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CHAPTER 11

Automatic Handling of Materials 
in Nested Volumes
Carsten Wächter and Matthias Raab 
NVIDIA

ABSTRACT

We present a novel and simple algorithm to automatically handle nested volumes 
and transitions between volumes, enabling push-button rendering functionality. 
The only requirements are the use of closed, watertight volumes (along with a ray 
tracing implementation such as NVIDIA RTX that guarantees watertight traversal and 
intersection) and that neighboring volumes are not intended to intersect each other, 
except for a small overlap that actually will model the boundary between the volumes.

11.1  MODELING VOLUMES

Brute-force path tracing has become a core technique to simulate light transport 
and is used to render realistic images in many of the large production rendering 
systems [1, 2]. For any renderer based on ray tracing, it is necessary to handle the 
relationship of materials and geometric objects in a scene:

 > To correctly simulate reflection and refraction, the indices of refraction on the 
front- and backface of a surface need to be known. Note that this is not only 
needed for materials featuring refraction, but also in cases where the intensity 
of a reflection is driven by Fresnel equations.

 > The volume coefficients (scattering and absorption) may need to be determined, 
e.g., to apply volume attenuation when a ray leaves an absorbing volume.

Thus, handling volumetric data, including nested media, is an essential 
requirement to render production scenes and must be tightly integrated into the 
rendering core. Ray tracing, i.e., its underlying hierarchy traversal and geometry 
intersection, is always affected by the limits of the floating-point precision 
implementation. Even the geometrical data representation, e.g., instancing of 
meshes using floating-point transformations, introduces further precision issues. 
Therefore, handling volume transitions robustly at least requires careful modeling 
of the volumes and their surrounding hull geometry. In the following we will 
distinguish three cases to model neighboring volumes. See Figure 11-1.
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11.1.1  UNIQUE BORDERS

The seemingly straightforward way shares unique surfaces between neighboring 
volumes to clearly describe the interface between two (or more) media. That is, 
anywhere two transparent objects meet, such as glass and water, a single surface 
mesh replaces the original two meshes and is given a special type. Artists will 
typically not be able to model volumes this way, as it requires manual splitting 
of single objects into many subregions, depending on which subregion touches 
which neighboring volume. Given the common example of a glass filled with 
soda, including gas bubbles inside and touching the borders, it is not feasible 
to subdivide the meshes manually, especially if the scene is animated. Another 
major complication of the scheme is that each surface needs to provide separate 
materials for front- and backface, where sidedness needs to be clearly defined.

Note that the unique surfaces can also be duplicated, to provide a separate 
closed hull for each volume. As a result, all tedious subdivision work is avoided. 
In practice, however, it is rather difficult to force the surfaces to exactly match up. 
Artists, or implicitly the modeling/animation/simulation software itself, may pick 
different subdivision levels, or the instancing transforms for the neighboring hulls 
may differ slightly due to floating-point precision mathematics. Therefore, the ray 
tracing implementation in combination with the rendering core would need to be 
carefully designed to be able to handle such “matching” surfaces. The ray tracing 
core, which includes the acceleration hierarchy builder, must guarantee that it 
always reports all “closest” intersections. The rendering core must then also be 
able to sort the list of intersections into the correct order.

11.1.2  ADDITIONAL AIR GAP

The second approach allows for a slight air gap between neighboring volumes to 
relax most of the mentioned modeling issues. Unfortunately, this leads to new 
floating-point mathematics issues caused by common ray tracing implementations: 
An ϵ offset is needed for each ray origin when generating new segments of the 
path, in order to avoid self-intersection [4]. Thus, when intersecting neighboring 

Figure 11-1. Left: explicit boundary crossing of volumes marked with dashed lines. Center: air gap to 
avoid numerical problems. Right: overlapping volumes.
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volume hulls, one (or more) volume transitions may be completely skipped, so it 
is important that the air gap is modeled larger than this ϵ offset. Another major 
downside of inserting small air gaps is even more dramatic though, as air gaps 
will drastically change the appearance of the rendering because there are more 
volume transitions/refractions happening than intended. See Figure 11-2.

Figure 11-2. Modeling the aquarium with a slight air gap.

Figure 11-3. Slightly overlapping the water volume with the glass bowl.

11.1.3  OVERLAPPING HULLS

To avoid the downsides of the previous two schemes, we can force the neighboring 
volumes to overlap slightly. See Figure 11-3. Unfortunately, this third approach 
introduces a new problem: the ordering and the number of the path/volume 
intersections will not be correct anymore. Schmidt et al. [3] impose a valid 
configuration by assigning priorities to each volume. This requires explicit 
artist interaction that can be tedious for complex setups, especially when doing 
animations.

Note that, in addition to the three schemes mentioned, there is yet another, 
noteworthy special case: fully nested/enclosed volumes that are contained 
completely within another volume. See the colored objects in Figure 11-1. 
These are usually expected to cut out the surrounding volume. Some rendering 
implementations may also allow mixtures of overlapping or nested volumes. 
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Obviously this does not help to reduce the complexity of the implementation at all, 
as previously mentioned issues still exist when entering or leaving neighboring 
volumes. These transitions are even trickier to detect and to handle correctly as a 
path is allowed to travel through “multiple” volumes at once. Thus, our contribution 
is targeted at renderers that only handle a single volume at a time.

In the following, we describe a new algorithm to restore the correct ordering of 
the path/volume intersections when using the overlapping hull approach, without 
manual priority assignments. It has been successfully used in production for more 
than a decade as part of the Iray rendering system [1].

11.2  ALGORITHM

Our algorithm manages a stack of all currently active (nested) materials. Each time 
a ray hits a surface, we push the surface’s material onto the stack and determine 
the materials on the incident and the backface of the boundary. The basic idea is 
that a volume is entered if the material is referenced on the stack an odd number 
of times, and exited if it is referenced an even number of times. Since we assume 
overlap, the stack handling further needs to make sure that only one of the two 
surfaces along a path is actually reported as a volume boundary. We achieve this by 
filtering out the second boundary by checking if we have entered another material 
after entering the current one. For efficiency, we store two flags per stack element: 
one indicating whether the stack element is the topmost entry of the referenced 
material, and the other if it is an odd or even reference. Once shading is complete 
and the path is continued, we need to distinguish three cases:

 1. For reflection, we pop the topmost element off the stack and update the 
topmost flag of the last previous instance of the same material.

 2. For transmission (e.g., refraction) that has been determined to leave the newly 
pushed material, we not only need to pop the topmost element but also need 
to remove the previous reference to that material.

 3. For same material boundaries (that are to be skipped) and for transmission 
that has been determined to enter the new material, we leave the stack 
unchanged.

Note that in the case where the path trajectory is being split, such as tracing multiple 
glossy reflection rays, there needs to be an individual stack per spawned ray.

In the case of the camera itself being inside of a volume, an initial stack needs to 
be built that reflects the nesting status of that volume. To fill the stack, a ray can be 
traced from outside the scene’s bounding box toward the camera position recursively.
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11.2.1  IMPLEMENTATION

In the following we present code snippets that provide an implementation of our 
volume stack algorithm. One important implementation detail is that the stack may 
never be empty and should initially contain an artificial “vacuum” material (flagged 
as odd and topmost) or an initial stack copied from a preprocessing phase, if the 
camera is contained in a volume.

As shown in Listing 11-1, the data structure for the volume stack needs to hold the 
material index and flags that store the parity and topmost attribute of the stack 
element. Further, we need to be able to access materials in the scene and assume 
that they can be compared. Depending on the implementation, a comparison of 
material indices may actually be sufficient.

Listing 11-1. The material index, flags, and scene materials.

1 struct volume_stack_element

2 {

3   bool topmost : 1, odd_parity : 1;

4   int material_idx : 30;

5 };

6

7 scene_material *material;

When a ray hits the surface of an object, we push the material index onto the stack 
and determine the actual incident and outgoing materials indices. In the case 
that the indices are the same, the ray tracing code should skip the boundary. The 
variable leaving_material indicates that crossing the boundary will leave the 
material, which needs need to be respected in Pop(). See Listing 11-2.

Listing 11-2. The push and load operations.

 1 void Push_and_Load(

 2   // Results

 3   int &incident_material_idx, int &outgoing_material_idx,

 4   bool &leaving_material,

 5   // Material assigned to intersected geometry

 6   const int material_idx,

 7   // Stack state

 8   volume_stack_element stack[STACK_SIZE], int &stack_pos)

 9 {

10   bool odd_parity = true;

11   int prev_same;

12   // Go down the stack and search a previous instance of the new

13   // material (to check for parity and unset its topmost flag).
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14   for (prev_same = stack_pos; prev_same >= 0; --prev_same)

15     if (material[material_idx] == material[prev_same]) {

16       // Note: must have been topmost before.

17       stack[prev_same].topmost = false;

18       odd_parity = !stack[prev_same].odd_parity;

19       break;

20     }

21

22   // Find the topmost previously entered material (occurs an odd number

23   // of times, is marked topmost, and is not the new material).

24   int idx;

25   // idx will always be >= 0 due to camera volume.

26   for (idx = stack_pos; idx >= 0; --idx)

27     if ((material[stack[idx].material_idx] != material[material_idx])&&

28           (stack[idx].odd_parity && stack[idx].topmost))

29       break;

30

31   // Now push the new material idx onto the stack.

32   // If too many nested volumes, do not crash.

33   if (stack_pos < STACK_SIZE - 1)

34     ++stack_pos;

35   stack[stack_pos].material_idx = material_idx;

36   stack[stack_pos].odd_parity = odd_parity;

37   stack[stack_pos].topmost = true;

38

39   if (odd_parity) { // Assume that we are entering the pushed material.

40     incident_material_idx = stack[idx].material_idx;

41     outgoing_material_idx = material_idx;

42   } else { // Assume that we are exiting the pushed material.

43     outgoing_material_idx = stack[idx].material_idx;

44     if (idx < prev_same)

45       // Not leaving an overlap,

46       // since we have not entered another material yet.

47       incident_material_idx = material_idx;

48     else

49       // Leaving the overlap,

50       // indicate that this boundary should be skipped.

51       incident_material_idx = outgoing_material_idx;

52   }

53

54   leaving_material = !odd_parity;

55 }

When the rendering code continues ray tracing, we need to pop the material from 
the stack, as shown in Listing 11-3. For transmission events, this will only be called 
if leaving_material is set, and in that case two elements are removed from the 
stack.
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Listing 11-3. The pop operation.

 1 void Pop(

 2   // The "leaving material" as determined by Push_and_Load()

 3   const bool leaving_material,

 4   // Stack state

 5   volume_stack_element stack[STACK_SIZE], int &stack_pos)

 6 {

 7   // Pop last entry.

 8   const scene_material &top = material[stack[stack_pos].material_idx];

 9   --stack_pos;

10

11   // Do we need to pop two entries from the stack?

12   if (leaving_material) {

13     // Search for the last entry with the same material.

14     int idx;

15     for (idx = stack_pos; idx >= 0; --idx)

16       if (material[stack[idx].material_idx] == top)

17         break;

18

19     // Protect against a broken stack

20     // (from stack overflow handling in Push_and_Load()).

Figure 11-4. Modeling the whiskey glass with a slight air gap.

Figure 11-5. Slightly overlapping the whiskey volume with the glass.
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21     if (idx >= 0)

22       // Delete the entry from the list by filling the gap.

23       for (int i = idx+1; i <= stack_pos; ++i)

24         stack[i-1] = stack[i];

25     --stack_pos;

26   }

27

28    // Update the topmost flag of the previous instance of this material.

29   for (int i = stack_pos; i >= 0; --i)

30     if (material[stack[i].material_idx] == top) {

31       // Note: must not have been topmost before.

32       stack[i].topmost = true;

33       break;

34     }

35 }

11.3  LIMITATIONS

Our algorithm will always discard the second boundary of an overlap that it 
encounters. Thus, the actual geometry intersected depends on the ray trajectory 
and will vary depending on origin. In particular, it is not possible to trace the same 
path from light to camera as from camera to light, which makes the method slightly 
inconsistent for bidirectional light transport algorithms such as bidirectional path 
tracing. In general, the lack of an explicit order for which boundary to remove may 
lead to removing the “wrong” part of the overlap. For example, the water will carve 
out the overlap region from the glass bowl in Figure 11-3 for rays that enter the 
glass first. If the overlap is sufficiently small, as intended, this is not a problem that 
causes visible artifacts. If, however, a scene features large overlap, as, e.g., the 
partially submerged ice cubes floating in Figures 11-4 and 11-5, the resulting error 
can be large (although one can argue about the visible impact in that scene). Thus, 
intended intersecting volumes should be avoided, but will not break the algorithm 
or harm correctness of later volume interactions along the path.

Imposing an explicit order on the volume by assigning priorities [3] will resolve this 
ambiguity at the price of losing push-button rendering functionality. This solution 
has its limits, as ease of use is essential to many users, such as those that rely on a 
ready-to-use library of assets, light setups, and materials, without knowing any of 
the technical details.

Managing a stack per path increases state size, so highly parallel rendering 
systems may carefully need to limit volume stack size. While the provided 
implementation catches overflows, it does nothing beyond avoiding crashes.
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