
Legion: Best-First Concolic Testing
(Competition Contribution)

Dongge Liu?1, Gidon Ernst??2, Toby Murray1, and Benjamin I.P. Rubinstein1

1 University of Melbourne, Australia
donggel@student.unimelb.edu.au

2 LMU Munich, Germany
gidon.ernst@lmu.de

Abstract. Legion is a grey-box coverage-based concolic tool that aims
to balance the complementary nature of fuzzing and symbolic execution
to achieve the best of both worlds. It proposes a variation of Monte Carlo
tree search (MCTS) that formulates program exploration as sequential
decision-making under uncertainty guided by the best-first search strat-
egy. It relies on approximate path-preserving fuzzing, a novel instance of
constrained random testing, which quickly generates many diverse inputs
that likely target program parts of interest. In Test-Comp 2020 [1], the
prototype performed within 90% of the best score in 9 of 22 categories.

Keywords: Symbolic Execution, Fuzzing, Monte Carlo Search

1 Test-Generation Approach

Coverage testing aims to traverse all execution paths of the program under test
to verify its correctness. Two traditional techniques for this task, symbolic exe-
cution [6] and fuzzing [7] are complementary in nature [5].

Consider exploring the program Ackermann02 in Fig. 1 from the Test-Comp
benchmarks as an example. Symbolic execution can compute inputs to penetrate
the choke point (line 10) to reach the “rare branch” (lines 14/15), but then
becomes unnecessarily expensive in solving the exponentially growing constraints
from repeatedly unfolding the recursive function ackermann. By comparison, even
though very few random fuzzer-generated inputs pass the choke point, the high
speed of fuzzing means the “rare branch” will be quickly reached.

The following research question arises when exploring the program space in
a conditional branch: Will it be more efficient to focus on the space under the
constraint, or to flood both branches with unconstrained inputs, to target the
internals of log(m,n) in line 11 at the same time?

Legion3 introduces MCTS-guided program exploration as a principled an-
swer to this question, tailored to each program under test. For a program like
? This research was supported by Data61 under the Defence Science and Technology
Group’s Next Generation Technologies Program.

?? Jury Member
3 The name Legion comes from the Marvel fictional character who changes personal-
ities for different needs, to reflect the strategy adaption depending on the program.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 545–549, 2020.
https://doi.org/10.1007/978-3-030-45234-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_331&domain=pdf
https://doi.org/10.1007/978-3-030-45234-6_31

546 D. Liu et al.

1 int ackermann(int m, int n) {
2 if (m==0) return n+1;
3 if (n==0) return ackermann(m-1,1);
4 return ackermann(m-1,ackermann(m,n-1));
5 }
6
7 void main() {
8 int m = input(), n = input();
9 // choke point

10 if (m < 0 || m > 3) || (n < 0 || n > 23) {
11 log(n,m); // common branch
12 return;
13 } else {
14 int r = ackermann(m,n); // rare branch
15 assert(m < 2 || r >= 4);
16 }
17 }

Fig. 1: Ackermann02.c

Program entry state

Program path
selected for fuzzing

...
......

Unknown paths

Observed paths
...

...

Score: estimate the likelihood of finding new paths

A
co
nc
re
te

ex
ec
ut
io
n
tr
ac
e

Fig. 2: MCTS-guided fuzzing in Legion

Fig. 2, Legion estimates the expectation of finding new paths by the UCT score
(upper confidence bound for trees), a successful approach for games [3], aiming
to balance exploration of program space (where success is still uncertain) against
exploitation of partial results (that appear promising already). Code behind rare
branches is targeted by approximate path-preserving fuzzing to efficiently gener-
ate diverse inputs for a specific sub-part of the program.

Legion’s MCTS iteratively explores a tree-structured search space, whose
nodes represent partial execution paths. On each iteration, Legion selects a
target node by recursively descending from the root along the highest scoring
child, stopping when a parent’s score exceeds its childrens’. A node’s score is
based on the ratio of the number of distinct vs. all paths observed passing through
it, but nodes selected less often in the past are more likely to be chosen. Then,
approximate path-preserving fuzzing is applied to explore the target node. The
resulting execution traces are recorded and integrated into the tree.

Approximate path-preserving fuzzing (APPF) quickly generates inputs that
likely follow the target program path, and therefore is crucial for Legion’s ef-
ficiency. Legion’s APPF implementation extends the QuickSampler [4] tech-
nique, which is a recent mutation-based algorithm that expands a small set of
constraint solutions to a larger suite of likely solutions. Legion extends Quick-
Sampler from propositional logic to bitvector path constraints.

2 Tool Description & Configuration

We implemented Legion as a prototype in Python3 on top of the symbolic
execution engine angr [8]. We have extended its solver backend, claripy, by
the approximate path-preserving fuzzing algorithm, relying on the optimizer
component of Z3 [2]. Binaries are instrumented to record execution traces.

Installation.Download and unpack the competition archive (commit b2fc8430):
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/legion.zip

Legion requires Python3 with python-setuptools installed, and gcc-multilib

for the compilation of C sources. Necessary libraries compiled for Ubuntu 18.04

https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/legion.zip

Legion: Best-First Concolic Testing (Competition Contribution) 547

are included in the subfolder lib (modified versions of angr, claripy and their
dependencies). The archive contains the main executable, Legion.py, and a
wrapper script, legion-sv that includes lib into PYTHONPATH. The version tag
is 0.1-testcomp2020, options can be shown with python3 ./Legion.py --help.
Configuration. In the competition, we ran ./legion-sv with these parameters:

--save-tests save test cases as xml files in Test-Comp format
--persistent keep running when no more symbolic solutions are found

(mitigates issue with dynamic memory allocations)
--time-penalty 0 do not penalise a node for expensive constraint-solving

(experimental feature, not yet evaluated)
--random-seed 0 fix the random seed for deterministic result
--symex-timeout 10 limit symbolic execution and constraint solving to 10s
--conex-timeout 10 limit concrete binary execution to 10s

In the category cover-branches, we additionally use this flag:
--coverage-only don’t stop when finding an error

Finally, -32 and -64 indicate whether to use 32 or 64 bits (this affects binary
compilation and the sizes for nondeterministic values of types int, . . .).

Participation. Legion participates in all categories of Test-Comp 2020.
Software Project and Contributors. Legion is principally developed by
Dongge Liu, with technical and conceptual contributions by all authors of this
paper. Legion will be made available at https://github.com/Alan32Liu/Legion.

3 Discussion

Legion is competitive in many categories of Test-Comp 2020, achieving within 90%
of the best score in 2 of 9 error categories and 7 of 13 coverage categories.

1 void main() {
2 int N=100000, a1[N], a2[N], a3[N], i;
3 for (i=0; i<N; i++)
4 a1[i] = input(); a2[i] = input();
5 for(i=0; i<N; i++) a3[i] = a1[i];
6 for(i=0; i<N; i++) a3[i] = a2[i];
7 for(i=0; i<N; i++) assert(a1[i] == a3[i]);
8 }

Fig. 3: standard_copy2_ground-1.c

Legion’s instrumentation and explo-
ration algorithm can accurately model
the program. Consider the benchmark
standard_copy2_ground-1.c in Fig. 3.
With a single symbolic execution through
the entire program over a trace found
via initial random inputs, Legion under-
stands that all guards of the for loops can

only evaluate in one way, and so omits them from the selection phase. It does
discover that the assertion inside the last loop contributes interesting decisions,
however, and will come up with two different ways to evaluate the comparison
a1[i] == a3[i], one of which triggers the error. With such an accurate model in
combination with its principled MCTS search strategy, Legion is particularly
good at covering corner cases in deep loops: All other tools failed to score full
marks in standard_copy*_ground-*.c benchmarks, but Legion succeeded in 9
out of 18. We can furthermore solve benchmarks where pure constraint solving
fails, e.g., when the solver times out on hard constraints of complex paths we
label the respective branches for pure random exploration.

https://github.com/Alan32Liu/Legion

548 D. Liu et al.

While instrumentation provides accurate information on the program, its
currently naive implementation significantly slows down the concrete execution
of programs with long execution traces. We mitigate this weakness by setting a
time limit on the concrete executions. As a consequence, inputs that correspond
to long concrete execution are not saved. In the future, we plan to explore Intel’s
PIN tool, which offloads binary tracing into the CPU with negligible overhead.

Legion inherits some limitations from angr as a symbolic execution back-
end. Some benchmarks, such as array-tiling/mbpr5.c, dynamically allocate
memory with a symbolic size that depends on the input. angr eagerly con-
cretises this value, producing unsatisfiable path constraints for a feasible ex-
ecution path. Legion detects this inconsistency as soon as it encounters the
feasible path and omits the erroneous node from selection. This helps e.g. on
bubblesort-alloca-1.c where Legion achieved full coverage (in contrast to most
other participants) despite the dynamic allocations.

Legion performed poorly on benchmark sets bitvector and ssh-simplified.
These programs have long sequences of equality constraint that are hard to
satisfy with fuzzing. This happens to be an extreme example of the parent-
child trade-off that Legion intends to balance where fuzzing the parent gives
nearly no reward. This could potentially be mitigated by decreasing Legion’s
exploration ratio in the UCT score, but we have not attempted such fine-tuning.

Another problem is allocations when loop counters or array sizes are ran-
domly chosen very large in 64 bit mode, leading to excessively long concrete
execution traces that cause timeouts or memory exhaustion. We plan to period-
ically prune the in-memory representation of the tree in the future.

References

1. Beyer, D.: Second competition on software testing: Test-comp 2020. In: Proc.
of Fundamental Aspects of Software Engineering (FASE). LNCS, Springer
(2020), https://www.sosy-lab.org/research/pub/2020-FASE.Second_Competition_on_
Software_Testing_Test-Comp_2020.pdf

2. Bjørner, N., Phan, A.D., Fleckenstein, L.: νZ-an optimizing SMT solver. In: Proc.
of Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 9035, pp. 194–199. Springer (2015). https://doi.org/10.1007/978-3-662-
46681-0_14

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games
4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.2012.2186810

4. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions for
testing. In: Proc. of the International Conference on Software Engineering (ICSE).
pp. 549–559. ACM (2018). https://doi.org/10.1145/3180155.3180248

5. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: Proc. of Network and Distributed Systems Security (NDSS). vol. 8, pp. 151–166.
The Internet Society (2008)

6. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976). https://doi.org/10.1145/360248.360252

https://www.sosy-lab.org/research/pub/2020-FASE.Second_Competition_on_Software_Testing_Test-Comp_2020.pdf
https://www.sosy-lab.org/research/pub/2020-FASE.Second_Competition_on_Software_Testing_Test-Comp_2020.pdf
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/360248.360252

Legion: Best-First Concolic Testing (Competition Contribution) 549

7. Takanen, A., Demott, J.D., Miller, C., Kettunen, A.: Fuzzing for software security
testing and quality assurance. Artech House (2018)

8. Wang, F., Shoshitaishvili, Y.: Angr - the next generation of binary analy-
sis. In: Proc. of Cybersecurity Development (SecDev). pp. 8–9. IEEE (2017).
https://doi.org/10.1109/SecDev.2017.14

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SecDev.2017.14
http://creativecommons.org/licenses/by/4.0/

	LEGION: Best-First Concolic Testing (Competition Contribution)
	1 Test-Generation Approach
	2 Tool Description & Configuration
	3 Discussion
	References

