
The architecture of distributed systems driven by
autonomic patterns

Marcin Wolski, Cezary Mazurek, Pawei Spychata, Aleksander Sumowski

Poznan Supercomputing and Networking Center,
ul. Noskowskiego 12/14 Poznan, Poland

{maw, mazurek, spychala, sumek} @man.poznan.pl

Abstract. The autonomic computing notion has introduced the concept of self-
optimizing, self-healing and auto-diagnosis applications. In this article we
would like to present how this idea affects the building of distributed systems.
As a reference base, we take advantage of the Data Management System
(DMS), which has been developed within the scope of the PROGRESS project.
DMS enables the creation of a grid environment capable of storing large
amounts of data. The complex architecture of this system, which constitutes a
model of loosely coupled components, involves a special approach to its main­
tenance and management. To address these problems, we have applied the
autonomic computing patterns in the DMS architecture. Our solution was de­
signed to be reused in any project dealing with the same issues. It can also act
as an autonomic service for any other applications and services.

1 Introduction

Data grid systems have been designed to be up to complex data processing in a geo­
graphically distributed environment and exact performance demands. Over the years
this class of systems has matured and at present they are offering a wide range of
functionality related to the management, collaborative sharing, publication, and pres­
ervation of distributed data collections. This wealth of capabilities, however, compli­
cates the managing of such large systems, increases its complexity as more heteroge­
neous components are added, and makes it more difficult to find and solve any
technical problems. They constitute a typical example of an environment where ad­
ministrators spend too much time doing repetitive tasks, monitoring the system bur­
den, reacting when problems with performance arise or continuously blocking the
hackers' attacks.

The concept of the Service Oriented Architecture (SOA) [9,13], which common
implementation is based on existing Web services standards and specifications, helps
to deal with these inconveniences. The notion of a service is nothing new, but the con­
cept of the SOA has evolved over the past couple of years. It is an architectural style
of building software applications that promotes loose coupling between components
so that you can reuse them. SOA makes it possible to construct architectures where
client applications can simply register, discover, and use the services deployed over
the grid.

Please use the following formatwhen citing this chapter:

Wolski, M., Mazurek, C, Spychala, P., Sumowski, A., 2006, in IFIP International Federation for Information Processing,
Volume 227, Software Engineering Techniques: Design for Quahty, ed. K. Sacha, (Boston: Springer), pp. 49-60.

50 Marcin Wo/skr, Cezary Mazurek, Pcnvel Spychala, Aleksander Sumowskr

SOA itself narrows the focus on the overall system maintenance and management
but it does not cope with many problems derived from the complexity of distributed
systems. We need a solution which enables the system to automatically configure its
components, discover and correct faults, monitor and control resources and proactive
identify and protect from arbitrary attacks. Autonomic computing (AC) researches of­
fer the most promising approach to addressing such challenges.

The conjecture of AC was inspired by IBM's autonomic computing initiative to
deal with the main problem in large and distributed systems - increasing complexity.
Autonomic means able to operate without conscious control of a human - similarly to
our heart or lungs controlled by our autonomic nervous system. AC generally has two
main goals: to reduce the work and complexity associated with a large system and be
able to better respond to rapid changes in the system.

In this paper we would like to present how the autonomic computing notion affects
the building of distributed systems. Moreover, the solution that we provided can also
act as an autonomic service for any other applications and services. As a reference
base, we take advantage of the Data Management Suite (DMSuite) [3,4] - a platform
of integrated services supporting data management processes in the grid environ­
ments. DMSuite has been designed and developed in the scope of the PROGRESS
project [2] - an initiative undertaken within the PIONIER National Program [1] and
funded by the State Committee for Scientific Research and Sun Microsystems Poland.
Currently the Data Management Suite is a part of the Gridge (Grid Enterprise Solu­
tions) [5], which covers the whole grid architecture, from tools and portals down to
core middleware.

The remainder of this paper is organized as follows: Section 2 introduces the back­
ground and technical aspects of the AC model. Section 3 details the current imple­
mentation of DMSuite and indicates its advancement in terms of autonomic comput­
ing. Section 4 demonstrates some case studies taken from various projects using the
DMSuite software and presents a definition of autonomic patterns and its relationship
with the system architecture. Section 5 summarizes the paper with our conclusions
about building distributed systems on the basis of the SOA model and AC patterns. It
also indicates what will be held in the upcoming release of DMSSuite.

2 Autonomic computing design

Autonomic computing was introduced by IBM as a response to overwhelmingly in­
creasing complexity of novel systems [12]. The process of growing complexity
threatened that at some future point of time computer systems would become a bur­
den, covering its initial use.

The autonomic computing vision is based on an autonomic nervous system. Auto­
nomic computer systems are supposed to be able to operate without human attention.
They are supposed to automatically interoperate between each other without the need
to tweak large amounts of switches and XML configuration files.

The system architecture built according to autonomic computing principles should
limit the hands-on intervention to uncommon cases which occur during the system's
regular work. This postulate could be fulfilled by applying predefined policies for

The architecture of distributed systems driven by autonomic patterns 51

administrative operations which can take decisions leading to the system reconfigura­
tion, basing on gathered knowledge during the system work. Such vision of the folly
self-managed system seems to be hard to realize, but it allows to determine the aim,
an ideal system architecture which uses different technologies and solutions for
achieving the assumed autonomic computing level. The autonomic computing archi­
tecture can be understood as a continuum for a system,

2.1 Self-CHOP paradigm

There are four components that comprise the autonomic computing vision [11]:

• Self-configuring - means the ability to dynamically adapt to changing environ­
ments. Self-configuring components use policies provided by the professional staff
to perform self-configure procedures. Such changes could include the deployment
of new components or the removal of the existing ones, or even remarkable
changes in the system characteristics.

• Self-healing - means the ability to discover, diagnose and react to malfonctions.
Self-healing components can detect system disruptions and initiate policy-based
repair procedures without any influence on the rest of the environment. Corrective
action could involve a product altering its own state or effecting changes in other
components.

• Self-optimizing - means the ability to monitor and tune resources automatically.
The tuning actions could imply, for example, reallocating resources (such as in re­
action to dynamically changing workloads), improvement of the overall utilization,
or ensuring that particular transactions can be completed in a timely fashion.

• Self-protecting - means the ability to anticipate, detect, identify and protect against
threats from anywhere. Self-protecting components can identify hostile behaviors
as they occur and take appropriate actions to make themselves more resistant. The
hostile behaviors can include unauthorized access and use, vims infection and de-
nial-of-service attacks.

Those four ideas together form a self-CHOP paradigm which, in short, stands for
configuration, healing, optimization and protection.

2.2 Maturity levels

The autonomic computing architecture ideas could be realized in the developed sys­
tem in a different way, in a different scope and on a different level. Following the
[14], there are five levels of maturity that refers to the state of implementation of the
autonomic computing recommendations. These levels are: basic, managed, predictive,
adaptive and autonomic. Although the distiibuted applications constantly evolve
along these stages, the general state of the novel system remains at the basic and man­
aged levels. These two base levels do not allow the application to be aware of the sys­
tem environment state.

The basic level defines an architecture which still requires human intervention and
expertise basing on their knowledge. The managed level is achieved when the envi-

52 Marcin Wolski, Cezary Maziirek, Pawel Spychala, Aleksander SumoM'ski

ronment is equipped with some scripting and logging tools, allowing to automate rou­
tine execution and reporting. The plans and taken decisions are based on this gathered
information; however, it still needs an individual specialists review.

Systems at a predictive level of autonomic computing maturity have a basic intelli­
gence, which bases on predetermined thresholds and knowledge base, suggesting so­
lutions according to the set of events stored at a centralized base and their common
occurrences and experience. The adaptive level defines environments that allow them
to take action themselves basing on predictive system capabilities according to the
arising situations.

The highest level of the autonomic computing system architecture is defined as
autonomic, which is understood as a policy-driven system, which is able to e.g. allo­
cate resources according to priorities.

It is worth underlining that the system maturity levels evolve and there is no ap­
proach to make a self-optimizing, self-protecting, self-configuring and self-healing
system.

3 Data Management Suite

DMSuite is a middleware platform providing a uniform interface for connecting het­
erogeneous data sources over a network. It may stand for the backbone on which a
computational grid would perform its operations. The following figure depicts the
main components belonging to this integrated platform.

EXTERNAL
DATA
SOURCES

DATA MANAGEMENT SUITE ARCHITECTURE

GRID
MIDDLEWARES

ACCESS PORTAL

I •
FTP+ > ' SOAP

' DATA
MANAGEM
SYSTEM

E N I

System Events

MS

'SOAP

TOTH
LOG
SYS' rEM

CONSOLE

LOG VIEWER

Fig. 1. Data Management Suite architecture

The Data Management System and Toth constitute a base for our architecture that
combines autonomic and data grid technologies. The Data Management System is the
main part of Data Management Suite solutions. It is a middleware application based
on the SOA model that determines loose coupling between reusable components.
Similarly to computing and network resources, DMS provides services to manage and
retrieve data files in order to support grid jobs. The computational resources managed
by DMS can be described by metadata schemas which allow the creation of an ab­
stract, semantic and explorable layer of resources.

The architecture of distributed systems driven by autonomic patterns 53

The Toth Logging System simplifies the system administi-ation process by gather­
ing all events incoming from distributed components of the DMSuite. It is based on
the JMS technology [15], which assures simple exchange of binary messages in the
asynchronous way.

3.1 Autonomic design

DMSuite has been built using some autonomic computing principles, such as self-
management, fault detection and self-configuration. The Data Management System
(DMS) - the key element of DMSuite - contains tliree logically distinguished mod­
ules: Data Broker, Metadata Repository and Data Container [16]. Together they create
the basic layer of the data management environment, the so-called DMS core. DMS
architecture is comprised of distributed modules, each of them can be treated as a
separate service using XML messages to communicate with other applications.

•,V.''" *'•"- '••••' --isV/.i -'.5:**-. i.-'^J.V^' 'X.'".-v:v.• •».".:';; •J' • •
•y. - " c • ' T S W i f - : • . • * . . - • • - - . • " ' ; • . • • • . ' . • - ^ .^ i^ • i

• . •* ' . ' • ' ; • « J > ' J ^ .» •- - •• • ' . H - - . ' • ' ' • ' - ' ' ' • • . -

,•.;••'•• • isusav.^'"' \ v'--t.;.-'.-..' t - f . • • • i_\

» ' 1 1 • - i f t V* •*» f*.. ^ - ^ . • • > • ^ 1

• . - • •

1 '••

w'-:-
. : •

('• -

•;
, * . •

• ? ' . •*

• t

- ';,
•' .:
-V.' •'

•-. .J.

.-

>' • •

• . .

*_,

f.
^

k

"m&
• - . - . '•

•ri ' i- , .
, - iS5^': .

• • . - - - * • • \ •

> * - > . - - - • •

Iff.--..

J W f t M . " 1 ^^ . . ••

... i

* » » ' • ' • '•

- ' " > - . ; • ' . • • •
. . . . : . • ; • . •

• ; 1 J - , 1 » :

• ' . » r - ! ' ; ; . • • . . » ; , - ; .

' • • • "* • ' . .-.
. V - • . • ; V

- . - ' • * • • • ' i -*.

• • • - • • • ; • . > ^ . .

• « « f — • vdi. ^ - • "k J!(— 1 1

1 • '

" * *
• ^

'
. • : . • . . •

• • ' • • ' - ^

. -• " • ; *

JL' s..fi5aji

,
"".".
:v
;. r

c

fs}'\

u
' • ' • ! •

• * r

> mJm *>i -H4.1l l l l r iS > - .

•t

V
I
i
1

V

1
• l

I
i 4

'.'

FTP
OtWFTP

<...J

Fig. 2. Data Management System

Metadata Repository stores various type of information about resources managed
by the system. Data Broker is a distributed entry point to the system. Data Container
is a storage element, which arranges data on various types of media. Proxy provides
an uniform interface to external data sources with a diversified structure. Within the
PROGRESS installation Proxy enables access to biological databanks managed by
SRS (Sequence Retrieval System) [19]. All modules belonging to the DMS middle­
ware automatically register themselves in the Metadata Repository.

According to the five-degree maturity levels of autonomic computing (section 2.2),
DMSuite currently comes in the second (managed) level. The first (basic) level of ma­
turity is assured by the presence of the Toth Logging System. The Toth is responsible

54 Marvin Wolski, Cezary Mazurek, Pawel Spychafa, Aleksander Sumowski

for gathering all events that occur in the monitored system. It stores the messages in
the internal structures and provides an interface to explore them. But it is not enough
to achieve the second level of maturity, which ensures that systems management tech­
nologies can be used to collect details from managed resources, helping to reduce the
time it takes the administrator to collect and synthesize information. Therefore Toth
has been equipped with additional functionality related to the messages processing. It
performs advanced parsing on each of the received events, constructs a set of meta­
data on their base, and exposes an interface for searching the collected events, accord­
ing to the specified criteria.

Our initial solution aimed to fulfill the basic AC principles is completed by a single
access interface to the whole data components. It allows the end users (professional
staff, administrators, researches) to manage the entire data grid infrastructure as easily
as managing one application running on one computer. This interface has been devel­
oped in a form of a Web portal which offers a single and efficient tool to simplify the
management of the distributed components.

The ideas described above have introduced the concept of autonomic computing in
the DMSuite environment. This includes self-configuration, that is automatic registra­
tion of distributed components in the Metadata Repository, and self-healing, which
stands for restoring coherency in the distributed file system. But these features consti­
tute only a part of the autononriic computing model and are appropriate to achieve the
basic level of AC implementation. On the basis of some scenarios taken from various
perspectives (users, developer, administrators), we will point out which features are
still missing, and describe some extensions to the DMS architecture which will take
advantage of advanced capabilities from the autonomic computing area.

4 Toward the concept of autonomic patterns

In the beginning we would like to recall a few general principles which were fonnu-
lated to design the data grid architectures (following the [6]). These are: mechanism
neutrality, policy neutrality, compatibility with grid infrastructure, and uniformity of
the infoiTOation infi^astructure.

These principles were the underlying reason for the creation of DMSuite. But tak­
ing into consideration real case studies taken fi-om various projects using our soft­
ware, we noticed a lack of AC capabilities which are necessary to fulfill the enterprise
requirements. These are:

• Self-configuration: self-discovery and self-configuring of the system components.
For example: providing and maintaining the current information about active Data
Brokers and their hierarchy, automatic detection of inactive Data Containers.

• Self-healing: automatic discovery of errors and their corrections. For example:
searching for files with stale properties' and their automatic refreshing, system re­
covery after Metadata Repository failure.

In case of internal failure the file properties may become invalid. Dealing with this problem
requires hands-on reaction. This is an internal DMS feature.

The architecture of distributed systems driven by autonomic patterns 55

• Self-optimization: continuous monitoring and control of resource usage, which as­
sures their optimal utilization, for example, automatic file replication, file transfer
optimization in terms of speed and bandwidth.

• Self-protection: proactive identification and protection against the attacks. For ex­
ample: active detection of incoming threats, response to the specific events in a
form of a system message (mail, log journal etc.).

Owing to the above assumptions, we perceive a necessity to define two additional
guidelines, pointing at directions of the building of novel data grid systems (generally
distributed systems). These are:

• The component model - instead of building a monolith architecture and thus as­
signing all resources to a specific application, the software should be treated as a
set of logical, reusable services that can dynamically utiUze (and share) the under­
lying hardware resources. These services should be platform-, language-, and oper­
ating system-independent;

• Autonomic patterns - system design patterns should lead to building self-
management service architectures, being able to runtime adaptation to the changing
environment conditions. It indicates the presence of the event services, capture and
sharing of state information between sub-systems, integrity and autonomy of self-
management systems. This idea will be revealed further in the next sections.

With regard to the first notion (the component model), in the previous section we
introduced the Data Management System as an example of a distributed system based
on loosely coupled components. The implementation on the second assumption -
autonomic patterns - involves an extension in the present DMS architecture. This
topic will be described more precisely in the next section.

4.1 AC principles implementation

Before we get down to the autonomic computing implementation, we discuss the ini­
tial principles that lay down at the basis of the autonomic patterns. We base this list
on the well-known CHOP model (section 2.1):

Self-configuration - distributed components configure themselves without any
human intervention in the form of configuration dialogs or external files. We can as­
sume that each element possesses a high-level description of its behavior in a stan­
dardized form and the address of the central information repository. This repository
stores all information about the services and resources belonging to the distributed
environment. A new element retrieves the appropriate information that it needs to
function, configures itself on this base and then registers itself in the repository.

The Web Services platform (WSDL, UDDI, WS-Addressing and more) [17] seems
to be the most viable option to implement self-configuration patterns.

Self-healing - we assume that the distributed environment should be capable of
dealing with the failure of any of its components. It is important, however, to distin­
guish between the local and the global approach. The former is related to the creation
of a reliable and robust single entity, which involves using the appropriate architec­
tural techniques or hardware protection. The latter, which remains our interest, as-

56 Marcin Wolski, Cezary Maziirek, Pawel Spychala, Ahksander Siimowski

sumes the presence of a monitoring element responsible for determining if the distrib­
uted components are performing properly, according to their desired behavior. If the
monitoring element detects any inconsistent service, then it reacts, possibly terminat­
ing the failure element or updating appropriate records in the information repository.

Self-optimization - similarly to the previous case, we should also distinguish be­
tween local and global tuning aspects. It is obvious that each element must utilize the
underlying resources efficiently but it does not assure that the whole environment will
work properly. Therefore we assume that on the global level we will take advantage
of the policy-based management [18]. It involves the presence of an autonomic man­
ager which will perform the self-optimize actions according to the desired policy. The
policy should be expressed in an abstract language, for example "On average, users
will not wait more than 5 seconds for the response", and the autonomic element will
translate it into the system commands (or workflow) and execute in the environment.

Self-protection - the self-protection aspects cover two distinct issues: undesirable
system behavior due to bugs or other unexpected conditions and unauthorized access
by attackers. Regarding the former issue, some of the self-healing or self-optimize
patterns are suitable for protection from this type of event. For example, self-
regenerative clusters may be useful when a single node is down because of internal
failure. It is also recommended to take advantage of the intrusion detection system
which is responsible for preventing from any unauthorized access. Similarly to the
other computing systems, the autonomic environment requires strong security control.
It can be realized by defining the security policies which are a part of the self-tuning
policies described in the previous paragraph.

Event service. As a base for our autonomic architecture we will use the central log
repository gathered events from the distributed components. The Toth Logging
System, which is ready to use in various environments and accommodated to
cooperate with different kinds of applications, perfectly fits our needs.

The main fixnctionality, which is storing events coming from many wide-spread
modules, fulfills only one basic assumption - a central message gathering. It does not
treat the statistical analysis of this data. This feature is particularly important in refer­
ence to AC patterns when we must distinguish between many types of events which
may occur in tlie distributed system. These can be, for example, situations in which:

• The user waits for data transfer longer than the expected value.
• The user failed to logon into the system.
• The amount of data transferred daily for one user exceeded a given value.

To handle these issues Toth provides a context analysis mechanism of collected
messages. It is based on a set of attributes which are passed in tlie event body in a
form of the key-value pairs. The sequence of operations, comprising the message
processing and drilling for the attributes according to the specified criteria, is realized
on the database level. These criteria may be a type of operation, name of the file, pre­
ferred file pr transfer protocol.

In this paragraph we have outlined the general concept of Toth architecture, and
the next sections provide a detailed description of its main components with reference
to the autonomic computing.

The architecture of distributed systems driven by autonomic patterns 57

Predictive level. To achieve level 3 (predictive) of autonomic computation, Toth has
been equipped with two specialized modules. First of all, it is the Knowledge Base
built on the basis of recent activities of managed resources. This part of the
application acts as a foundation of further actions and defines the global environment
state. It is very important to note that this knowledge does not comprise only log
messages from the registered modules, variables values or states and measurements. It
has to be considered as a real knowledge, which is a base set of conclusions that are
drawn from the collected data. To accomplish this assumption we have introduced the
System Diagnostic Monitor - a separate Toth module characterized by the following
features:

• It analyzes the gathered logs, monitors the system components and creates recom­
mendations.

• It generates alerts on the basis of several thresholds. It assures proactive monitor­
ing, which means reaction to problems before they may appear.

• It runs at regular intervals (autonomic control loop).

On the basis of the CHOP model (section 2.1), we can present a few examples of
system rules which act as a rationale to create recommendations. These are:

• Self-optimization: if a file is accessed frequently, then it can be spread among dif­
ferent nodes.

• Self-configuring: if a request passed to distributed component finishes with a net­
work error, then it may indicate its failure.

• Self-healing: if a file is locked more than reservation time, then it is probably
stale^.

• Self-protection: if the administrator tried to log in from the machine outside the se­
cure zone, then it may indicate an attempt to break in.

The rules are encoded according to XML methodology and apply to the form of
IF(condition) THEN (action). Additionally, we define a set of alerts in the system,
which are triggered when a certain condition (threshold) takes place. It can be, for ex­
ample, "low free space" which raises an alarm when the space usage at the Data Con­
tainer is higher than 90 percent. By default, the alert notifications will be sent to the
console, but Toth will also support the email or SMS notifications.

The predictive level ensures faster and better decision making providing appropri­
ate recommendations for the professional staff members. But the realization of the
autonomic computing vision involves to automate the processes of self-* procedures,
which stands for the adaptive level.

Adaptive level. At level 4 (adaptive), the distributed environment can automatically
take actions based on the available knowledge. The decisions are taken on the basis of
the knowledge base and have to fulfill the assumed policy and defined base rules.

To provide a consistent view of this level of AC, we have to fnstly define a term of
a policy with reference to autonomic computing methodology. The anatomy of the

^ File management within DMS is based on the reservation of physical storage on a specific
amount of time

58 Marcin Wolski, Cezary Maziirek, Pmvel Spychala, Ahksander Siimowski

policy defines the system ability for high-level, broadly scope directives, which are
translated into the specific actions to be taken by the elements. PoUcy-based manage­
ment is an active research topic among the scientists. In the autonomic computing ap­
proach this refers to the policy-based self-management.

System rules introduced in the previous section actually constitute a basic form of
policy (based on actions IF-THEN). In order to satisfy the requirements of AC level 4
we define a goal policy which describes the conditions to be attained without specify­
ing how to achieve this (for example, the time of a file restoration after the failure
must not exceed 60 seconds). This notion is much more flexible than system mles,
because the human or autonomic element can perform specific actions in the moni­
tored components without knowing of its inner behavior.

This set of rules and policies allows to define the demanded system characteristics
and it is a base for performing self-* procedures. Actions that are taken during self-
healing or self-tuning operations are performed by individual components. Thus it is
necessary to equip these components in manageability interfaces which provide vari­
ous ways to gather details and change the behavior of the managed resources.

The service-oriented architecture defines a number of standard interfaces, but in
order to fulfill the autonomic computing requirements we need to provide the addi­
tional interfaces as well. Because our idea concerns the SOA model and grid tech­
nologies, we plan to base the final solution on the OGSA [10] architecture. In terms of
the Web Services Description Language (WSDL), OGSA defines interfaces and asso­
ciated conventions, mechanisms required for creating and composing sophisticated
distributed systems, including lifetime management, change management, and notifi­
cation.

We also define an additional Toth module which will take desired actions on dis­
tributed components. This module - the so-called Change Manager - will be respon­
sible for two main actions:

• Planning - generating the appropriate change plan according to the assumed policy
and recommendations (made by the system diagnostic monitor). The plan function
can take on many forms, firom a single command to a complex workflow.

• Executing - scheduling and performing the necessary changes to the monitored
system. We must consider that part of the execution of the change plan involves
updating the Toth knowledge base. It is necessary to indicate the actions that were
taken as a result of the analysis and planning and how these actions affected the
managed resources.

Autonomic level. Level 5 (autonomic) is closely defined with the business and
industry demands. It is characterized by a closed loop with the business processes
level, business policies and objectives governing the whole infi-astracture operation.
Users interact with the autonomic technology tools to monitor business processes,
alter the objectives, or both.

At the highest level of autonomic computing we need to extend the meaning of the
goal policy (see the previous section) and provide a way to automatic detennination
of the most valuable goal in any given situation. To achieve this intention we define
the utility policy which makes use of an additional attribute - a value expressing the
relative priority of a policy.

The architecture of distribtited systems driven by autonomic patterns 59

Now it is very complicated to create a system which would be 100 percent compli­
ant with the highest AC level. We notice the fact that there is still a need for research
in this area. Our team performed some effort in this direction and as a possible solu­
tion we see the combination of the SOA capabilities (service workflow, service bus,
BPEL) and autonomic computing concepts. A detailed presentation of our visions,
however, is beyond the scope of this article (it involves providing a solid background
of the Service Oriented Architecture), so we shall outline only a brief description of
this idea.

Let us suppose that we have an environment built according to the SOA principles.
It means that the services and processes can be decomposed into workflows of activi­
ties and tasks that are used to realize them. According to one of the main SOA as­
sumptions, these workflows are created, managed and monitored by professional staff
which has specialized tools to perform these operations. Having such an environment,
we can take advantage of the SOA concept and combine it with the AC model. It
means, in short, that the recommendation performed by the system diagnostic monitor
can be translated into the SOA-specific workflow in order to perform the desired ac­
tivity in the system. This workflow may be automatically deployed on a specialized
runtime engine and executed. Thanks to the existing tools designed to manage the
SOA, professional staff have a possibility to analyze, check, redefine or monitor these
autonomic activities.

5 Conclusions

In this paper we have described an approach to creating a distributed environment
composed of loosely coupled components and capable of performing self-managing
actions. This solution may constitute an example of a novel application (data grid sys­
tem), which faces the problem of increasingly complex systems.

We have provided a step-by-step solution describing how to achieve the desired
goal. We have started from the basic level of autonomic computing implementation
and fmished with the most advanced issues, referring to the business processes level
and business policies. The DMSuite platform served us as a reference base for im­
plementing autonomic patterns. As it was mentioned, the current release of this soft­
ware supports the basic level of the AC model. But we are currently working on the
extensions which were described in this article, and will implement a part of advanced
autonomic computing technology. It will include the proactive reactions to some well-
defined situations, detections of any "unusual" events, generating recommendations
for administrators and many more.

There is still much to be done within the scope of the self-aware environments.
This is not only because of the scale of distributed applications and systems, but also
because QoS (Quality of Service) support needs to be specific to the requirements of
individual end-users. In our opinion, in the near future much of research work will
pursue the fiill vision of autonomic computing systems, and this will rely on aggre­
gated grid resources and autonomic computing software platforms. This may be a
crucial step to pass from the academic to the enterprise environment.

60 Marvin Wolski, Cezary Mazurek, Pawel Spychala, Aleksander Sumowski

References

1. Rychlewski, J., Weglarz, J., Starzak, S., Stroinski, M., Nakonieczny, M.: PIONIER; Polish
Optical Internet. Proceedings of ISThmus 2000 Research and Development for the Informa­
tion Society conference. Poznan Poland (2000) 19-28

2. Bogdanski M., Kosiedowski M., Mazurek C, Stroinski M.: Facilitating the process of ena­
bling apphcations within grid portals. Grid and Cooperative Computing (GCC 2004) ed Ji-
anhua Sun et all Proceedings of Third International Conference, Wuhan, Chiny, October
2004, Springer, Lecture Notes in Computer Science, 3251, pp.l75-i82

3. Kosiedowski, M., Malecki, M., Mazurek, C, Spychala, P., Wolski, M.: Integration of the
Biological Databases into Grid-Portal Environments, Workshop on Database Issues in
Bioological Databases DBiBD. Edinburgh UK (2005)

4. Grzybowski P., Mazurek C, Spychala P., Wolski M.: Data Management System for grid
and portal services. Submitted to Grid Computing: Infrastructure and Applications special
issue of The International Journal of High Performance Computing Applications (IJHPCA),
Cardiff University, UK, http.V/progress.psnc.pl/English/DMS.pdf

5. Journal of Computational Methods For Science and Technology no. 12 vol. 1 - Grid Appli­
cations - New Challenges For Computational Methods

6. Chervenak, A., Foster, I., Kesselman, C, Salisbury, C. and Tuecke, S.: The Data Grid: To­
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets. J. Network and Computer Applications, 2000

7. Kephart J.O, Chess D.M., "The Vision of Autonomic Computing," Computer, vol. 36, no.
1,2003, pp. 41-50

8. Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, Jeffrey O. Kephart,: An
Architectural Approach to Autonomic Computing", International Conference on Autonomic
Computing (ICAC'04), May 17-18, 2004.

9. Foster, I., Kesselman C, Tuecke S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High Perfoimance Computing Applications, 2001.
15(3): p. 200-222

10. Foster I., Kesselman C, Nick J.M., Tuecke S: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration," a research paper, Globus Pro­
ject; http://www.globus.org/alliance/publications/papers/ogsa.pdf

11. An architectural blueprint for autonomic computing, a white paper, IBM corporation,
http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf, June 2005, third edition

12. Automating problem determination: A first step toward self-healing computing systems", a
white paper, IBM corporation, http://www-03.ibm.com/autonomic/pdfs/Problem_Determi-
nation_WP_Final_100703.pdf, October 2003

13.Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Ser­
vices, Prentice Hall, Upper Saddle River, NJ, USA (2004)

14. Ganak A. G., Corbi A. T.: The dawning of the autonomic computing era. IBM Systems
Journal, 42(1):5-18, 2003

15. JMS, the Java Message Service, http://java.sun.com/products/jms/index.jsp
16. Data Management System Portal, http://dms.progress.psnc.pl
17. Weerawarana S., Curbera F., Leymann F., Storey T., Ferguson D. F.: Web Services Plat­

form Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More, Prentice Hall, Upper Saddle River, NJ, USA (2005)

IS.Sloman M.: Policy Driven Management for Distributed Systems, Journal of Network and
Systems Management, Vol.2 (1994)

19. SRS, the Sequence Retrieval System, http://www.biowisdom.com/solutions_srs.htm

