account the postcondition d′.
Suppose that F satD (lfinal) = dsatfinal, F violD (lfinal) = dviolfinal, and F satD (l) =

F violD (l) = −→I #(l) for l 6= lfinal. The backward interpreters are defined as:

←−
F # = λ(I, F).λ(l ∈ L). uD {

←−
δ l,l′(I(l), F (l′)) | l′ ∈ L}

Computing Program Reliability 189

such that the results of the two backward analyzers are: ←−C#
sat = gfp#

(−→I #,F sat
D)

←−
F #

and ←−C#
viol = gfp#

(−→I #,Fviol
D)

←−
F #. The necessary preconditions that the final asser-

tion is satisfied and violated are dsatinput =←−C#
sat(linput) and dviolinput =←−C#

viol(linput),
respectively. We can now compute the over-approximated sets E#

sat and E#
viol of

input environments Esat and Eviol that lead to satisfaction and violation of the
final assertion as:

E#
sat = E∩γD(dsatinput), E#

viol = E∩γD(dviolinput)

such that E#
sat ⊇ Esat and E#

viol ⊇ Eviol.

Polyhedra numeric abstract domain. Although, the abstract domain D can be
instantiated with different property domains, in the following, we will use the
polyhedra numerical abstract domain for D. This is due to the fact that only for
the polyhedra domain all necessary abstract operations and transfer functions,
such as −−−−→assignD,←−−−−−−b-assignD,←−−−−−−−−−−−−b-assign-underD (see Section 5), are implemented
in the APRON library. The Polyhedra domain [10], denoted as 〈P,vP 〉, is a fully
relational numerical property domain, which allows manipulating conjunctions
of linear inequalities of the form α1x1 + . . . + αnxn ≥ β, where x1, . . ., xn are
program variables and αi, β ∈ R (reals). The abstract operations of the Polyhedra
domain are defined in [10]. Polyhedra analysis is expensive but also very precise.

A property element is represented as a conjunction of linear constraints given
in the matrix form 〈A,b〉 that consists of a matrix A ∈ Rm×n and a vector
b ∈ Rm, where n is the number of variables and m is the number of constraints.
This is called the constraint representation of polyhedra elements, and there is
another so-called generator representation. One representation can be converted
to the other one using the Chernikova’s algorithm [5]. Some domain operations
can be performed more efficiently using the generator representation only, others
based on the constraint representation, and some making use of both. We now
present some operations that can be defined using the constraint representation.

The concretization function is: γP (〈A,b〉) = {v ∈ Rn | A · v ≥ b}. The meet
uP is defined as: 〈A1,b1〉 uP 〈A2,b2〉 = 〈

(A1
A2

)
,
(b1

b2

)
〉. We also need widening

since the polyhedra domain has infinite strictly increasing chains.

〈A1,b1〉OP 〈A2,b2〉 = {c ∈ 〈A1,b1〉 | 〈A2,b2〉 vP {c}}

where c represents one constraint from 〈A1,b1〉. The transfer function −−−−→filterP
abstracts affine inequality expressions by adding them to the input polyhedra.

−−−−→
filterP (

∑
i

αixi ≥ β, 〈A,b〉) = 〈
(

A
α1 . . . αn

)
,

(
b
β

)
〉

Example 1. Consider the program P1 from Fig. 1. Assume that D is the polyhedra
domain. The input abstract element is dinput = (0 ≤ i ≤ 19). Using the forward
analyzer −→F #, we obtain dfinal = (k = 12∨ k = 50), and so dsatfinal = (k = 12) and
dviolfinal = (k = 50). Using backward analyzers ←−F #, we obtain dsatinput = (i ≥ 10)
and dviolinput = (i < 10). ut

190 A. S. Dimovski and A. Legay

4 Computing Success and Failure Probabilities

The overall goal of our approach is to answer questions about the probability
of assertions at the exit of a deterministic program P . We define the success
probability as the probability that a program terminates successfully with the
target assertion being satisfied. The failure probability is the probability that a
program hits a failure caused by the target assertion being violated.

The combination of forward and two backward analyses infers the necessary
preconditions, denoted dsatinput =←−C#

sat(linput) and dviolinput =←−C#
viol(linput), that the

target assertion is satisfied and violated, respectively. Calculating the likelihood of
satisfying/violating the given assertion involves counting the number of solutions
to dsatinput/dviolinput and dividing it by the total space of possible values in its input
domain E. In particular, we use model counting techniques and LattE tool [1] to
estimate algorithmically the exact number of points of a bounded (possibly very
large) discrete domain E that satisfy the (linear) constraints dsatinput and dviolinput.
We restrict our attention on programs that have finite input domains E and on
numeric abstract elements from the polyhedra domain expressed as linear integer
arithmetic (LIA) constraints over program variables whose values are uniformly
distributed over their input domain.

We use the LattE tool to compute the number of elements of E that satisfy
dsatinput and dviolinput, denoted #(dsatinput) and #(dviolinput). The size of E, denoted #(E),
is the product of domain’s sizes of all input variables in program P . Thus, we have:
#(E) =

∏
x:=[n,n′]∈P |n′−n+1|. Note that the exact sets of input states that lead

to satisfaction and violation of the given assertion are Esat and Eviol, and their
sizes are denoted #(Esat) and #(Eviol). Since the found necessary preconditions
dsatinput and dviolinput are over-approximations of Esat and Eviol respectively, we have
#(Esat) ≤ #(dsatinput) and #(Eviol) ≤ #(dviolinput). Moreover, the input environments
which are not in γD(dsatinput), that is they are in E\γD(dsatinput), definitely lead to
the violation of the assertion. Therefore, we have #(E)−#(dsatinput) ≤ #(Eviol) ≤
#(dviolinput). By similar reasoning as above, we can also establish that: #(E) −
#(dviolinput) ≤ #(Esat) ≤ #(dsatinput). Finally, we calculate the success and failure
probability of a program P as follows:

#(E)−#(dviol
input)

#(E) ≤ Prs(P) = #(Esat)
#(E) ≤

#(dsat
input)

#(E)
#(E)−#(dsat

input)
#(E) ≤ Prf (P) = #(Eviol)

#(E) ≤ #(dviol
input)

#(E)

(1)

Note that Prs(P) + Prf (P) = 1.

Example 2. Consider the program P1 from Fig. 1. We have E = {[i 7→ n] |
n ∈ [0, 19]}, and so #(E) = 20. Using forward and two backward analyses, we
obtain dsatinput = (i ≥ 10) and dviolinput = (i < 10), and so #(dsatinput) = 10 and
#(dviolinput) = 10. Thus, the success and failure probabilities are:

Prs(P1) = 10
20 (50%), and Prf (P1) = 10

20 (50%) ut

Computing Program Reliability 191

We use model counting and the LattE tool [1] to determine the number of
solutions of a given constraint. LattE accepts LIA constraints expressed as a
system of linear inequalities each of which defines a hyperplane encoded as the
matrix inequality: Ax ≤ B, where A is an m×n matrix of coefficients and B is an
m× 1 column vector of constants. Most LIA constraints can easily be converted
into the form: a1x1 + . . . + anxn ≤ b. For example, ≥ and > can be flipped
by multiplying both sides by −1, and strict inequalities < can be converted by
decrementing the constant b. In LattE, equalities = can be expressed directly. If
we have disequalities 6=, they can be handled by counting a set of constraints that
encode all possible solutions. For example, the constraint α∧ (x1 6= x2) is handled
by finding the sum of solutions for α∧ (x1 ≤ x2− 1) and α∧ (x1 ≥ x2 + 1). For a
system Ax ≤ B, where A is an m× n matrix and B is an m× 1 column vector,
the input LattE file is:

m n+1
B −A

where the first line indicates the matrix size: the number of inequalities m by
the number of variables n plus one. The following lines encode all inequalities.

5 Extension to non-deterministic programs

Let us reconsider the program P2 from Fig. 2, where the assignment in point
5© is now replaced with: j:=j+[0,1]. That is, the variable j is incremented by

a uniformly distributed random integer between 0 and 1 at each iteration. We
denote this non-deterministic program as P3 (taken from [26]), given below:

void main() {
1© : int j:=[0, 9]; linput :
2© : int i:=0;
3© : while (i < 100) {
4© : i:=i+1;
5© : j:=j+[0,1]; }
lfinal : assert (j ≤ 105); }

A forward invariant analysis will find that at lfinal holds: 0 ≤ j ≤ 109, and so
the assertion (j ≤ 105) can be both satisfied and violated. A backward necessary
condition analysis for assertion satisfaction will infer the precondition 0 ≤ j ≤ 9
at linput, since for any value j ∈ [0, 9] there exists an program execution satisfying
the assertion (e.g., consider the executions where the random integer from [0, 1]
always evaluates to 0 in the body of while). However, a backward sufficient
condition analysis for assertion satisfaction computes the set of input states such
that all program executions branching from them satisfy the assertion. In this
case, the sufficient condition analysis will infer the precondition 0 ≤ j ≤ 5 at
linput, since even if the random integer from [0, 1] always evaluates to 1 in the
body of while, the assertion will always hold. As a result of this, we can conclude
that the success probability is greater or equal to: 6

10 = 60%.

192 A. S. Dimovski and A. Legay

We can see that necessary and sufficient preconditions are different in the
presence of non-determinism [26]. Note that, if the non-determinism is increased
in a program, then the set of sufficient preconditions will be reduced, while the set
of necessary preconditions will be enlarged. For non-deterministic programs, Esat
and Eviol are subsets of input environments E that definitely lead to satisfaction
and violation of the final assertion for all possible non-deterministic choices,
respectively. We define the success probability Prs(P) as the probability that
a program terminates successfully with the target assertion being satisfied for
all possible non-deterministic choices taken at each step. The failure probability
Prf (P) is the probability that a program hits a failure caused by the target
assertion being violated for all possible non-deterministic choices taken at each
step. We now show how to compute the success and failure probabilities for
non-deterministic programs using sufficient conditions.

Remark. Note that in case of deterministic programs, Esat and Eviol form a
partition of the set of input environments E (Esat ∪ Eviol = E), thus we have
Prs(P) + Prf (P) = 1 for any deterministic program P . However, for non-
deterministic programs this is not true anymore. That is, Esat ∪ Eviol ⊆ E and
Prs(P) + Prf (P) ≤ 1 for any non-deterministic program P . This means that
there exist input environments for which it is possible the target assertion to be
both satisfied and violated depending on non-deterministic choices made at each
step of the given execution. For example, in the above program P3, for input
environments that satisfy 6 ≤ j ≤ 9, the target assertion is satisfied (when [0, 1]
in the body of while always evaluates to 0) and violated (when [0, 1] in the
body of while always evaluates to 1), so those input environments are neither
in Esat nor in Eviol. We have, Esat = {ρ | 0 ≤ [[j]]ρ ≤ 5} and Eviol = ∅, thus
Prs(P3) = 60% and Prf (P3) = 0%.

Syntax. The extended non-deterministic programming language includes the
same expression and statement productions as previously (see Section 3), but we
add a support for non-deterministic expressions by using integer intervals [n, n′]:

e ::= . . . | [n, n′]

The integer interval [n, n′] denotes a uniformly distributed random integer from
the interval [n, n′] (non-deterministic choice of an integer). Note that the interval
assignment x:=[n, n′] can now be freely used everywhere in programs, not only
in the input section as in deterministic programs.

Concrete semantics. We now consider the problem of backward sufficient con-
dition inference. Given an invariant set F to obey, we want to infer the set of
input states cond(F) that guarantee that all program executions branching from
them for all possible non-deterministic choices taken at each step stay in F :

cond(F) = gfpFλX.X ∩ p̃re(X)

where p̃re(X) = {σ ∈ Σ | ∀σ′ ∈ Σ.σ −→ σ′ =⇒ σ′ ∈ X} is the set of states
which represent predecessors only of states in X. Note that the function p̃re(X)

Computing Program Reliability 193

differs from the function pre(X) used in Section 3, that is p̃re(X) 6= pre(X), if
the transition system is non-deterministic (i.e. some states have several successors
or none). Using p̃re(X) ensures that the invariant set F holds for all sequences of
non-deterministic choices made at each execution step, while pre(X) ensures that
the invariant set F holds for at least one sequence of non-deterministic choices.
Note that p̃re(X) = pre(X) for deterministic programs, since |post({σ})| = 1
for every state σ ∈ Σ in this case.

Abstract semantics. In order to compute an under-approximating set of sufficient
preconditions, we require an abstract domain D with the following backward
abstract operators: meet uunder

D , backward assignment ←−−−−−−−−−−−−b-assign-underD : Var×
Exp × D × D → D, backward tests ←−−−−−−−−−−−−b-filter-underD : Exp × D × D → D,
and a lower widening OD [26]. The above abstract operators represent a sound
under-approximation of the corresponding concrete operators. We let gfp#under

denote an abstract pre-fixpoint operator, derived using lower widening OD, that
under-approximates the concrete gfp.

We design two backward sufficient condition abstract interpreters that propa-
gate backwards the invariants ensuring that the final assertion is satisfied dsatfinal
and violated dviolfinal, respectively. They are based on a family of backward transfer
functions

←−
δ under
l,l′ : D× D→ D, which for some statements are defined as:

– assignment l0 : x:=e; l1 :
←−
δ under
l0,l1

(d, d′) =←−−−−−−−−−−−−b-assign-underD(x, e, d, d′)
– if statement l0 : if (e) then {lt0 : s; lt1} else {lf0 : s′; lf1}; l1 :

←−
δ l0,lt0(d, d′) =

←−−−−−−−−−−−−
b-filter-underD(e, d, d′),

←−
δ l0,lf0

(d, d′) = ←−−−−−−−−−−−−b-filter-underD(¬e, d, d′), and
←−
δ lt1,l1(d, d′) = d u d′,

←−
δ lf1 ,l1

(d, d′) = d u d′

– l0 : while (e) do {lt0 : s; lt1}; l1 :
←−
δ l0,lt0(d, d′) = ←−−−−−−−−−−−−b-filter-underD(e, d, d′),

←−
δ l0,l1(d, d′) =←−−−−−−−−−−−−b-filter-underD(¬e, d, d′), and

←−
δ lt1,l0(d, d′) = d u d′.

The soundness of {
←−
δ under
l,l′ | l, l′ ∈ L} is written as: ∀d, d′ ∈ D, ∀ρ ∈ γD(d), ρ′ ∈

γD(d′), ρ ∈ γD(
←−
δ l,l′(d, d′)) =⇒ (l, ρ) −→ (l′, ρ′).

The backward sufficient condition interpreters are defined as:
←−
F #under = λ(I, F).λ(l ∈ L). uunder

D {
←−
δ under
l,l′ (I(l), F (l′)) | l′ ∈ L}

such that results of backward analyzers are: ←−C#under
sat = gfp#under

(−→I #,F sat
D)

←−
F #under

and ←−C#under
viol = gfp#under

(−→I #,Fviol
D)

←−
F #under. The sufficient preconditions that the final

assertion is satisfied and violated are dsat,under
input =←−C#under

sat (linput) and dviol,under
input =

←−
C#under
viol (linput), respectively. We can now compute the under-approximated sets

E#under
sat and E#under

viol of input environments Esat and Eviol that definitely lead to
satisfaction and violation of the final assertion as:

E#under
sat = E∩γD(dsat,under

input), E#under
viol = E∩γD(dviol,under

input)

such that E#under
sat ⊆ Esat and E#under

viol ⊆ Eviol.

194 A. S. Dimovski and A. Legay

Computing success and failure probabilities. As before, we instantiate D with
the polyhedra numeric abstract domain, since all under-approximating sound
backward operators for it have been implemented in the APRON library [26]. The
sufficient preconditions dsat,under

input and dviol,under
input are under-approximations of Esat

and Eviol respectively, so #(dsat,under
input) ≤ #(Esat) and #(dviol,under

input) ≤ #(Eviol).
Moreover, the input environments which are not in γD(dsat,under

input), that is they are
in E\γD(dsat,under

input), may lead to the violation of the assertion. Therefore, we have
#(dviol,under

input) ≤ #(Eviol) ≤ #(E) −#(dsat,under
input). By similar reasoning, we can

also establish that: #(dsat,under
input) ≤ #(Esat) ≤ #(E)−#(dviol,under

input). We calculate
the success and failure probability of a program P as follows:

#(dsat,under
input)
#(E) ≤ Prs(P) = #(Esat)

#(E) ≤
#(E)−#(dviol,under

input)
#(E)

#(dviol,under
input)
#(E) ≤ Prf (P) = #(Eviol)

#(E) ≤ #(E)−#(dsat,under
input)

#(E)

(2)

Example 3. Consider the program P3 from the beginning of this section. Using
two backward sufficient condition analyses, we obtain dsat,under

input = (0 ≤ j ≤ 5)
and dviol,under

input = (⊥D), and so #(dsat,under
input) = 6 and #(dviol,under

input) = 0. Thus, the
success and failure probabilities are:

(60%) 6
10 ≤ Pr

s(P3) ≤ 1 (100%) and (0%) 0 ≤ Prf (P1) ≤ 4
10(40%) ut

6 Implementation

We now describe the implementation and evaluation of the ideas presented so
far. The evaluation aims to show the following objectives:

O1: The probabilistic analysis can be used to analyze the behaviour of various
interesting programs;

O2: The probabilistic analysis gives exact results (with no precision loss) in many
cases, especially for deterministic programs;

O3: The performance time of probabilistic analysis is largely insensitive to domain
sizes of input variables;

O4: We can find practical application scenarios of using our probabilistic analysis
to efficiently analyze C programs.

Implementation. We have implemented a prototype probabilistic static analyzer
that accepts programs written in a subset of C. It does not support struct and
union types, and provides only a limited support of arrays and pointers. The only
basic data types considered are integers. As output, the tool reports the upper
and lower bounds of probabilities that the target assertion is satisfied or violated.
The prototype tool is written in OCaml. As the abstract analysis domain D for
encoding program properties, we use the polyhedra numeric abstract domain [10].
All abstract operators and sound transfer functions for the polyhedra domain

Computing Program Reliability 195

are provided by the APRON library [21,26]. The tool performs one forward
reachability analysis and two backward necessary/sufficient condition analyses
(one for satisfaction and one for violation of the assertion). The tool calls a
model counter, LattE [1], to determine the number of solutions to discovered
preconditions for satisfaction or violation of the assertion. Note that if an input
state satisfies the discovered precondition for satisfaction (resp., violation) of
the assertion, then all program executions branching from that state will satisfy
(resp., violate) the given assertion. The analysis proceeds by structural induction
on the program syntax, iterating while-s until a fixed point is reached. They
compute the unique solution which to every program point assigns an element
from the abstract domain D.

Experimental setup and benchmarks. All experiments are executed on a 64-
bit IntelrCoreTM i5 CPU, Lubuntu VM, with 8 GB memory. The reported
times represent the average runtime of five independent executions. We report
Timean to perform all static analyses tasks (one forward plus two backward static
analyses), Timepr to compute the needed probability bounds (call to LattE
plus additional calculations), and Time to complete the overall probabilistic
analysis task. The implementation, benchmarks, and all results obtained are
available from: https://aleksdimovski.github.io/probab-analysis.html (or, https:
//github.com/aleksdimovski/probab analyzer).

For our experiment, we use a dozen of C programs taken from several
folders (categories) of the 8th International Competition on Software Verification
(SV-COMP 2019) 6, as well as from the abstract interpretation community
[26,30]. The folders from SV-COMP 2019 we consider are: loops, loop-lit,
termination-crafted (which is denoted ter-crafted for short), as well as
termination-restricted-15 (which is denoted ter-restricted for short). We
have selected some numeric programs with integers that our tool can handle.
We have manually added input sections, and in some of the programs we have
also defined target assertions. Then, we have analyzed those programs using
our prototype static analyzer. Table 1 summarizes relevant characteristics for
each benchmark: the folder (source) where it is taken from, the number of lines
of code (LOC), and the number of integer variables (#var). There are two
classes of benchmarks in Table 1 separated by a double horizontal line. The
first (upper) class of benchmarks consists of deterministic programs for which
backward necessary condition analysis is performed, while the second (lower)
class of benchmarks are non-deterministic programs for which backward sufficient
condition analysis is performed.

Performances Table 1 shows the performance of our technique on a set of small
and compelling examples (addresses Objective (O1)). We can note that for most
of our deterministic benchmarks, the technique gives exact results without any
approximation (which are marked with X in the Exact column of Table 1).
This means that the lower and upper bounds for success and failure probabilities
6 https://sv-comp.sosy-lab.org/2019/

https://aleksdimovski.github.io/probab-analysis.html
https://github.com/aleksdimovski/probab_analyzer
https://github.com/aleksdimovski/probab_analyzer
https://sv-comp.sosy-lab.org/2019/

196 A. S. Dimovski and A. Legay

coincide. This is due to the fact that we use the expressive and very precise
polyhedra abstract domain (addresses Objective (O2)). For the remaining cases,
the technique gives approximate results (which are marked with ≈ in the Exact
column of Table 1), since the abstraction was too coarse to calculate exact results.
We can also see that the time for static analysis Timean dominates in the overall
probabilistic analysis time Time, whereas the probability computation time
Timepr is a smaller fraction of the total time. The small probability computation
times indicate that preconditions obtained from our analyses are relatively simple,
and so LattE can handle them very efficiently. We have also experimented with
different domain sizes n of input variables (for n = 10 and n = 1000). Thus, n
denotes the number of possible values per input variable. We observe that we
obtain similar time performance results for n = 10 and n = 1000, which means
that the performance is not affected by the fact that inputs come from a bigger
pool of possible values. This is mostly due to the fact that LattE and APRON
are largely insensitive to those values in terms of time (addresses Objective (O3)).
In general, the obtained probability bounds provide non-trivial information about
the behaviour of these programs and are quite hard to estimate by hand even if
the programs in question are small.

Application scenarios. Consider the following program (called Waldkirch.c from
termination-crafted folder of SV-COMP 2019):

1© : int x:=[−5, 4]; linput :
2© : while (x ≥ 0) {
3© : x:=x-1; }
lfinal : assert (x ≥ −1);

We want to prove this assertion, since, for example, later on in the program there
are references to an array using the index x+1 (e.g. a[x+1]:=0). In this way, we
want to verify that there are no array-out-of-bounds references. The tool will find
that the necessary precondition for assertion satisfaction is: −1 ≤ x ≤ 4, thus
computing the success probability of 60%. The found necessary precondition for
assertion violation is: −5 ≤ x ≤ −2, so the failure probability is 40% (addresses
Objective (O4)).

Approximate results We now give an example where we obtain a precision loss in
practice due to the approximation inherent in abstract analyses. Consider the
following program (taken from [30]):

1© : int x:=[0, 9], y:=[0, 9]; linput :
2© : int s:=x-y;
3© : if (s ≥ 2) y:=y+2;
lfinal : assert (y > 3);

The forward analysis will infer that the program can both satisfy and violate the
assertion. The backward necessary condition analysis for assertion satisfaction
will discover the constraint: x + 2y ≥ 8 ∧ 0 ≤ x ≤ 9 ∧ 2 ≤ y ≤ 9, thus we

Computing Program Reliability 197

Table 1: Experimental evaluation for probabilistic static analyses of C programs.
This table contains the following columns: (1) benchmark - the name of the
analyzed program; (2) source - the source (folder) where the benchmark is taken
from; (3) LOC - the number of lines of code; (4) #var - the number of integer
variables; (5) Time10

an - the static analysis time in seconds for input domains of size
10; (6) Time10

pr - the probability computation time in seconds for input domains
of size 10; (7-8) Time10 and Time1000 - the overall times in seconds required
to completely analyze a benchmark which has input domain of size 10 and size
1000, respectively; (9) Exact - the preciseness of the reported result (X - result is
exact, ≈ - result is approximate). Benchmarks above the double horizontal line
are deterministic programs, while those below are non-deterministic programs.

Bench. source LOC#var Time10
an Time10

pr Time10 Time1000 Exact

count up down*.c loops 20 3 0.043 0.001 0.004 0.049 X
hhk2008.c loop-lit 20 4 0.103 0.001 0.104 0.113 X
gsv2008.c loop-lit 20 2 0.027 0.001 0.028 0.030 X

Log.c ter-restricted 30 4 0.194 0.001 0.195 0.197 ≈
Mono3-1.c loops-crafted-1 15 2 0.044 0.001 0.045 0.046 ≈

Waldkirch.c ter-crafted 20 1 0.010 0.001 0.011 0.012 X
bwd-loop1a.c [26] 15 1 0.008 0.001 0.009 0.010 X
bwd-loop2.c [26] 15 2 0.020 0.002 0.022 0.022 X
example1a.c [30] 10 1 0.008 0.001 0.009 0.008 X
example7a.c [30] 15 2 0.023 0.001 0.024 0.026 X

for-bounded*.c loops 30 4 0.049 0.002 0.051 0.053 ≈
bwd-loop7.c [26] 15 2 0.027 0.001 0.029 0.030 ≈
bwd-loop10.c [26] 20 2 0.046 0.001 0.047 0.048 ≈
example7b.c [30] 15 2 0.039 0.001 0.040 0.048 ≈

find that the upper bound probability for assertion satisfaction is 74%. The
backward necessary condition analysis for assertion violation will discover the
constraint: x + 5y ≤ 23 ∧ 0 ≤ x ≤ 9 ∧ 0 ≤ y ≤ 3, thus we find that the upper
bound probability for assertion violation is 32%. In this way, we conclude that
the success probability is between 68% and 74%, while the failure probability is
between 26% and 32%. On the other hand, we can calculate by hand that the
success probability is exactly 71%, while the failure probability is exactly 29%.

7 Related work

Probabilistic analysis of imperative programs based on symbolic execution has
been introduced before [18,17,3,29]. They calculate path probabilities by counting
the number of solutions to a path condition, which represents a constraint on
inputs. The analyses in [18,17] address programs with integer domains and

198 A. S. Dimovski and A. Legay

linear constraints, whereas the analyses in [3] address programs with linear and
complex floating-point computations. While the previous analyses are restricted
to discrete, uniform random variables that take on a finite set of values, the
probabilistic analysis in [29] can also handle non-uniform distributions over the
reals and integers using a branch-and-bound technique over polyhedra. However,
in presence of loops all above analyses based on symbolic execution lose precision,
since they cannot enumerate all program paths. The solution is to consider
bounded exploration of loops and only a finite number of feasible program paths.
Thus, they also define a measure of confidence on the obtained probabilistic
estimations in order to take into account the contribution from the unexplored
feasible paths. For example, if we set the exploration bound of the loop of program
P2 in Fig. 2 to any number less than 100, both success and failure probabilities
will be 0% and the confidence will be also 0. This is due to the fact that the
while loop in Fig. 2 has to be unrolled at least 100 times in order to obtain a
feasible path on which it can be decided whether the assertion at point lfinal is
satisfied or violated. In this work, instead of symbolic execution we use abstract
interpretation to analyze programs and infer preconditions for success and failure.
Thus, our approach for computing program reliability represents one of the
pioneering works that provides a complete and fast treatment of while loops. In
particular, the strength of our approach is being an abstract interpretation of
a complete semantics for computing program reliability. This is stronger than
fixing a priori an incomplete reasoning approach that can miss some feasible
program paths (executions). The work [13] performs a probabilistic analysis of
open programs using symbolic game semantics [12] and model counting. It uses
game semantics to model open programs with undefined identifiers (e.g. calls to
library functions), such that the model takes into account all possible contexts
in which those programs can be placed. In the presence of loops and undefined
functions, bounded exploration in the model is also used to obtain a feasible
analysis. Probabilistic model checking [2] is yet another approach to perform
probabilistic analysis on a high-level design of software. However, such high-level
models are difficult to maintain and may abstract important details that impact
the chance of property satisfaction. So the goal is to do probabilistic analysis
directly on source code as here, not on high-level models.

Backward precondition analyses by abstract interpretation have also been
used in practice for a long time [4,9,26,28]. Sufficient preconditions have been
first introduced by Bourdoncle [4] in his work on abstract debugging of deter-
ministic programs. He uses a combination of forward-backward analyses to find
preconditions for invariant and intermittent assertions to always hold. Cousot et.
al. [9] propose a method for automatically inferring contract preconditions for in-
termittent assertions. The preconditions extracted by their method are necessary
preconditions, i.e. they do not exclude unsafe executions. Mine [26] presents a
method for automatically inferring sufficient preconditions of non-deterministic
programs by using a polyhedral backward analysis. The under-approximating
sound abstract operators for this backward analysis are implemented as part of
the APRON library. Rival [28] uses forward-backward analysis to inspect more

Computing Program Reliability 199

closely reported alarms by ASTREE, which are then classified as true errors (bugs)
or false alarms. Urban and Mine [30] use forward-backward analysis for the auto-
matic inference of sufficient preconditions for program termination. The elements
of the analysis domain are decision trees, where decision nodes are labeled with
linear numerical constraints and leaf nodes are affine ranking functions for proving
program termination. Forward-backward analysis schemes have been used in [20]
for the inference of safety properties of declarative synchronous programs. In this
work, for the first time we employ forward-backward precondition analysis for
estimating program reliability.

Static analysis of probabilistic programs by abstract interpretation has also
been a topic of research [27,11]. Monniaux [27] proposes a probabilistic analysis
that annotates abstract domains with upper bounds on the probability measure
associated with abstract objects. However, the measure bound is associated
with the entire abstract object, without tracking how it is distributed amongst
the individual states present in the concretization. This restriction makes the
analysis quite conservative. Cousot and Monerau [11] provide a general framework
that encompasses a variety of probabilistic interpretation schemes. However, no
concrete implementation of the above probabilistic abstract interpretations is
provided yet. A backward abstract interpretation for probabilistic programs
[23] uses expectations that are real-valued functions of the program state and
quantitative loop invariants. The automatic inference of such quantitative loop
invariants was proposed in the recent work of Katoen et al [22].

8 Conclusion

We have presented a new static, abstract interpretation-based approach for com-
puting program reliability, which allows to calculate upper and lower bounds of
probabilities that a given assertion is satisfied or violated. We construct a combi-
nation of forward-backward abstract analyses, in order to find an approximation
of a set of input states which lead to definite satisfaction (resp., violation) of
the given assertion. Our approach to calculating program reliability is semantics-
based and approximate in a provably sound way. Still, it often yields very precise
results, especially for deterministic programs.

We currently support only uniform distribution of input values within their
finite discrete domains. In future, we plan to model imprecision in the input
by different non-uniform distributions, such as Binomial, Poisson, etc [29]. The
current implementation of LattE is limited in handling non-uniform distributions,
so we will explore the use of statistical sampling techniques in those cases. Our
focus here is on estimating probability for safety properties. We also plan to
consider liveness properties (such as termination) and expectation queries [30]. An
interesting direction for future work would also be to consider general probabilistic
programs [19], as well as program families implemented with #ifdef-s from the
C-preprocessor where we can use lifted static analyses to efficiently analyze all
variants of the family simultaneously at once [14,24,15,16].

200 A. S. Dimovski and A. Legay

References
1. Latte integrale. UC Davis, Mathematics.
2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,

2008.
3. Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Pasareanu, and

Willem Visser. Compositional solution space quantification for probabilistic software
analysis. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’14, page 15. ACM, 2014.

4. François Bourdoncle. Abstract debugging of higher-order imperative languages.
In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (PLDI), pages 46–55. ACM, 1993.

5. N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of a system of linear inequalities. USSR Computational Mathematics and
Mathematical Physics, 5(2):228—-233, 1965.

6. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

7. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In 6th Annual ACM Symposium on Principles of Programming Languages,
POPL ’79, pages 269–282, 1979.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Log. Program., 13(2–3):103–179, 1992.

9. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition inference
from intermittent assertions and application to contracts on collections. In Verifica-
tion, Model Checking, and Abstract Interpretation - 12th International Conference,
VMCAI 2011. Proceedings, volume 6538 of LNCS, pages 150–168. Springer, 2011.

10. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages (POPL’78), pages 84–96.
ACM Press, 1978.

11. Patrick Cousot and Michael Monerau. Probabilistic abstract interpretation. In
Programming Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012. Proceedings, volume 7211 of LNCS, pages
169–193. Springer, 2012.

12. Aleksandar S. Dimovski. Program verification using symbolic game semantics.
Theor. Comput. Sci., 560:364–379, 2014.

13. Aleksandar S. Dimovski. Probabilistic analysis based on symbolic game semantics
and model counting. In Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-22
September 2017., volume 256 of EPTCS, pages 1–15, 2017.

14. Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram
abstract domain. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences, GPCE 2019, pages
102–114. ACM, 2019.

15. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Variability
abstractions: Trading precision for speed in family-based analyses. In 29th European
Conf. on Object-Oriented Programming, ECOOP 2015, volume 37 of LIPIcs, pages
247–270. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Computing Program Reliability 201

16. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable
variability abstractions for lifted analysis. Formal Asp. Comput., 31(2):231–259,
2019.

17. Antonio Filieri, Corina S. Pasareanu, and Willem Visser. Reliability analysis in
symbolic pathfinder. In 35th International Conference on Software Engineering,
ICSE’13, pages 622–631. IEEE / ACM, 2013.

18. Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic
execution. In International Symposium on Software Testing and Analysis, ISSTA
2012, pages 166–176. ACM, 2012.

19. Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani.
Probabilistic programming. In Proceedings of the on Future of Software Engineering,
FOSE 2014, pages 167–181. ACM, 2014.

20. Bertrand Jeannet. Dynamic partitioning in linear relation analysis: Application to
the verification of reactive systems. Formal Methods in System Design, 23(1):5–37,
2003.

21. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In Computer Aided Verification, 21st International
Conference, CAV 2009. Proceedings, volume 5643 of LNCS, pages 661–667. Springer,
2009.

22. Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan.
Linear-invariant generation for probabilistic programs: - automated support for
proof-based methods. In Static Analysis - 17th International Symposium, SAS
2010. Proceedings, volume 6337 of LNCS, pages 390–406. Springer, 2010.

23. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer, 2005.

24. Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic derivation of correct variability-aware program analyses. Sci. Comput.
Program., 105:145–170, 2015.

25. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

26. Antoine Miné. Backward under-approximations in numeric abstract domains to
automatically infer sufficient program conditions. Sci. Comput. Program., 93:154–
182, 2014.

27. David Monniaux. An abstract monte-carlo method for the analysis of probabilistic
programs. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 93–101. ACM, 2001.

28. Xavier Rival. Understanding the origin of alarms in astrée. In Static Analysis, 12th
International Symposium, SAS 2005, Proceedings, volume 3672 of LNCS, pages
303–319. Springer, 2005.

29. Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static
analysis for probabilistic programs: inferring whole program properties from finitely
many paths. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 447–458. ACM, 2013.

30. Caterina Urban and Antoine Miné. A decision tree abstract domain for proving
conditional termination. In Static Analysis - 21st International Symposium, SAS
2014. Proceedings, volume 8723 of LNCS, pages 302–318. Springer, 2014.

202 A. S. Dimovski and A. Legay

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Computing Program Reliability using Forward-Backward Precondition Analysis and Model Counting
	1 Introduction
	2 Motivating Examples
	3 Forward-Backward Precondition Analyses
	4 Computing Success and Failure Probabilities
	5 Extension to non-deterministic programs
	6 Implementation
	7 Related work
	8 Conclusion
	References

