
Reaching and Maintaining High Quality of Distributed
J2EE Applications - BeesyCluster Case Study***

Pawet Czarnul

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Poland

pczarnul@eti.pg.gda.pl

Abstract. The paper presents design recommendations, selected and representa­
tive implementation and configuration errors encountered during development of
BeesyCluster - a J2EE component-based system for remote WWWAVeb Service
file management, task queuing, publishing services online for other users with
credential management and team work support. Based on a QESA methodology
developed previously, we build a quality tree by including the aforementioned but
generalized recommendations, errors, and solutions for multi-tiered distributed
J2EE applications. This allows to validate other similar applications in the future
against errors we have identified and solutions we recommend thus creating a
quality checklist for other J2EE developers.

1 Introduction

Although the market offers applications in a variety of fields, there is a growing need for
high quality software. This is true especially in view of a large collection of open source
code available on the Internet but of variable quality. The latter can be used or embedded
into larger projects to solve specific tasks (within the limitations imposed by licences).

It is the quality of the development process, the methodology used, design practices
and implementation techniques that contribute to the final quality of the product.

For complex applications, designers and programmers might reuse solutions to
similar problems faced by others before which is often expressed as design patterns.
Certainly a check-list of typical implementation errors, especially for distributed
Internet-based applications, would also be useful to eliminate bugs quickly. Of equal
importance are activities and issues that show up during software configuration,
deployment and maintenance, usually very time-consuming but nevertheless required.

2 Motivations and Goals

Based on the facts derived above, we can conclude that every effort that classifies
recurring design/implementation/deployment/maintenance problems and solutions can
help improve new projects.

* partially covered by the Polish National Grant KEN No. 4 TllC 005 25
** calculations carried out at the Academic Computer Center in Gdansk, Poland

Please use the foUowing format when citing this chapter:

Czamiil, P., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering Tech­
niques: Design for Quality, ed K. Sacha, (Boston: Springer), pp. 179-190.

180 Pawel Czamul

A research team led by the author of this paper has successfully designed,
implemented and deployed a large Web-based portal for accessing HPC (High
Performance Computing) clusters, file and task management, queuing, making tasks
available to others via W W W with a virtual payment subsystem and a team work
environment, described in detail in paragraph 4 and [1-3]. BeesyCluster was deployed
at Academic Computer Center, Gdansk, Poland as an access portal to HPC clusters
including a 288-processor IA-64 hoik, a 64-processor SGI Altix 3700 system and
others^ 21 designers, programmers and documentation writers have contributed to the
project over 3 years. The goal of this paper is to use the experience we have gained
during the development of BeesyCluster (ca. 100 JCLOC) and turn it into a concise
check-list in the form of a quality tree. The paper identifies and suggests solutions to;

1. selected design problems - this will include comments on the usage of existing
patterns and possibly identification of new recommendations,

2. selected implementation errors - especially useful since provides a check-list of
problems the programmer might face in own applications,

3. system configuration/management/deployment problems - can be non-trivial,
time-consuming and require much experience for complex J2EE and distributed
systems.
Since J2EE imposes API and the multitiered architecture, this serves as a common

denominator for applications considered which in turn makes this approach viable.
The quality tree which includes common J2EE problems and implementation

errors is defined to automate the process of checking other applications against errors
identified in BeesyCluster and making it easier to eliminate them. Each application can
be evaluated in a special QESA tool, codeveloped by the author before.

3 Related Work

Firstly, existing J2EE design patterns are directly related to our work here as provide
reference solutions to typical design problems encountered during development of J2EE
applications. As [4] suggests the patterns are:

- reusable - can be used for several applications, are also expressed in general terms
so can be applied to problems in various areas,

- developed and improved by knowledgeable designers and programmers.

[5] lists various design patterns for J2EE applications important of which are:
Intercepting Filter, Front Controller, Session Facade and Web Service Broker for
exposing selected services for SOAP calls.

As for avoiding implementation errors, there exist Code Conventions for the Java
Programming Language ([6]) to save on software maintenance (80% of the lifetime
cost of software according to [6]). Java practices are collected in [7] including issues
for servlets/JSPs, coding exceptions, input/output, collections and common practices

' https://beesycluster2.eti.pg.gda.pl/ek/Main from anywhere, https://karawela.task.gda.pl:8443/
ek/Main from Gdansk University of Technology

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 181

like defensive copying, using testing frameworks like JUnit etc. Still, J2EE specific
errors are not addressed.

Secondly, we try to automate the process of checking the quality of design,
implementation, configuration by including the identified practices, errors into a quality
tree. This is related to existing general software quality models and defect classification
methods.

There are several general quality approaches available. The Goal-Question-Metric
(GQM, [8]) method first specifies goals to achieve, formulates questions which help
achieve the goal, defines metrics for which data is collected and answers the questions
([8]). COCOMO ([8]) and Function Points ([8]) can be used to measure the required
effort and software size. Software Process Improvement and Capability Determination
(SPICE, [8], [9], published as ISO/IEC TR 15504) is an international initiative aimed at
the standard of software process assessment, used in the context of process improvement
or process capabiUty determination either of an organization or a supplier. SPICE defines
a framework for performing evaluation, required activities, defines how to conduct
software evaluation. [10] presents system-level quality metrics for component-based
systems that can help managers decide whether existing components should be reused.

In this work a QESA approach, introduced by us in [11] for improving design of an
application for management of ship containers, will be used to build a quality tree
including design practices, errors and recommended solutions. Paragraph 6 discusses
the QESA methodology and compares it to defect classification methods like IBM's
Orthogonal Defect Classification and HP's Company-Wide Software Metrics ([12]).

4 BeesyCluster

BeesyCluster can be seen as an access portal to a network of clusters/supercomputers/PCs
with WWW and Web Service interfaces. Figure 1 depicts the architecture of the system
with main modules and relationships (described in detail in [1]). The user sets up an
account in BeesyCluster through which (single sing-on) can access accounts on many
difi'erent clusters/supercomputers/PCs. Users can manage files and run sequential or
parallel tasks (interactively or queued) on their accounts on clusters/supercomputers/PCs
via WWW and Web Services. Furthermore, users can publish their services (applications,
sequential or parallel, run interactively or queued on clusters/supercomputers as well
files) to other users of BeesyCluster. For the use of services (if not specified as free of
charge), users-providers earn points which can be spent on running services pubUshed
by others. Users can register new clusters or individual PCs in the system just by
providing a login/password to any system account and can run tasks, edit files and
publish services from there,

BeesyCluster is representative in terms of:

distributed architecture - the user connects to BeesyCluster via WWW or Web
Services while the system uses SSH to connect to accounts on remote clusters/PCs
and run tasks there - we run several demanding parallel applications using this
system (described e.g. in [13]),

access via multiple popular interfaces - WWW and Web Services (its efficiency in
BeesyCluster tested in [2]),

182 Pcnvel Czarnul

Presentatio
n CC Cluster

Commahder"^

Em AS -Authorization iPS^- Paym^n

hoik (256 processors)
galera (128 processors)
small Linux dusters

Fig. 1. Architecture of BeesyCluster

grid computing - the user can mark an application to be available as a service via
WWW or Web Services from both accounts on clusters as well as even desktop
PCs - this implements controlled resource sharing i.e. grid computing,

data replication - uses data replication in several databases for which consistency
must be maintained and is handled by a custom-built distributed database replication
mechanism on MySQL outside of J2EE,

clustering - uses multiple J2EE servers to increase availability and reliability,

session and security handling using WWW and Web Services (described in para­
graph 5.1) - handling security identities and rights to the resources (digital
signatures with asymmetric cryptography are used),

modular design - the system is composed of modules which can be implemented
independently and share the same top-level compilation scripts,

variety of interactive services via applets - BeesyCluster uses two dedicated Java se­
rvers for chat and a board shared by users for interactive collaboration, another
applet implements an online remote shell on clusters,

building scientific worliflows - services on clusters can be combined into complex
scientific workflows ([3]).

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 183

5 Classification of Patterns/Solutions to Typical Errors Identified
during Development of BeesyCluster

5.1 Selected Design Problems/Solutions in BeesyCluster

In this paragraph, we distinguish selected design problems and their solutions in
BeesyCluster (Table 1, [1]). This is done in view of the existing J2EE design patterns,
also in a broader context of current and future technologies which are suggested for
implementation.

Tab. 1: Selected Design Problems/Solutions in BeesyCluster

Problem Solution
Portable .
Authorization
and Session
Management
for Various
System
Interfaces
and Clients

Since complex applications can use various interfaces like WWW, Web Services,
listen on sockets using a proprietary protocol, wait for a file system change etc., a
portable and compatible way of autliorization and session management between
calls must be used. BeesyCluster suggests a way in which the user logs in with a
username/password and obtains an encrypted token which is passed with following
calls (steps analogous to publishing data in UDDI). In the system there is a
dedicated business component for authorization based on a database. Then for:
1. WWW requests: authorization can be done within an Intercepting Filter

([5]) which verifies the token by calling the business component per each
request before delegating the request to following components, possibly Front
Controller. Although J2EE has a way of defining roles that may access Web
components and J2EE server users may be mapped to these roles, this way is
more flexible since can employ e.g. runtime variables as time of day or IP into
granting access. The token which handles session information may be stored
in a cookie or in a session object on the server and be identified by a cookie.

2. Web Services or other interfaces: a method for logging in is a first required
step which returns a token which is then used as an additional parameter to
successive calls ([3] explains the way it is implemented in BeesyCluster).
"Business" Web Services (which call EJBs) call a business component to
verify access. Similarly, the proprietary protocol for TCP communication
might use the same token. This means that the user could possibly start a
session using WWW and finish using Web Services from another device.

Separation of
Java Code
from Web
Pages and
Instant
Review of
Page Changes

Although the J2EE standard defines the presentation layer (servlets, ISPs) and
business logic layer (EJBs), stiU servlets and especially ISPs can contain conti-ol
statements (patterns like Front Controller or Composite View [5]) as well as
formatting for Web pages. It can be recommended to use a technology purely for
presentation/formatting output. In our case, we used Velocity which displays
(using proper templates) output variables (from proper business methods) or arrays
set in servlets. Furthermore, changes in templates do not require recompilation
which speeds up the development.

continued on next page

184 Pawel Czarnul

Problem Solution
Multiple
Extensible
Interfaces to
the System
and Business
Layer
Separation

In today's world, apart from the WWW interface for human-system interaction over
the Internet, complex applications need means to communicate among themselves.
We used Web Services (based on AXIS), currently an element of J2EE, to provide
such possibilities. In fact the Web Service Broker pattern suggests this approach.
Still, other interfaces might be needed like more efficient proprietary protocols
over TCP etc. J2EE is well prepared for this as business methods may be called
by endpoints handling these interfaces e.g. servlets/JSPs for WWW, Web Service
for SOAP, a server listening on sockets etc. From this perspective, it seems crucial
that business methods are sufficiently isolated (Session Facade [5]).

Minimizing
latency to
data layer
and external
systems

This should be done by proper caching of data:
1. when fetching data from external systems or the database, part of it should be

reused for following cUent requests if possible (e.g. reloading the left panel of
the file manager does not cause querying of the right panel of another cluster),

2. in the presentation layer: technologies like AJAX allow to exchange XML
data with the server without reloading the entire page.

Uniform
Logging
Facility

Logging can be incorporated into an Intercepting Filter but only for presentation
layer components. A dedicated logging component (e.g. bean) is suggested
recording the id of the calling module, time, the user who has requested the
operation, users whom the operation affects, priority, description. It is recommended
to define logging levels to reflect the J2BE layers (presentation, business). Logging
in the presentation layer should be turned off when EJBs already log detailed
information.

Transparent
Parallel and
Reliable
Access to
Data

Usually data would be retrieved from a database by entity beans (BMP or CMP).
Still, it is desirable that there is a mechanism, transparent to the prograiimier,
that hides potentially parallel access to several databases for both increasing the
throughput of e.g. SELECT queries and reliability (if some database nodes fail).
This can be configured in both commercial engines and e.g. MySQL where a master
node and slave database server nodes can be configured. Within BeesyCluster, an
extension to the MySQL solution was implemented which changes a slave to the
master if the current master fails. Additionally, synchronization algorithms can be
changed to e.g. quorum consensus and others easily ([1]). This in fact suggests a
more complex sequence diagram for the standard Data Access Object pattern ([5])

Client-aware
Interface

Although fast broadband Internet connections have become mainstream, the
client-system data transfer should be client-aware because of mobile devices like
palmtops or mobile phones with limited memory and processing capabilities
(MIDP 2.0 requires 128KB for the Java runtime heap, 8KB for persistent data, a
screen of 96x54 pixels). Crucial Web, Web Service or other resources should take
the maximum returned data size parameter. This can be done with the standard
request e.g. by:
1. another request parameter for HTTP transfer,
2. another header in a SOAP message for Web Services ([14]).
Revert to a basic but functional interface for less capable browsers.

Minimize
Response
Time by
Advance
Queries

Periodic calls with output to be used by user queries (e.g. monitoring the state of
remote systems or databases to be queried next) should be done by threads in
the background (threads or separate servers). The output (possibly somewhat
out-of-date) is fetched when the user request is handled. IMS communication with
threads is suggested.

Reaching and Mamtaming High Quality of Distributed J2EE Applications-BeesyCliister Case Study 185

5.2 Selected Implementation Errors Identified during Development of
BeesyCluster

Table 2 lists selected implementation errors or recommendations identified during the
development of the system. These are likely to occur in other complex applications.

Tab. 2. Selected Implementation Errors Identified during Development of BeesyCluster

Layer
Presentation
Layer

Presentation-
-business Layer
Interaction

Business Layer

Errors or Recommendations to Avoid Errors
1. Initial values not filled in web forms.
2. Presentation layer servlets and JSP pages using hardcoded ids (e.g.

clusters or users) not from the database thus making it inconsistent with
ids used by the business layer components.

3. Specific parameters (text boxes) cause problems (e.g. spaces in the
names of directories).

4. Access to specific servlets or JSP pages should not be granted to users
with restricted privileges (missing conditional instructions).

5. Test functionality of the interface using 1 client, always use 20+
concurrent client requests from various nodes to test response times,
isolation of transactions, potential deadlocks when referring to same
resources.

6. Always disable display of exception details for production version, log
details to a log, always print information to a log in catch blocks.

7. Avoid a long sequence of page reloads (3+) to complete a task, could
be completed within one page (using e.g. AJAX).

8. Use only one way of fetching session information in web components.
1. When processing in business method takes 5+ seconds, call it asyn­

chronously, store a handle and allow to retrieve status or make the
presentation layer show progress until results are available.

2. Data presentation not handled properly for certain input data to the
business layer or error codes from the business layer not interpreted.

1. Errors in EJB components which are likely to be detected only during
the real deployment of that module. Example: errors of task submission
to a real cluster from the module (via the Jsch Java library).

2. Long response times or hangs when submitting many requests to an
external system in a short time frame - configure external systems
properly. On cluster hoik command must be run via a proxy node -
initially via rsh. rshd on hoik reftised connections in tlie case of many
concurrent requests (ports up to 1023 can only be used). Using ssh
solved the problem.

5.3 System Configuration/Deployment Errors and Solutions

Management of configurations especially in the case of multiple installations of a
system, possibly on different architectures is challenging. BeesyCluster's official release
runs on Solaris while the development version on Linux.

186 Pcnvel Czarnul

Tab. 3: System Configuration/Deployment Errors and Solutions

Issue

Security

Database Con­
figuration

System Config­
uration

Versioning

Items

1. HTTP connection available after testing, should leave only HTTPS.
2. Errors with certificates in HTTPS access from certain browsers (error

for self-signed certificates where Common Name (CN) of the issuer
and CN of the entity the certificate was issued to are identical -
Mozilla, Konqueror).

3. Securing physical access to servers (accidental restarts by other users).
4. Hide URLs for services where possible (e.g. by a proper Front

Controller pattern passing parameters for selected URLs).
5. Write a client for exposed URLs requesting with random parameters

and use it for testing.

1. Error in scripts filling the database with initial data (SQL statements
not accepted by later MySQL versions, worked correctly on the
version, BeesyCluster was originally deployed on).

2. Modification of a single node of a cluster of replicated databases.
During some tests using one node, only a single database was modified
and another backed up as a master.

1. Problems with specific versions of required libraries e.g. xdoclet pre
1.2.2 caused compilation errors while newer versions worked correctly,

2. Problems with migration from Java 1.4 to 1.5, qualified names should
be used in the code due to the conflict with classes from Java 1.5,

3. Inconsistent configuration (versions of software) and startup scripts
across the cluster of servers, need for a tool updating all nodes or NFS,

4. Some services would not start properly after system was restarted
although the core of the system worked correctly (Java chat/whiteboard
servers).

5. Uniform configuration and compilation scripts for all modules are
recommended. It is possible to define a top-level build.xml file so that
a new module can simply be added by copying its directory into the
existing sources and no or very few additional changes are required.

6. Failures of operating system servers cause selected servers used by
the system to fail. Creation of a simple monitoring tool with restart
of services is recommended.

1. Components were updated on one of the J2EE servers instead of all
the servers which resulted in errors on those servers. Use a distribution
tool to distribute changes to all servers.

2. Submission of incorrect versions of components to a server for
deployment - already corrected errors/bugs would show up again.

In view of clustering and replication to increase the number of clients the system can
handle in parallel/concurrently and inconsistencies of configuration across the cluster,
errors of this type in BeesyCluster (Table 3) can be applicable to other systems as well.

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyCluster Case Study 187

6 Quality Modeling and Evaluation in QESA

6.1 QESA Methodology

The QESA methodology ([11]) uses a generic QESA
quality tree (Figure 2) to evaluate the quality of a
product or phase by general top-level external quality
attributes each of which is defined by either four or iive
quality factors at the second level (several translation
functions are available). In the QESA methodology,
these two levels are fixed since are thought to be general
enough to suit any application, development phase or
product. Depending on whether a development phase or
a product is evaluated, factors will be further defined by
more precise metrics at the lower and measures at the
lowest level of a four-level quality tree - both chosen by
the user to suit the application. As an example attribute
dependability defined by factor error-tolerance could
be defined by metric presentation layer errors and this
by question whether access to page tested when no
user logged in. Then answers to questions in measures
or their numerical values propagate up the tree and
generate final values for quality attributes.

QESA allows e.g. metrics to contribute to a factor by
a decreasing function. Usually a more complex and fancy
user interface improves visual effects while decreases
interaction performance. Measures being in fact internal
quality attributes are defined with values in their own
domain (e.g. seconds or LOCs) and normahzed into the
[0,1] range. Quality attributes, factors and metrics are
defined within the range [0;1], the higher value meaning
better quality at the highest level.

In fact, as applied during classes on Software Quality courses at Faculty of
Electronics, Telecommunications and Informatics, Gdansk University of Technology,
the QESA quality tree could be used in many ways, two of which are:
1. During the software development cycle, a new quality tree is created for each phase

with metrics and measures specific for the given phase.
2. For the comparison of products e.g. complete applications, a reference quality tree

is created with metrics and measures specific for the given type of product and
evaluation is performed for each product. Values can be compared in the QESA
system. In particular, an aggregate value for higher level factors and attributes can
be compared.

+ f Reliability

i+ "f SecuriV
+ f Error tolerance
+ •f Testability

f Safety
- f Satisfaction

+ li" Ease of use
* 7 Understandability
+ f Learnability
+ V Acceptance

f Productivity
- "? Functionality

+ f Functional Completeness
+ f Complexity
+ "f Adequacy

\ !+]• "f Traceabilily
j '- f Integrity
i i i f Flexibility
; ft-f Portability
\ ffi- f Modifiability
j Wt'f Configurability
1 E f Ease of testing
B-'f Performance

ffi f Scalability
!±i- "f Interaction performance
iil f Execution efficiency
-•• f Stability

Fig. 2. QESA Quality Tree
Two Top Levels

6.2 Modeling Quality of BeesyCluster as a Template for New Applications

Modeling quality of BeesyCluster as a quality ti-ee will allow other applications to be
verified against the errors, deficiencies and design strategies suggested in paragraph 5.

188 Pawel Czarmil

For the BeesyCluster system, we have created quality models (trees) with metrics
and measures specific for distributed and parallel applications which is our area of
expertise ([13], [3]). Quality trees refer to;
design - measures are simply questions whether the design principles given in

paragraph 5.1 are met (yes/no) or in what degree (numerical value),
implementation - whether the code has been validated against the errors listed in

paragraph 5.2 and other basic coding standards,
testing - system tested for some implementation errors from paragraph 5.2 and

configuration/deployment from paragraph 5.3.
As an example, the programmer/user of a new system specifies in the testing

phase response times or whether form parameters have been tested. The values are
processed by QESA which produces a final quality values for dependability, satisfaction,
functionality, flexibility and performance. If the quality is satisfactory a new phase may
start. This approach is similar to IBM's Orthogonal Defect Classification from 1992
([12]) where in each phase numbers of defects of eight types are noted depending on
the repair needed for the defect. Then the changes of distribution of defects between
phases are compared to expected patterns. Process Inferencing Tree is built to track
defect changes between phases. Similarly, in tracking quaUty QESA is similar to HP's
Company-Wide Software Mefiics from 1987 ([12]) which classifies defects into types
depending on the phase and assigns mode e.g. missing for missing error checking. If
other projects data is available, trends can be observed.

An exemplary part of the QESA quality tree for BeesyCluster's testing is shown
in Figure 3 and includes the metrics and measures corresponding to items listed in
paragraph 5.3. Resulting quality charts for BeesyCluster without the identified points
(related to errors from paragraph 5.3) improved are shown in Figure 4 and after
corrections in Figure 5. After the improvements the system can still be corrected e.g. a
better interface can be engineered (as also reported by the attendees of a training
course) or the response time can be reduced thanks to faster hardware.

For distributed J2EE appUcations such as BeesyCluster, the highest-level quality
attributes given the largest weights (angles in Figures 4 and 5) are:
1. dependability especially error-tolerance i.e. how the system tolerates errors (here

we assume that if several issues identified in BeesyCluster are not checked and
tested for, the system may give undefined results), reliability (the system must be
available and functional at all times) and security since providers must be certain
their resources cannot be compromised beyond what they permitted,

2. functionality mainly functional completeness in the case of BeesyCluster being
remote task execution, management, making resources available, receiving proper
payments for the resources checked out etc.,

3. performance especially interaction performance (the system must respond in less
than a few seconds for any request), scalabihty (must scale well with the number of
servers and users).
The presented quality tree is available from the author. The QESA (SOJO in Pohsh)

system can be downloaded from http://fox.eti.pg,gda.pl/~pczarnul/SOJO-
l.O.zip. A Web-based version of QESA is available at http://153.19.53.71
/qes/page.tytul.php.

Reaching and Maintaining High Quality of Distributed J2EE Applications-BeesyChtster Case Study 189

y t
v'Reliability
y Secutity
^ V" hat dwate access
- v-'System Access

^/SSL configured
y PASSWORD TEXT BOXES WITH HIDDEN TEXT
^ CERTIFICATES (BROWSER, SSL) TESTED ON BROWSERS [%]

y Etiortoleiance

- v'"set's manuals
- y PRESEN FATION LAYER ERRORS

y TESTED WITH BLACK-BOX FOR BUSINESS LAYER COMPONENTS
y INITIAL VALUES FILLED [%]
V' USING DATA FROM DATABASE WHERE POSSIBLE [%]
V-' USER PRIVILEGE CHECKING FOR ALL SERVLETS/JSP PAGES
>/TESTED WHEN NO USER LOGGED IN
y CONTROLLING SESSION OBJECT (EXISTENCE)

- v-BUSINESSL^YER ERRORS
- yElS LAYER ERRORS

^ EIS DRIVER TESTED FOR SIMPLE EXAMPLE
y A L L DATABASES MODIFIED CONSISTENTLY

v' INTERACTION ERRORS

Fig. 3. Part of a QESA Quality Model for BeesyCluster's Testing

I Dependability (25%; 0.46)
i Satisfaction (25%; 0.76)
Functionality (25%; 0,86)
Flexibility (13%: 0,82)
Performance (13%; 0,41)

I Dependability (25%; 0.61)
i Satisfaction (25%; 0,76)
I Functionality (25%; 0,87)
Flexibility (13%; 0,82)
Performance (13%:0,77)\

Fig. 4. Quality before Improvement

7 Summary

Fig. 5. Quality after Improvement

The model used, especially the quality issues specific for J2EE applications and
identified above, can make desien. imnlementation and develooment of other similar

190 PmvelCzarntil

applications easier and faster. Products for design, implementation and testing for other
J2EE applications can be validated against items identified in this paper while QESA
can produce a quantitative quality value which can be compared to other systems.
One of the original goals of the QESA initiative was the creation of distinct models,
including translation functions (how the values of lower level nodes ai-e translated to
higher levels), coefficients of translation functions, metrics and measures specific for
the given application class and the given development phase. This is especially useful
in case of distributed applications due to their complex nature. The model proposed in
this work is based on real world errors encountered during the development of a large
production J2EE-based application and can be either used as provided or improved.

References

1. Czarnul, P., Bajor, M., Banaszczyk, A., Buszkiewicz, P., Fiszer, M., Fraczak, M., Klawikowski,
M., Rakiej, J., Ramczykowska, K., Suchcicki, K.: The ai'chitecture of beesycluster: a
front-end to a collection of clusters accessible via www/web services. In: Proceedings of VI
Conference on Computer Engineering (KKIO 2004), Gdansk, Poland (2004) 437-450 in
Polish, ISBN 83-204-3051-8.

2. Czarnul, P., Bajor, M., Fraczak, M., Banaszczyk, A., Fiszer, M., Ramczykowska, K.: Remote
task submission and publishing in beesycluster : Security and efficiency of web service
interface. In Springer-Verlag, ed.: Proc. of PPAM 2005. Volume LNCS 3911., Poland (2005)

3. Czarnul, P.: Integration of compute-intensive tasks into scientific workflows in beesycluster.
In: Proceedings of ICCS 2006 Conference,, University of Reading, UK, Springer Verlag
(2006) Lecture Notes in Computer Science, LNCS 3993.

4. Sun Microsystems: BluePrints, Patterns (2006) http://java.sun.com/blueprints
/patterns/index.html.

5. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies. 2nd edn. Prentice Hall / Sun Microsystems Press (2003) http://www.
corej2eepatterns.com/index.htm, ISBN:0131422464.

6. Sun Microsystems: Code Conventions for the JavaTM Programming Language (1999)
7. O'Hanley, J.: Collected Java practices (2006) Canada, http://www.javapractices. com/Table-

OfContents.cjp.
8. Fenton, N.: Ensuring quality and quality metrics. In: Software engineering. MIKOM (2000)

ISBN 83-7279-028-0.
9. Emam, K.E., Drouin, J.N., Melo, W.; SPICE The Theory and Practice of Software Process

Improvement and Capability Determination. Wiley (1997) ISBN 0-8186-7798-8.
10. Sedigh-Ali, S., Ghafoor, A., Paul, R.A.: Software engineering metrics for cots-based systems.

IEEE Computer Society Press, Computer 34(5) (2001) 44-50 ISSN:0018-9162.
11. Czarnul, P., Krawczyk, H., Mazurkiewicz, A.: Quality driven development methodology for

network applications. In: ISThmus'2000 Conference, Poznan, Poland (2000)
12. Fredericks, M., Basili, V.: Using defect tracking and analysis to improve software quality.

Technical report, Experimental Software Engineering Group, University of Maryland, College
Park, Maryland USA (1998)

13. Czarnul, P., Grzeda, K.: Parallelization of electrophysiological phenomena in myocardium
on large 32 & 64-bit linux clusters. In Springer-Verlag, ed.: Proceedings of Euro PVM/MPI
2004, 11th European PVM/MPI Users' Group Meeting. Volume LNCS 3241., Budapest,
Hungary (2004) 234-241

14. Nilo Mitra, Ed.: SOAP Version 1.2 Part 0: Primer. W3C Recommendation. (2003)
http://www.w3.org/TR/soapl2-partO.

