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Abstract Human behavior, social networks, and the civil infrastructures are closely inter-
twined. Understanding their co-evolution is critical for designing public poli-
cies and decision support for disaster planning. For example, human behaviors
and day to day activities of individuals create dense social interactions that are
characteristic of modern urban societies. These dense social networks provide
a perfect fabric for fast, uncontrolled disease propagation. Conversely, peo-
ple’s behavior in response to public policies and their perception of how the
crisis is unfolding as a result of disease outbreak can dramatically alter the nor-
mally stable social interactions. Effective planning and response strategies must
take these complicated interactions into account. In this chapter, we describe a
computer simulation based approach to study these issues using public health
and computational epidemiology as an illustrative example. We also formulate
game-theoretic and stochastic optimization problems that capture many of the
problems that we study empirically.

Keywords: interaction-based computing, theory of simulations, agent-based models, bio-
logical, socio-technical and information systems, urban infrastructures, discrete
dynamical systems, computational complexity, combinatorial algorithms

1. Introduction

Social networks represent relationships among individual agents. Social
networks are not generally static; they evolve over time. Certain aspects of
this change arise from structural adaptations such as reciprocity, transitivity,
etc. However, changes in social networks also occur as a result of the behavior
of individual agents comprising the network. Conversely, individual charac-
teristics and behaviors can depend on the social network to which the agent
belongs. For example, it is well known that in many social situations, the
behavior of individual agents mimics those of other agents with whom they
interact. In other words, individual behaviors and social networks co-evolve.
Examples include fashion trends in schools, market practices of firms based
on strategies used by successful firms, etc. Social scientists often refer to the
change in network structure as selection [22–24], and change in individual
characteristics as influence [17, 23, 24]. See [1, 7, 2, 9, 8, 10, 11, 33, 18] for
work done at the interface of game theory, network formation and individual
behavior. We also refer the reader to the work of [12, 29, 30] for theoretical
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as well as empirical research on the subject of treating selection and influence
processes in a network simultaneously.

In this chapter we further motivate and study the joint evolution of selec-
tion and influence in social networks in an important application context—
spread of infectious diseases. Furthermore, we also consider another com-
ponent that affects this dynamic—public policy. In classical models used in
computational epidemiology, individuals do not adapt their contact behavior
during epidemics. For example, they do not endogenously engage in social
distancing (protective sequestration) based on disease prevalence. Rather, they
simply continue mixing (often uniformly) as if no epidemic were under way.
Although potentially a reasonable assumption for non-lethal infections such as
the common cold, it is known to fail for lethal diseases such as AIDS. People
may be expected to adapt their contact patterns when they perceive a potential
threat due to the onset of avian influenza. This will likely result in substan-
tial changes in the social networks that in turn will alter epidemic dynamics.
In other words, individual behaviors and the social contact networks that they
generate interact and co-evolve. For brevity we will call the problem of co-
evolution of Public policy, Individual behavior and interaction Network as the
PIN problem for the rest of the chapter.

We begin by describing a computer simulation based approach to study such
questions. These simulations use a detailed representation of social contact
networks; such a representation is crucial for studying the questions related to
co-evolution. We then describe a set of experimental results using our simula-
tions that seeks to analyze these questions in the context of developing public
policies for pandemic influenza planning. In the last section of this chapter,
we formulate these questions as questions in stochastic optimization and game
theory. We hope that these mathematical formulations will serve as starting
points for researchers interested in algorithms, operations research and game
theory in making further progress in this new and exciting research area.

2. The PIN Problem in Computational Epidemiology

Urban infrastructures have been designed for efficient functioning during
normal operations. During crises, however, people’s behavior can change so
drastically as to render the infrastructure practically useless. Recent blackouts
in the Northeast US (2003) and hurricanes such as Rita and Katrnia (2005)
demonstrate this amply. In the event of an influenza pandemic, changes in the
structure of the social contact network due to behavioral changes are the most
important yet difficult to predict factors in determining the spread. The ques-
tion of how to respond to crises most effectively is very complicated, involving
public health systems, regional and urban population dynamics, economic ef-
fects, critical infrastructure availability and public policy.
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It is well understood that planners must take individual behavior into ac-
count when preparing for crises. However, it is not as well appreciated that
social responses to public policy can significantly impact the efficacy of pub-
lic policy and disaster response. Human response, public policies and specific
crisis situations are intricately intertwined with one another, making it impos-
sible to obtain a clean simple formal model and solution. Furthermore, policy
interventions can have unanticipated consequences due to complex feedback
between changing conditions, individual expectations, and social connectivity.

Policy planning has been a central focus of epidemiological research over
the years. In addition to empirical observations, practitioners have relied on
mathematical models for understanding and comparing different public health
policies and making recommendations. These models involve stochastic dis-
ease processes on social contact networks. Due to computational consider-
ations, most work in epidemiological modeling has focused on static social
networks. However, social networks change quite a bit during an epidemic.
For instance, policies put in place by public health authorities such as school
closures, quarantine, and face masks cause significant changes to the social
network. Equally important though is the role of individual behavior in trans-
forming the social network. The recent SARS epidemic (2003) served as an
excellent example of how both these factors changed the social network. Thus,
mathematical methods for analyzing epidemics based on models of static so-
cial contact networks are unlikely to give practical insights into the spread of
diseases. We illustrate the issues by two examples.

EXAMPLE 1. First, a simple yet important decision faced by millions of peo-
ple throughout the country every day during cold and flu season: should I go to
work today, even though I have symptoms of a cold or flu? The immediate eco-
nomic impact of absenteeism due to colds and influenza in the United States
in 1980 is estimated to have been $6.5 Billion [31]. While some fraction of
these infections arise from exposure outside the workplace, many and perhaps
the majority occur because a co-worker decided the consequences of possibly
transmitting the disease were less important than the certain consequences of
staying home. Indeed, the term presenteeism has been coined to describe the
problem.

Let us examine the factors involved in this decision more closely. Society
pressures us in many ways to go to work even when we may be sick: lack
of paid sick leave, need to complete tasks, fear of being seen as a malingerer,
desire to be perceived as critical to an organization’s success, etc. Personal
interactions with co-workers can influence the decision either way. The influ-
ence co-workers exert may be tied to whether they have themselves been sick.
Furthermore, when a person chooses to stay home, it affects the social network
at work in at least two different ways: one is simply the removal of the sick
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person as an active influence in decision-making (note that this biases the in-
fluence of the remaining people by removing precisely those who would argue
for staying home); the other, more subtle, effect is a change in the probability
that co-workers will be infected, and thus a possible change in their influence
on the decision.

EXAMPLE 2. A second example is the individual decision whether and when
to flee in the face of a crisis. As recent mass evacuations have clearly shown,
we do not know the best way to clear people out of a city. Much of the uncer-
tainty stems from poor understanding of the effects of individual decisions on
the process. How is a person’s decision to leave related to official evacuation
orders and to decisions made by social contacts? How does it relate to the per-
ceived congestion in the transportation system? How will a household prepare
to evacuate and how long will preparations take? What additional demands will
be placed on the transportation system as geographically dispersed households
gather? How can we take advantage of existing mass transportation resources?
How do all these choices depend on timing of an official announcement?

The factors affecting decision making discussed in the above examples,
namely, uncertain consequences and conflicting motivations between micro
and macro levels for individuals—are at the heart of issues such as non-
compliance with public policy and, more generally, breakdown of the rule
of law in society. The examples, though complex, are amenable to analysis.
By adding features such as public policy decisions and a co-evolving “epi-
demic” of panic, we can create even more realistic, though inherently more
complicated, representations of decision-making with immediate applicability
to crisis response and longer-term broader applicability to modeling civil order.

3. Network Based Computational Epidemiology

Computational Epidemiology is the development and use of computer mod-
els for the spatio-temporal diffusion of disease through populations. The basic
goal of epidemiological modeling is to understand the dynamics of disease
spread well enough to control it. Potential interventions for controlling in-
fectious diseases include pharmaceuticals for treatment or prophylaxis, social
interventions designed to change transmission rates between individuals, phys-
ical barriers to transmission, and eradication of vectors. Efficient use of these
interventions requires targeting sub-populations that are on the critical path of
disease spread. Computational models can be used to identify those critical
sub-populations and to assess the feasibility and effectiveness of proposed in-
terventions.

The spread of infectious diseases depends both on properties of the pathogen
and the host. An important factor that greatly influences an outbreak of an
infectious disease is the structure of the interaction network across which it
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spreads. Descriptive models are useful for estimating properties of the disease,
but the structure of the interaction network changes with time and is often
affected by the presence of disease and public health interventions. Thus gen-
erative models are most often used to study the effects of public health policies
on the spread and control of disease.

Aggregate or collective computational epidemiology models often assume
that a population is partitioned into a few sub-populations (e.g. by age) with a
regular interaction structure within and between sub-populations. The result-
ing model can typically be expressed as a set of coupled ordinary differential
equations. Such models focus on estimating the number of infected individuals
as a function of time, and have been useful in understanding population-wide
interventions. For example, they can be used to determine the level of immu-
nization required to create herd immunity.

In contrast, disaggregated or individual-based models represent each inter-
action between individuals, and can thus be used to study critical pathways.
Disaggregated models require neither partitions of the population nor assump-
tions about large scale regularity of interactions; instead, they require detailed
estimates of transmissibility between individuals. The resulting model is typ-
ically a stochastic finite discrete dynamical system. For more than a few indi-
viduals, the state space of possible configurations of the dynamical system is
so large that they are best studied using computer simulation.

See [1, 7, 9] for work on use of game theory to study problems in epidemi-
ology. See Kermer [21] for one of the early work on integrating behavioral and
epidemiological models; the work however used traditional differential equa-
tion based mean field modeling. Recent work by Epstein et al. [13] has used
individual based models to study this interaction. Excepting the work of [13],
we are not aware of any other work that uses individual agent based models to
study the PIN problem in epidemiology.

3.1 SimDemics

SimDemics is a tool for simulating the spread of disease on a social contact
network. A brief overview of SimDemics is provided here. Further details
can be found in [3, 14, 16, 5]. It details the demographic and geographic
distributions of disease and provides decision makers with information about
(1) the consequences of a biological attack or natural outbreak, (2) the resulting
demand for health services, and (3) the feasibility and effectiveness of response
options. See [3, 14, 15] for further details. The overall approach followed by
disaggregated models consists of the following four steps.

Step 1 creates a synthetic urban population by integrating a variety of data-
bases from commercial and public sources. It yields a set of synthetic individ-
uals and households located geographically, each associated with demographic
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variables. Synthetic populations preserve privacy and confidentiality of indi-
viduals and yet produces realistic attributes and demographics for the synthetic
individuals in the following sense: a census of our synthetic population yields
results that are statistically indistinguishable from the original census data, if
they are both aggregated to the block group level.

Step 2 creates a synthetic social contact network. This is done by first as-
signing synthetic individuals a set of activity templates based on several thou-
sand responses to an activity or time-use survey. These activity templates
include the sort of activities each household member performs and the time
of day they are performed. various machine learning and data mining tech-
niques are used for this task. By integrating, this data over all individuals,
we get a minute-by-minute schedule of each person’s activities and the loca-
tions where these activities take place. This information can now be used to
synthesize a time varying social contact network represented by a (vertex and
edge) labeled bipartite graph GPL, where P is the set of people and L is the
set of locations. If a person p ∈ P visits a location � ∈ L, there is an edge
(p, �, label) ∈ E(GPL) between them, where label is a record of the type of
activity of the visit and its start and end points. Synthetic generative methods
such as the ones used here are necessary to develop a realistic representation of
large urban scale social contact network; such a network cannot be constructed
by simply collecting field data.

Step 3 consists of detailed simulation of the epidemic process. The compu-
tational model used is called a graphical probabilistic timed transition system.
The within hosts disease evolution is represented as a probabilistic timed tran-
sition system (PTTS). There is one transition system per individual. The state
transition of a given PTTS corresponding to an individual depends on its own
state, the time, a set of random bits and the state of its neighbors in the dynamic
interaction network created in Step 2.

Step 4 consists of representing and analyzing various public policies and
interventions using a combination of partially observable Markov decision
process (POMDP) and n-way games; these formalisms allow us to capture
sequential decision making processes related to interventions and individual
behavioral changes in response to disease dynamics. The POMDP is specified
succinctly using a co-evolving dynamical system described in the next section.
It is thus exponentially larger than the problem specification and is intractable
to solve optimally in general. As a result, we use efficient simulations and
heuristics to solve the PIN problems. A key concept is that of implementable
policies—policies or interventions that are implementable in the real world.

SimDemics maintains a parameterized model for the state of health of each
person, and updates this continuously based on interaction with other people,
and transmission of a disease through these contacts. This enables us to es-
timate both the geographic and demographic distribution of the disease as a
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function of time. It also allows us to evaluate the impact of different interven-
tion policies, such as vaccination and quarantine.

This is an important feature of SimDemics. Indeed, the success of most
policies and plans depends on their ability to anticipate and adapt to all possible
outcomes. However, many of the tools used to describe the range of outcomes
and to quantify their relative magnitudes are based on static estimates, whereas
in a crisis situation, the responses authorities make depend greatly on real-
time situational awareness. SimDemics allows the synthetic people to change
their behaviors and interactions based on their individual situation as well as
characteristics of the entire population.

4. A Mathematical Model to Capture Co-Evolution

We will use a discrete dynamical system framework to capture our co-
evolution between disease dynamics and individual behavior. The basic frame-
work consists of the following components: (i) a collection of entities with
state values and local rules for state transitions, (ii) an interaction graph cap-
turing the local dependency of an entity on its neighboring entities and (iii) an
update sequence or schedule such that the causality in the system is represented
by the composition of local mappings.

We formalize this as follows. A Co-evolving Graphical Discrete Dynam-
ical System (CGDDS) S over a given domain D of state values is a triple
(G, F , W ), whose components are as follows:

1. Let V = {vi}n
i=1 be a set of vertices, and let (gi)i be a vertex indexed

family of graph modification functions gi: {0, 1}n −→ {0, 1}n. The
functions (gi)i, through their applications, defines an indexed sequence
of graphs G = (Gr = Gr(Vr = V, Er))r with labeled edges and ver-
tices. The graph Gr is the underlying contact graph of S after r appli-
cations of functions gi. It is assumed that the edge {vi, vi} ∈ Er for all
r and for all i. We set mr = |Er |.

2. For each vertex vi there is a set of local transition functions {fvi,d}d

where fvi,d: D
d −→ D. Let N(i, t) denote the set of vertices consisting

of vi and the neighbors of vi at time t, and let dt = |N(i, t)|. The
function used to map the state of vertex vi at time t to its state at time
t+1 is fvi,dt , and the input to this function is the state sub-configuration
induced by N(i, t).

3. The final component is a string W over the alphabet {v1(s), v2(s), . . . ,
vn(s), v1(g), . . . , vn(g)}. The string W is a schedule. It represents an
order in which the state of a vertex or the possible edges incident on the
vertex will be updated. Here vi(s) intuitively specifies that the state of
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the vertex vi is to be updated; vi(g) specifies that one or more incident
edges will be updated.

From a modeling perspective each vertex represents an agent. Here we will
assume that the states of the agent come from a finite domain D. The maps
fvi,j are generally stochastic.

Computationally, each step of a CGDDS (i.e., the transition from one con-
figuration to another), involves updating either a state associated with a vertex
or modifying the set of incident edges on it. The following pseudo-code shows
the computations involved in one transition.

Initialize t = 0
Repeat Until W is empty

(i) Let r be the first symbol in W .
(iii) If r = vi(s), update the state of the vertex vi as follows:

(a) Let degree of node vi in Gt be dt. Node vi evaluates fvi,dt . (This
computation uses the current values of the state of vi and those of the neighbors
of vi in Gt.) Let x denote the value computed.

(b) Node vi sets its state svi to x.
(iii) If r = vi(g), update the edges incident on vi as follows:

(a) Use current graph Gt to compute gvi .
(b) Let Gtemp denote the new graph.

(ii) Set t = t + 1, Gt+1 = Gtemp and delete r from string W .
End Repeat

Let FS denote the global transition function associated with S . This func-
tion can be viewed either as a function that maps D

n into D
n or as a func-

tion that maps D
V into D

V . FS represents the transitions between configura-
tions, and can therefore be considered as defining the dynamic behavior of an
CGDDS S .

We make several observations regarding the formal model described above.

1. We will assume that the local transition functions and local graph modi-
fication functions are both computable efficiently in polynomial time. In
agent based models used in social sciences these are usually very simple
functions. Furthermore, the functions gvi need to be specified using a
succinct representation, rather than a complete table which will be expo-
nentially larger.

2. The edge modification function as defined can modify in one step a sub-
set of edges simultaneously. An alternate model could have been where
a vertex is allowed to change exactly one edge at a time. We have chosen
the former due to the specific application in mind. In all our applications,
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when an agent decided to not go to a location (either due to location clo-
sure as demanded by public policy or due to the fear of contracting the
disease) its edges to all other individuals in that location are simultane-
ously removed while adding edges to all the individuals who might be at
home.

3. The model is Markovian in that the updates are based only on the current
state of the system; it is possible to extend the model wherein updates
are based on earlier state of the system.

4. We have assumed that there is exactly one function for each arity for
each node. This can be relaxed easily, similarly these functions will, in
general be stochastic.

4.1 Specifying PIN Problems in CE Using Co-Evolving
Discrete Dynamical Systems

We briefly outline how PIN problems in Computational Epidemiology can
be specified using CGDDS. In all the situations considered in this paper, we
can make certain simplifying assumptions due to the specific dynamics that
we consider. In SimDemics, we have a notion of a day. A day is typically 24
hours but can be smaller depending on the specific disease. We assume that
the social contact network does not change in the course of a day. This is a
realistic assumption due to the time scale of disease evolution (time it takes
for a person to be infectious or symptomatic after being infected). As a result,
the schedule can be specified as a sequence of days wherein we only consider
disease dynamics over the entire population followed by a step in which there
is a change in the social contact network.

We can make this a bit more precise as follows: We denote the functional
modules for mobility, disease propagation and activity generation by M , D
and A, respectively; these are described in Appendix. Each individual is as-
signed a set of initial activities based on their preferences, demographics, and
infrastructure constraints in the activity assignment module A. The module M
assigns locations to all entities based on the current set of activities which in
turn induces the current contact graph, or social network. Using the contact
graph, the module D computes the next stage which is disease dynamics. This
corresponds to updating the disease state of every individual in the network
over one day. The activity generator A uses the current disease state to up-
date the current activities. Models of individual behavior or policy that affects
individual behavior constitutes this module.

In general, the dynamics is time dependent and is generated by iteration of
the composed map F given by

F = D ◦ M ◦ A.
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This is illustrated on the right in Fig. 18.1. Notice that this is already a sub-
stantial simplification over all possible choices for the string W .

Interventions and behavioral changes can be broadly categorized based when
they occur:

1. Non-Adaptive: Non-adaptive interventions and behavioral changes oc-
cur before the start of the simulations. The non-adaptive interventions
unrealistically assume the population does not change during the course
of the epidemic and is limited to studying treatments that have a perma-
nent effect, like vaccination.

Letting the initial state of the system be x0, the final state of the system
can be written as x(t) = F t(x(0)) as (Dt ◦ (M ◦ A))(x(0)), illustrated
on the left in Fig. 18.1.

2. Adaptive: The adaptive strategies on the other hand, incorporate changes
in the movement of the people, treatments that have only temporary ef-
fects (antiviral medications are only effective when being taken), and
wholesale changes to the interactions within the population (like school
closure). This is represented most generally as x(t) = F t(x(0)) as
(D ◦ M ◦ A)t(x(0)). We can now differentiate various strategies by how
frequently M and A are applied as compared to D. In other words, we
view the dynamics as the following composition: (Dt/r ◦M ◦A)r(x(0)),
where the exponents reflect the different time scales. This can be viewed
as degree of adaptation. Policy based change in the social network is
usually caused by changing the behavior of a set of individuals in some
uniform way. Furthermore, it is natural to expect that these changes do
not occur often. Individual behavior based changes on the other hand
can occur every day—individuals can change their behavior and thus
their probability of contracting a disease on a daily basis. A simula-
tion is computationally most efficient when t is small, since it amounts
to fewer updates to the social network and individual behavior. On the
other hand, making t small makes the simulation less realistic since the

Figure 18.1. The left diagram shows the data flow for disease dynamics without feedback, that
is, where e.g. interventions do not alter activities. The diagram on the right shows data flow
with feedback from the disease dynamics to the activities
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interaction between individual behavior and disease dynamics is not well
represented.

5. Computational Experiments

This section illustrates how complicated PIN problems can be specified and
studied using computational models such as SimDemics. See [6] for additional
details. We will compare the effectiveness of both adaptive and non-adaptive
interventions on the same population with the same contact network, using dis-
ease models of the same disease (pandemic strain of influenza). Non-adaptive
interventions are done before the epidemic starts—in this setting, we (unre-
alistically) assume that the activities of all people are unchanged during the
experiment. Adaptive interventions, on the other hand, are done based on the
information available about the epidemic, and can change as the epidemic pro-
ceeds. The interventions we will consider include medical (such as administra-
tion of vaccines and anti-virals), governmental (such as school closures), and
societal (such as social distancing)—some of these interventions are external,
and some are endogenous, i.e., people themselves implement them.

These computational experiments show the following:

They illustrate the qualitative differences between adaptive and non-
adaptive strategies and highlight the need for more realistic dynamic
modeling.

They illustrate the power of SimDemics modeling system in terms of (i)
its ability to handle various kinds of adaptive and non-adaptive interven-
tions, (ii) handle large instances.

5.1 Basic Experimental Setup

The contact network we study models a population of about 8.86 million
people in Chicago. The network is constructed by synthesizing information
from a number of different sources [4]. We model pandemic influenza with
all the characteristics of normal influenza, with a much higher transmissibility.
Influenza has a short incubation period, can be infectious even in the absence
of symptoms, and is transmitted through the air or by certain kinds of contact.

The heterogeneous symptomatic and incubation periods are drawn from a
distribution, and are fixed for every person initially. The transmissibility, or
the probability of infection on a contact, per minute is chosen to be 0.000048
and 0.0003. The number of initial infections is 4. The disease model in Exper-
iment 2 differs from the one in Experiment 1 in by incorporation of additional
states needed to capture the effects of the antiviral treatment, but the gross
features are still the same.
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Parameter Values
Social network Chicago, 8.86M individuals
Transmissibility (τ ) 0.000048 and 0.0003
Age groups 0–5 (group 1), 6–15 (2), 16–20 (3), 21–60 (4), >60 (5)
Number of people intervened 50K, 100K, 150K, 200K, 250K, 300K, 400K, 500K
Number of initial infections 4
Number of iterations 50, 2 initial infection sets, 25 iterations per set
Policies random, high degree, high vulnerability, household

with specific activity types, specific age groups

Table 18.1. Summary of parameters used in experimental studies

We describe below the specific experiments we perform and the various
experimental parameters.

We choose two values for the transmissibility parameter τ , namely τ =
0.000048 and τ = 0.0003.

We choose 25 different sets of initial infections and run 2 random iter-
ations for each of them, for a total of 50 iterations. We then compute
an average run, where the number of new infections on each day is the
average of the new infection number on this day in the 50 iterations, and
report the measures based on the average runs.

For each vaccination policy, we consider the following sizes (where K
means thousand): 50K, 100K, 150K, 200K, 250K, 300K, 400K, 500K.

For random people, we choose a subset of given size from the population
uniformly at random. This trivial vaccination scheme can be viewed as
a benchmark for evaluating effectiveness of other vaccination schemes.

An individual is active if his/her activities belong to many types, or s/he
lives in the same household with an active individual. The list of active
people is determined from the given contact network and has about 500K
people.

We have five age groups: 0–5 years in age group 1; 6–15 years in age
group 2; 16–20 years in age group 3; 21–60 years in age group 4; older
than 60 years in age group 5. We are especially interested in age groups 2
and 5, i.e., school kids and seniors.

5.2 Experiment 1

Non-Adaptive Interventions: Study the effect of pre-vaccination of specific
sub-populations assuming no changes in behavior throughout the course of the
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epidemic. Here we will compare vaccination policies targeting the following
sub-populations:

randomly chosen people

people of high degree

people of high vulnerability

active people

people of a specific age groups

While many other policies and groups can be explored, even in this static case,
these groups are chosen to illustrate a sample of the types of policies that can
be represented in this modeling environment. We measure the effectiveness
of these policies in terms of the percentage decrease in the epidemic size as
compared to the unmitigated case as well as the unit efficiency. We will need
some notation in order to define these measures formally. For subset A ⊆ V
of people, we let IA(G) denote the set of infected people, when the people
in A are immunized, subject to some specific starting conditions, and disease
model in the contact network G(V, E). Mathematically, vaccinating a person is
equivalent to either removing a node from the network, or reducing its incident
infection probabilities. Note that A = ∅ means no vaccination, i.e., base case.
The two measures we use to compare different policies are:

the percentage decrease in epidemic size, defined as:

DES =
|I∅ | − |IA|

|I ∅ |

the unit efficiency of vaccination, defined as:

UE =
|I ∅ | − |IA|

|A|

Results and Analysis: The most basic question is which policy is the most
effective for a given disease. We are also interested in finding a policy that is
easy to implement from a public health point of view. These policies would be
compared empirically in the sections that follow.

The two measures (DES and UE) are plotted against vaccination size in
Figs. 18.2 and 18.4 for the case τ = 0.000048 and in Figs. 18.3 and 18.5 for
the case τ = 0.0003.

The effectiveness of vaccination is highly dependent on who is selected for
vaccination and what the transmissibility of the disease is. When the disease
has high transmissibility (τ = 0.0003) vaccination policies have little effect
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Figure 18.2. Percentage of decrease in average epidemic size (τ = 0.000048)

Figure 18.3. Percentage of decrease in average epidemic size (τ = 0.0003)

(Fig. 18.3): even if half a million vaccinations are given (5.6% of the pop-
ulation) there is only a 7% decrease in epidemic size (6.3% of the popula-
tion). If these vaccines were not randomly assigned, but specifically given
to people older than 60 then they are even less effective, only decreasing the
epidemic size by 5.1% which is even lower than the vaccination percentage



492

Figure 18.4. Average unit efficiency of vaccination (τ = 0.000048)

Figure 18.5. Average unit efficiency of vaccination (τ = 0.0003)

(5.6%). The effect is only slightly greater for less transmissible diseases: with
τ = 0.000048 the epidemic is decreased by 8%. The limited effect of vacci-
nating those over 60 is a result of the low connectivity of this population. They
are more susceptible to severe effects of the disease, however, so vaccination
ensures lower mortality, which was not considered in these simulations.
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To further illustrate the impact of who is vaccinated, note that schemes
where “high degree” individuals are vaccinated result in significant decrease
of epidemic size. For instance, in Fig. 18.2 (τ = 0.000048) when half a mil-
lion “high degree” individuals are vaccinated the epidemic size is decreased
by more than 45%. Furthermore, if the “high vulnerability” individuals are
vaccinated the epidemic decreases by almost 60%. Identifying these individ-
uals requires complete knowledge of the contact network and in the case of
vulnerability, requires previous simulations and analysis. It is more realistic to
identify people that are in high risk age groups or have behaviors that might
put them at higher risk. Figure 18.4, shows that vaccinating school children
aged 6–15 is much more efficient than simply vaccinating random individuals.
Additionally, active individuals, who engage in many types of activities (i.e.
school, work, and/or college) or live with an individual with these activities,
may be relatively easy to identify. Vaccinating these individuals is also shown
to be more efficient than random vaccination.

The effectiveness of vaccinating “high degree” and “high vulnerability”
people stands to reason given the significant reduction of overall degree that
their removal would produce. However, these strategies require perfect knowl-
edge of the contact network. Additionally, note that the effectiveness of the
strategies is based on the assumption that the social network does not change.
Individuals that are high degree before the arrival of an epidemic disease, may
not have high degree under epidemic conditions. The evolution of the contact
network under these conditions can also cause individuals that might not be
obviously high degree to become more highly connected (for instance health
care workers).

Nevertheless, even assuming a fixed contact graph, significant insights into
the effectiveness of various vaccination schemes can still be made. For in-
stance, the effectiveness of vaccinating high degree individuals suggests that it
might be useful to identify individuals in a specific age groups or individuals
carrying out specific trade (e.g. emergency care workers) as potential targets.

5.3 Experiment 2

Adaptive Interventions: Study the effects of dynamic changes to the so-
cial network, treatments with antivirals, and changes in individual behaviors
throughout the course of an influenza epidemic. An effective vaccine for pan-
demic influenza is not likely to be available until the pandemic is well estab-
lished. Currently available antiviral medicines used for treatment of influenza
have limited efficacy in preventing infection and are likely to be in short sup-
ply. Without these tools, control of an influenza pandemic must be attempted
through more general infection control measures. This experiment studies the
effectiveness of a collection of interventions both together and in isolation as
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well as the sensitivity of when they are implemented. The interventions are dy-
namically triggered at different points in the epidemic and the timing of these
triggers is also studied. The interventions are designed to reduce the opportu-
nities for infections by removing infectious people from circulation, reducing
their infectivity through treatment, and keeping potentially infectious people
from transmitting disease before they develop symptoms. These interventions
drastically alter the daily activities of many of the people in the simulation, and
these dynamic changes can effectively control the epidemic.
Experimental Setup: As mentioned earlier, the same population with the
same contact network are exposed to the same disease modeled on a highly
infectious influenza, as was done in Experiment 1. However, the interventions
modeled are very different. They are derived from interventions recommended
in federal pandemic planning documents1 and require that they be dynamically
applied under conditions specific to the individual. The modeling environment
is designed to accommodate these kinds of interventions, and thus allow the
simulation to closely represent what might actually occur in reality.

The specific interventions we will consider are:

1. Case isolation: once an individual experiences symptoms of the disease,
they remain home through the duration of their illness.

2. Case treatment and household quarantine: if a case is diagnosed, they
are administered anti-viral medications (reduces their infectivity and du-
ration of illness) and all household members are given prophylactic anti-
viral medications (reduces their chance of infection) and are quarantined
at home until no one in the household is sick.

3. School closure: all schools are closed, some children remain at home
while the remaining substitute other activities during normal school
hours. An adult in the household of a young child (less than 15) must
stay home to supervise them.

4. General social distancing: 50% of people eliminate all non-essential ac-
tivities (shopping, visiting, recreation).

5. Workplace social distancing: to reduce workplace exposure, workers in
large offices interact with 50% co-workers.

These interventions were studied across different levels of adherence to the
interventions (30%, 60%, and 90%) and were implemented at different points
in the progress of the epidemic (from 0.0001% of the population to 10% of the

1 See http://www.whitehouse.gov/homeland/pandemic-influenza.html.

http://www.whitehouse.gov/homeland/pandemic-influenza.html
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Prevalence trigger Cumulative proportion ill
Never 44.7%
10% 20.3%
1% 3.9%
0.10% 2.0%
0.01% 1.7%
0.001% 1.7%
0.0001% 1.7%

Table 18.2. Epidemic size decreases when the interventions are implemented at lower preva-
lence thresholds

Compliance Early threshold (0.01%) Later threshold (0.1%)
30% 1.7% 2.0%
60% 0.1% 1.3%
90% 0.1% 1.2%

Table 18.3. Epidemic size decreases when societal compliance with interventions increases

population infected, or 9 cases to 886,000 cases). All permutations were not
studied due to limits on computational resources.
Results and Analysis: The modeled disease epidemic can be completely con-
trolled by the adaptive interventions. The overall magnitude is significantly
curtailed when the interventions are triggered at a lower level of disease preva-
lence. Similarly, when societal compliance increases the size of the epidemic
decreases.

The size of the epidemic is very sensitive to when the interventions are in-
stituted (Table 18.2). An uncontrolled epidemic, i.e., when the interventions
are never implemented, leads to nearly half the population becoming ill. Even
if the interventions are not applied until after the epidemic has made 10% of
the population ill, the interventions are able to prevent half of these infections.
Interestingly, there is a limit to how effective the interventions can be, even if
implemented at levels of infection in the population that would be impossible
to detect (0.01% to 0.0001%) they cannot completely prevent the epidemic.
While the overall attack rate may be the same, note the difference in the tim-
ing and shape of the epidemic (see tables below). The epidemic that follows
the interventions triggered at 0.01% peaks nearly three weeks earlier but has
the same area under the curve, which could translate into other changes in the
population were there further adaptive measures in place.

The levels of compliance with the interventions also have an effect on the
size of the epidemic, though less so than the timing of the intervention (Ta-
ble 18.3, Fig. 18.6). Similarly, at the extremes of the control (both 60% and
90%) the overall attack rates are limited to the same level, but shape of the
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Figure 18.6. Epidemic curves by levels of compliance and time of intervention: Scenario 2—
30% compliance and trigger at 1% prevalence; Scenario 3—60% compliance and trigger at
0.1% prevalence; Scenario 4—60% compliance and trigger at 0.01% prevalence; Scenario 5—
90% compliance and trigger at 0.1% prevalence; Scenario 6—90% compliance and trigger at
0.01% prevalence

epidemic curves are different, which in turn could have an effect on additional
adaptive measures.

5.4 Comparing Adaptive and Non-Adaptive Strategies

The two case studies above tell different stories to Public Health policy mak-
ers, with varying levels of refinement. The non-adaptive strategies studied on
the static network can be useful for informing permanent modifications to the
potential disease transmission network, such as vaccination. These approaches
could determine which groups are best suited for vaccination when supply is
limited, or could be used for planning how many vaccines are needed to control
an epidemic. However, they can not answer questions about behavior modifi-
cations based on an individual’s state. The adaptive strategies studied using the
SimDemics modeling environment are designed to handle these exact types of
dynamic changes to the social network. This more flexible architecture allows
the exploration of a wider range of public health policy options, and can re-
produce behaviors in the system that may not be obvious. The transparency in
the representation of the framework also allows for a more direct interpreta-
tion of the results, which allows for greater understanding across a wider audi-
ence of policy makers. The framework still requires some coarse adjustments
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based more on time and average behavior of the model, and full situational
awareness. Further refinement of these adaptive strategies is needed so that the
implementation of all these strategies is more fluid and evolving.

6. A Mathematical Formulation

We have seen how one can use computer simulations to study the effects of
various adaptive and non-adaptive interventions to control the spread of avian
flu through a social network. In this section, we will try to formulate many
of these questions as combinatorial questions in stochastic optimization, game
theory, dynamical systems and algorithms. This serves to expose the reader
to various mathematical formalisms, each capturing a different facet of the
underlying problem. Nevertheless, our primary goal is algorithmic here—we
concentrate on the algorithmic issues arising in these formalisms. Often the
questions are based on a simplified mathematical abstraction of the realistic
situation; nevertheless, we believe that this allows us to formulate questions
that might be tractable in the sense of obtaining rigorous mathematical proofs.
Progress on these questions will help us understand and guide simulation based
experimental results.

6.1 Preliminaries: A Simplified Model

Let V denote a population. We refer to individuals in V as nodes. Let
G(V, E) denote a contact graph on this population—each edge e = (u, v) ∈ E
denotes that the individuals u and v come into contact and can infect each
other. The spread of infection is assumed to be a stochastic process. For each
edge e = (u, v) ∈ E let r(e) (also, sometimes denoted by r(u, v)) denote
the probability of the infection spreading from u to v per unit time—this is
sometimes referred to as the infection rate. Let τ(u) denote the time that node
u remains infected. Note that the infection rates need not be symmetric, i.e.,
r(u, v) and r(v, u) need not be the same. We will assume that r(u, v) does
not vary with time, though this happens in reality. Most disease models have
additional states. For instance, there is an incubation period, which is the
period right after the infection, in which the individual is infected, but not yet
contagious. Let I(u) denote the incubation period for node u. We let r̄, τ̄ and
Ī denote the vectors specifying the above quantities for all nodes and edges.
We will use x̄ to denote the initial conditions: x(v) denotes the probability that
v is infected initially.

We will be considering discrete time models for epidemics, where the prob-
ability that node v does not get infected by node u in t time steps after u got
infected is given by:

Pr[node v not infected] = (1 − r(u, v))t (6.1)
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In an epidemic model such as SIR, each node u recovers and becomes im-
mune τ(u) time steps after becoming infected. In endemic models such as
SIS, node u returns to the susceptible state after this time. A crucial assump-
tion made in almost all epidemic models is that of independence: we assume
that the spread of infection from a node u to node v is completely independent
of the infection from a node u′ to node v. Similarly, an infected node u spreads
the infection to each neighbor v, independent of the other neighbors of u. This
is a central assumption in almost all the epidemic models and the analytical re-
sults based on percolation. However, there exist other epidemic models, such
as the Descending Cascade Model [20], in which this independence assump-
tion does not hold.

6.2 Policy Planning Problems

We begin by formulating one of the policy planning problems studied ear-
lier empirically—determining whom to vaccinate—as a stochastic optimiza-
tion problems. The optimization issue arises because of limited resources, e.g.,
of vaccines—this raises the question of whom to vaccinate so that the “pub-
lic good” is maximized. However, public good can be defined in a number
of ways, and therefore, there is no unique solution. In this section, we will
take an easy route by just attempting to determine a policy that minimizes the
epidemic size. This gives us the following problem, which we call the Vac-
cination Problem, following our earlier results in [16], which we denote by
VP(G, r̄, τ̄ , Ī , x̄, k):

Given: Contact graph G(V, E), which is directed, an SIR disease model,
as described in Sect. 6.1, which is specified by the vectors r̄, τ̄ , Ī , and
a parameter k, and a vector x̄ ∈ [0, 1]n, which describes the initial
conditions—x(v) denotes the probability that node v is infected initially.
The most common starting conditions are: (i) there is a single node v
such that x(v) = 1 and x(w) = 0 for all w �= v, or (ii) x(v) = 1/n for
each v.

Objective: Choose S ⊆ V, |S| ≤ k so that the number of nodes infected
when the disease is run on G[V \S] is minimized. In the initial conditions
where some specific nodes are infected, none of them should be in the
set S.

The SIR model leads to several simplifications in the formulation of the
above problem, and relates it to percolation. First, the incubation period I(u)
of node u plays no role in the expected epidemic size. Also, the above for-
mulation does not care for the temporal aspects, and so it suffices to simply
consider the effective infection probability on edge e = (u, v) as r′(e) =
1 − (1 − r(e))τ(u). Let G(r′) denote a random subgraph of G in which each
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edge e is retained with probability r′(e). Also, consider a simple initial con-
dition x̄ in which there is a single node s with x(s) = 1 and x(v) = 0 for all
v �= s. Thus, the VP(G, r̄, τ̄ , Ī , x̄, k) problem can be restated as:

Choose a subset S ⊆ V with |S| ≤ k such that:

The expected number of nodes reachable from s in the (random) sub-
graph G(r′) is minimized—the expectation here is over the random sub-
graphs G(r′). If the initial condition x̄ is different, the expectation above
would also be over different choices of initial sets, by sampling from x̄.

The above formulation is the simplest possible one, but is already non-
trivial. It remains non-trivial even if we consider the simplest possible dis-
ease model in which r(e) = 1 for each edge (modeling a “highly infectious
disease”), as the following result from [16] shows:

THEOREM 18.1 [16]. VP(G, r̄, τ̄ , Ī , x̄, k) is NP complete if r(e) = 1 for
each e, and there is a node s such that x(s) = 1 and x(v) = 0 for all v �= s.
For any ε > 0, there is a polynomial time bi-criteria approximation algorithm
that deletes a set S of O((1+ε)k) nodes, so that the number of nodes reachable
from s in G[V \ S] is O((1 + 1/ε)OPT ), where OPT denotes the optimum
solution to this problem.

The complexity of the VP(G, r̄, τ̄ , Ī , x̄, k) for more realistic disease models
(i.e., when r(e) < 1) is likely to be #P-hard, and determining this remains an
open problem.

Adaptive Policies: The VP problem described above corresponds to a non-
adaptive vaccination policy. Using the stochastic optimization framework de-
veloped by [28, 32, 19], we can formulate an adaptive version of this problem,
which we call Adaptive Vaccination Problem (AVP). In this formulation, the
nodes to be vaccinated, or deleted do not have to be chosen in one shot. In-
stead, a feasible solution corresponds to choosing set Si at the start of the ith
time step. As in [28], we assume that there is an inflation factor σi in step i,
so that the cost of choosing set Si in step i is Πj≤iσj |Si|; following [28], we
also assume that σi ≥ 1. The AVP(G, r̄, τ̄ , Ī , x̄, k, σ̄) problem is defined in the
following manner:

The quantities G, r̄, τ̄ , Ī and x̄ are defined as before. The parameter k
denotes the total cost that feasible solution must have, and σ̄ specifies
the inflation factor.

Feasible Solution: This is a sequence of disjoint sets S1, S2, . . . , S�.
The set Si denotes the set of nodes to be vaccinated on the ith timestep.
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The set Si can be chosen after observing the state of the epidemic in the
ith step.

Objective: Choose a feasible solution S1, . . . , S� such that the inequal-
ity

∑
i(Πj≤iσj)|Si| ≤ k holds and the expected number of infected

nodes is minimized.

In reality, only partial information is known about the epidemic reliably at
each step, and the AVP problem above can be easily modified to incorporate
this aspect.

The 2-person Vaccination Policy Game: We now consider a variant of the
AVP problem as a 2-person game. One player is the policy maker who has
to choose the vaccination policy, and the second player is “nature”, which
decides on the spread of the epidemic, following the framework of Games
against Nature (GAN) [27].

We denote this game as VPG(G, r̄, τ̄ , Ī , x̄, k, �, M). Let P denote the single
player, and let N denote nature. The game runs in rounds with P and N
playing alternately. N plays first, and infects nodes according to the starting
condition x̄, i.e., each node v is infected with probability x(v), independently
of other nodes. Then, P plays, and it can decide to vaccinate (or delete) up to �
nodes. In the next round, N plays, and spreads the infection to the unvaccinated
neighbors of the infected nodes, according to the disease model specified by r̄,
τ̄ and Ī . Let Si denote the set of nodes chosen to be vaccinated by P ; we must
have

∑
i |Si| ≤ k. The goal is to decide whether there is a vaccination strategy

for P , specified by the sequence of sets S1, S2, . . . , such that
∑

i |Si| ≤ k
and the total number of infected nodes is at most M . Is this problem PSPACE
complete, as some of the other GAN problems are?

6.3 Individual Behavior Problems: A Game Theoretic/
Dynamical Systems Viewpoint

A common problem with implementation of policies is compliance. This is
especially true in the case of vaccinations, which may have side effects and in-
volve additional costs, and in the case of directives to “stay home”, might sim-
ply be infeasible. Incentives are needed to make people comply. An interesting
way to give an incentive could be to enter all the people who get vaccinated into
a lottery—such schemes have also been studied in other settings, such as vot-
ing. This scenario immediately leads to interesting game theoretic questions,
since each individual now has a set of conflicting costs and rewards, and has to
make a choice that would optimize his or her perceived utility. There are sev-
eral papers that study game theoretic questions [1, 7, 9] related to epidemics on
networks. However, these results either assume that the graph is very simple,
or that the disease model is very simple. The approaches in [7, 9] use differ-
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ential equations and mean field approximations to formulate realistic disease
models on complete mixing networks (cliques). The paper by Aspnes, Chang
and Yampolskiy [1] is much closer to our models, in the sense that the network
is general, but the disease model is simple and assumes a “highly contagious
disease”. Extensions of this game have been studied in [26, 25]. There are,
admittedly, several difficulties with these non-cooperative formulations, e.g., it
is hard for nodes to compute their utility functions, and there is no persuasive
reason for equilibria to exist. However, the structure of these games may give
useful insights into their dynamics. We also give equivalent dynamical system
formulations of these games.

The Vaccination Game (VG) This game is denoted by VG(G, r̄, τ̄ , Ī , x̄), and
is defined in the following manner. Each node corresponds to a player, and a
strategy for player v is denoted by a quantity av ∈ [0, 1], which is the prob-
ability that node v decides to get vaccinated; vaccinating a node is equivalent
to lowering the infection probabilities on all edges incident on v. The disease
model is specified by Ī , r̄ and τ̄ , and x̄ gives the initial conditions, as discussed
earlier. We formulate the utility function Uv for node v as

Uv = avC + Pr[v gets infected]L,

where C denotes the cost (or reward) of getting vaccinated, and L denotes the
cost of getting infected. The probability that node v gets infected is defined
over the initial condition x̄ and the strategy ā.

One of the main problems of interest is to study the structure of equilibria,
if they exist, and compare their cost to that of a social optimum. Aspnes et
al. [1] consider a simple disease model, in which a node gets infected if there
is a path to it from an infected node, and the disease can start initially at any
node, i.e., x(v) = 1/n for each v. For illustration, consider a pure strategy ā.
Suppose av = 0 for some node v. Then Pr[v gets infected] is proportional to
the size of the component containing v, after all the nodes w with aw = 1 are
deleted. This is illustrated in Fig. 18.7. For this model, Aspnes et al. [1] show
that pure Nash equilibria always exist, and can be completely characterized in
terms of the quantity t = Cn/L—a strategy profile �a is a Nash equilibrium
provided:

1. every component in G�a has size at most t, and

2. flipping the strategy of a node v from 1 to 0 gives a component of size
strictly greater than t.

They also show that computing Nash equilibria that have minimum total cost
is NP-complete, but a simple switching strategy always converges to an equi-
librium. Finally, the cost of the worst Nash equilibrium can be Θ(n) times
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Figure 18.7. (a) A sample contact graph. (b) The components resulting from the strategy ā
with a1 = a4 = 1 and the rest being 0. The probability that any of the nodes 2, 3, 5, 6 gets
infected is 1/2

the social optimum. Extending these results to more general disease models
remains open questions.

The Multi Stage Policy Game (MSPG): While the above questions are math-
ematically interesting, an inherent difficulty with the above model is that it is
hard for individuals to estimate their costs. In light of this, we will consider
the following multi-stage version of this problem. We call this the Multi Stage
Policy Game (MSPG), and it is denoted by MSPG(G, r̄, τ̄ , Ī , x̄). In this game,
the strategy av of player v is actually a vector, and av(i) denotes the proba-
bility that v stays home—people find it much easier to decide whether to stay
home or not, when an outbreak has started, than deciding the utility of get-
ting vaccinated. Node v can choose av(i) depending on how many nodes in
its neighborhood are infected. The main objective would be to study this as
a dynamical system and explore its limit distribution, and the parameters that
influence these distributions.

Preliminary empirical results related to this problem can be found in [13]. A
simpler variation of the above based on differential equations was formulated
and studied in [21]. The model proposed here is more general and network
based which makes the problem substantially harder. The MSPG and VPG
games are instances of anti-coordination games [8]—it is in the interest of a
player to get vaccinated or stay home if a lot of people around her are not
doing so. The realism in the contact network and disease model make this a
very rich problem area. In addition to the limiting distributions of these games,
the computational complexity of these problems is an interesting problem.
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6.4 Discussion of the Different Formulations

The different theoretical problems formulated above deal with specific as-
pects of epidemic processes and policy planning—the different variants high-
light the richness of this area, and the limitation of any single theoretical model
to capture all of its complexity. The computational complexity of these prob-
lems is in general an open question.

As an example, we consider the VP and AVP problems and their computa-
tional variants. The complexity of computing the expected number of infected
nodes, Ninf , for initial conditions x̄, when set Si of nodes is vaccinated at step
i, is not exactly known. As mentioned in [20], it is not known how to compute
this quantity, even when all the nodes to be vaccinated are chosen in step 1
itself, though it is a reasonable conjecture that this problem is #P-hard. An
(ε, δ) approximation to Ninf can be computed by a simple sampling scheme:

1. For i = 1 to t do

(a) Generate a random instance of the bond percolation process, by
retaining each edge with probability r′(e), as defined earlier in the
discussion of the AVP problem.

(b) Let Zi denote the number of nodes reachable from the initial in-
fected nodes, specified by x̄.

2. Output Z = Z1+· · ·+Zt
t

LEMMA 18.2. For t ≥ n2/ε2δ we get an (ε, δ) approximation to E[Ninf ], i.e.,

Pr[|Z − E[Ninf ]| > εE[Ninf ]] ≤ δ

Proof. Clearly, E[Z] = E[Zi] = E[Ninf ] for each i = 1, . . . , t. Therefore, by
Chebyshev’s inequality, we have

Pr[|Z − E[Z]| ≥ εE[Z]] ≤ var(Z)
ε2E[Z]2

≤ var(Z1)
tε2E[Z1]2

≤ E[Z2
1 ]

tε2E[Z1]2
≤ n2

tε2
≤ δ

for t ≥ n2/(ε2δ). �

The above sampling works only because Ninf takes integral values in the
range {1, . . . , n}. It would not immediately work for other problems, such as
determining the probability that a node v gets infected.
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An interesting question is whether the AVP and VPG problems are
PSPACE complete. In light of the above discussion of an (ε, δ) sampling for
Ninf , is it possible that reasonable polynomial time approximation algorithms
exist for these problems?

7. Concluding Remarks

We have described an agent based modeling approach to study the inter-
action between public policy, individual behavior and spread of infectious
disease in an urban region. Our experimental results demonstrated how re-
alistic modeling considerations can impact the disease dynamics; the model-
ing framework is general enough and yet efficient to undertake such studies.
Further development of the modeling framework is necessary for modelers to
study this interaction. We also described formal mathematical questions that
arise when studying these complicated interactions. Most of the computational
complexity as well as the algorithmic questions arising in this context are open
problems and represent interesting directions for future research.

8. Thank You Dan

The group members of Network Dynamics and Simulation Science Lab-
oratory want to wish Professor Daniel Rosenkrantz a happy retirement from
active academics. He has been a collaborator for over eight years now; the
computational theory of discrete dynamical systems to understand computer
simulations of socio-technical systems was developed jointly with him. Dan’s
contributions and insights to the development of this theory have been invalu-
able, and his continued collaboration with us is a source of new ideas and
inspiration. Madhav Marathe would like to express a special note of thanks
and gratitude to Dan for being his teacher, mentor, colleague and a friend over
the last 19 years.

Acknowledgments

We thank the members of Network Dynamics and Simulation Science Labo-
ratory; the work presented here is based on work done by the entire group over
the last 10 years. This work has been partially supported NSF Grants Nets
CNS-062694, HSD SES-0729441, and NECO CNS 0831633, CDC Center
of Excellence in Public Health Informatics Grant 2506055-01, NIH-NIGMS
MIDAS project5 U01 GM070694-05, and DTRA CNIMS Grant HDTRA1-
07-C-0113. Computational support for the work was provided in part by the
National Science Foundation through TeraGrid resources provided by NCSA,
TACC and PSC.



References

[1] J. Aspnes, S. Chang, and Yampolskiy. Inoculation strategies for victims
of viruses and the sum-of-squares partition problem. J. Comput. Syst. Sci.,
72(6):1077–1093, 2006.

[2] V. Bala and S. Goyal. A non-cooperative model of network formation.
Econometrica, 68 (5):1181–1231, 2000.

[3] C. Barrett, J. Smith, and S. Eubank. Modern epidemiology modeling.
Scientific American, 292(3):54–61, 2005.

[4] C. L. Barrett, R. J. Beckman, K. P. Berkbigler, K. R. Bisset, B. W. Bush,
K. Campbell, S. Eubank, K. M. Henson, J. M. Hurford, D. A. Kubicek,
M. V. Marathe, P. R. Romero, J. P. Smith, L. L. Smith, P. L. Speckman,
P. E. Stretz, G. L. Thayer, E. V. Eeckhout, and M. D. Williams. Transims:
Transportation analysis simulation system. Technical Report LA-UR-00-
1725, Los Alamos National Laboratory Unclassified Report, 2001.

[5] C. L. Barrett, K. Bisset, S. Eubank, V. S. A. Kumar, M. V. Marathe, and
H. S. Mortveit. Modeling and simulation of large biological and infor-
mation and socio-technical systems: An interaction-based approach. In
Proc. Short Course on Modeling and Simulation of Biological Networks,
AMS Lecture Notes, Series: PSAPM, 2007.

[6] C. Barrett, K. Bisset, J. Chen, B. Lewis, S. Eubank, V. S. A. Kumar, M.
Marathe, and H. Mortveit. Effect of public policies and individual behav-
ior on the co-evolution of social networks and infectious disease dynam-
ics. In Proc. DIMACS DyDAn Workshop on Computational Methods for
Dynamic Interaction Networks, 2007.

[7] C. Bauch and D. Earn. Vaccination and the theory of games. Proc. Natl.
Acad. Sci., 101(36):13391–13394, 2004.

[8] Y. Bramoulle, D. Lopez-Pintad, S. Goyal, and F. Vega-Redondo. Social
interaction in anti-coordination games. International Journal of Game
Theory, 33(1):1–19, 2004.

[9] R. Breban, R. Vardavas, and S. Blower. Inductive reasoning games
as influenza vaccination models: Mean field analysis. In arXriv:
q-bio.PE/0608016, 2006.

[10] N. Durlauf and P. Young. Social Dynamics. MIT Press, Cambridge, 2001.

[11] G. Ellison. Learning, local interaction, and coordination. Econometrica,
61:1047–1071, 1993.

[12] M. Emirbayer and J. Goodwin. Network analysis, culture and the problem
of agency. American Journal of Sociology, 99:1411–1454, 1994.

[13] J. Epstein, J. Parker, and D. Cummings. Coupled contagion dynamics of
fear and disease: A behavioral basis for the 1918 epidemic waves: Math-
ematical and computational explorations. Technical Report, Brookings
Institute, 2006. Presentation made at the MIDAS meeting.

http://arxiv.org/abs/q-bio.PE/0608016


506

[14] S. Eubank, H. Guclu, V. S. A. Kumar, M. Marathe, A. Srinivasan, Z.
Toroczkai, and N. Wang. Modeling disease outbreaks in realistic urban
social networks. Nature, 429:180–184, 2004.

[15] S. Eubank, V. S. A. Kumar, M. Marathe, A. Srinivasan, and N. Wang.
Structural and algorithmic aspects of large social networks. In Proc. 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 711–720,
2004.

[16] S. Eubank, V. S. A. Kumar, M. Marathe, A. Srinivasan, and N. Wang.
Structure of social contact networks and their impact on epidemics. In
AMS-DIMACS Special Volume on Epidemiology, 2005.

[17] N. Fredkin. A Structural Theory of Social Influence. Cambridge Univer-
sity Press, Cambridge, 1998.

[18] S. Goyal and F. Vega-Redondo. Learning, network formation, and coor-
dination. Games and Economic Behavior, 50(2):178–207, 2005.

[19] N. Immorlica, D. Karger, M. Minkoff, and V. S. Mirrokni. On the costs
and benefits of procrastination: Approximation algorithms for stochas-
tic combinatorial optimization problems. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
684–693, 2004.

[20] D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion
model for social networks. In Proc. International Colloquium on Au-
tomata Programming and Languages (ICALP), pages 1127–1138, 2005.

[21] M. Kermer. Integrating behavioral choice into epidemiological models of
the aids epidemic. The Quarterly Journal Of Economics, CXI:549–573,
1996.

[22] P. Lazarsfeld and R. Merton. Friendship as social process. In T. Abel and
C. Page, editors, Freedom and Control in Modern Society, Van Nostrand,
New York, 1957.

[23] R. Leenders. Models for network dynamics. J. Mathematical Sociology,
20:1–21, 1995.

[24] R. Leenders. Structure and influence, statistical models for the dynamics
of actor attributes, network structure and their independence. PhD Thesis,
Amsterdam, 1995.

[25] M. Mavronicolas, V. Papadopoulou, A. Philippou, and P. Spirakis. A net-
work game with attacker and protector entities. In Proceedings of the
16th Annual International Symposium on Algorithms and Computation
(ISAAC 2005), volume 3827, pages 288–297, 2005.

[26] T. Moscibroda and R. Wattenhofer. When selfish meets evil: Byzantine
players in a virus inoculation game. In 25th Annual Symposium on Prin-
ciples of Distributed Computing (PODC), pages 35–44, 2006.

[27] C. Papadimitriou. Games against nature. Journal of Computer and System
Sciences, 31:288–301, 1985.



Case Study in Computational Epidemiology 507

[28] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms
for stochastic optimization problems. Math. Program., 108(1):97–114,
2006.

[29] T. Snijders, C. Steglich, and M. Schweinberger. Modeling the co-
evolution of networks and behavior. In K. van Montfort, H. Oud and A.
Satorra, editors, Longitudinal Models in the Behavioral and Related Sci-
ences. Routledge/Taylor & Francis, New York, 2006.

[30] C. Steglich, T. Snijders, and M. Pearson. Dynamic networks and behav-
ior: Separating selection from influence. Technical Report, University of
Groningen, The Netherlands, 2007. Available at http://stat.gamma.rug.nl/
snijders/.

[31] W. Stewart, J. Ricci, E. Chee, and D. Morganstein. Lost productive work
time costs from health conditions in the United States: Results from the
American productivity audit. Journal of Occupational & Environmental
Medicine, 45(12):1234–1246, 2003.

[32] C. Swamy and D. Shmoys. Approximation algorithms for 2-stage sto-
chastic optimization problems. ACM SIGACT News, 37(1):33–46, 2006.

[33] P. Young. Individual Strategy and Social Structure: An Evolutionary The-
ory of Institutions. Princeton University Press, Princeton, 1998.

http://stat.gamma.rug.nl/snijders/
http://stat.gamma.rug.nl/snijders/

	Interactions among human behavior,  social networks, and societal  infrastructures: A Case Study  in Computational Epidemiology
	Introduction 
	The PIN Problem in Computational Epidemiology 
	Network Based Computational Epidemiology 
	SimDemics 

	A Mathematical Model to Capture Co-Evolution 
	Specifying PIN Problems in CE Using Co-Evolving Discrete Dynamical Systems 

	Computational Experiments 
	Basic Experimental Setup 
	Experiment 1 
	Experiment 2 
	Comparing Adaptive and Non-Adaptive Strategies 

	A Mathematical Formulation 
	Preliminaries: A Simplified Model 
	Policy Planning Problems 
	Individual Behavior Problems: A Game Theoretic/ Dynamical Systems Viewpoint 
	Discussion of the Different Formulations 

	Concluding Remarks 
	Thank You Dan 

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


