
FAIL-STOP COMPONENTS BY PATTERN
MATCHING

Tomasz Janowski and Wojciech I. Mostowski*
The United Nations University

International Institute for Software Technology

P. O. Box 3058, Macau, China

{tj,wim}<1liist.unu.edu

Abstract We describe an approach to formally specify object-based software com
ponents, in order to be able to automatically check their behavior at
run-time. The specification is a regular expression built from the propo
sitions about the states (or pairs of states) of a component. Checking is
done by a specification-generated wrapper, which pro duces a fail-stop
component from a component which fails in an arbitrary way. The
wrapper-generator is implemented for a subset of Java classes. We ar
gue that specification-based error-detection is particularly suitable for
the components of open, object-based distributed systems.

Keywords: Formal specifications, run-time checking, component wrapping, appli
cation generators, correctness by construction, fault-tolerance.

1. INTRODUCTION
Open object-based distributed systems challenge the traditional ways

of applying formal methods via specification and proof. One of the prob
lems is the large number of the components involved, which are partly
decided at compile-time (static invocation) and partly at run-time (dy
namic invocation). Another problem is having to rely on the vendor's
claims about correctness of individual components, without being able
(lacking the implement at ion details) to verify such claims ourselves. Yet
another is expressing component specifications in an interface defini
tion language, which describe how to communicate with a component
(syntactic level), but not the expected results of such communication
(semantics). Such problems make static verification difficult, at best.

"Institute of Mathematics, University of Gdarisk, Poland.

352

On the other hand, the structuring of the whole system in terms of the
independent, distributed components, is particularly suitable for fault
tolerance [7]. The goal is to make sure that the failures of individual
components (violation of their specifications) will not cause the whole
system to fail (violation of the system's specification). The latter spec
ifications can be used at design-time to prove if the system is indeed
fault-tolerant. The former can be used at run-time to detect if a com
ponent has failed. This paper describes an approach to formally specify
software components in order to make such error-detection possible.

Defining such specifications is not without problems. Specifications
may contain infinite constructs like quantifiers (for all values of a type),
liveness properties (for all states in a sequence) or modal properties of
branching time (for all transitions from astate). Such constructs are gen
erally non-executable - we cannot execute them directly on the machine,
and non-checkable - we cannot check effectively at run-time that they
indeed hold. On the other hand, specifications based on propositional
logic are not enough expressive in practice. Finally, checking specifi
cations which use equality of states is not possible when the state can
be only accessed via defined operations; the best we can do is checking
bisimilarity [9]. Such problems require a different kind of specification
for effective run-time checking than those for static verification.

In this paper we propose a specification approach for software com
ponents which is suitable for their checking at run-time. The technical
approach is as follows: (1) Specifications are formally-based. They are
defined as logic-based regular express ions built from the propositions
about the states (or pairs of states) of a component, via its ob server
operations. (2) Specifications are checkable at run-time, based on the
recorded his tory of the component's execution, a sequence of observer
values about individual states and the operations which caused state
changes. (3) Checking is carried out by a wrapper which is generated
from the component and its specification. The wrapper takes over all
communication between the component and its environment. It remains
transparent to the clients except being able to detect (carrying out run
time checking after every state-change) and announce (via the additional
boolean ob server error) the occurrence of an error. (4) The required ef
fect of run-time checking is described formally as the fail-stop property.
The wrapper-generator is to transform a given component, which may
fail in an arbitrary way, into a component which only fails by refusing
to operate, also announces this fact. The formal model in RAISE [11]
with justification of the correctness of the wrapper-generator (that every
wrapped component is fail-stop), is the subject of a companion paper.

Fail-Stop Components by Pattern Matching 353

comp ?t== spec

generator 1 faiLstop

wrap (comp)
spec

!p v (spec /\ -, error)
-,spec /\ error

Figure 1 Fault-free versus fail-stop software components

Figure 1 provides an illustration. It describes the intended result of
the wrapper generator for specifications given as state invariants. The
component camp may or may not satisfy the invariant spec but its trans
formed version wrap(camp, spec) satisfies the 'fail-stop' version of spec:
spec holds if and only if error is false. Importantly, this property is not
verified for each component and its specification but proved ab out the
wrapper-generator, then applied to all components and specifications.

The rest of this paper is as follows. Section 2 explains and illus
trates the concept of a 'component'. Section 3 discusses and compares
'fault-free' and 'fail-stop' behaviors of components. Section 4 shows how
to ensure fail-stop behavior by patter-matching. Section 5 presents an
example, a li ne editor. Section 6 describes how pattern-matching can
become part of an automatically generated wrapper, also describes a
prototype implement at ion for components written in Java. Section 6
provides some conc1usions and directions for our future work.

2. COMPONENTS
We treat a component as a entity with its own state and the opera

tions defined on it. The state is internal - the operations are the only
means to give access to it, persistent - it maintains its value between
operation invocations, and the operations are atomic - to execute them
concurrently is the same as executing them in an arbitrary order.

We represent the state-space of a component as an abstract type State
and its operations by the functions on this type. Depending on the
type of access we divide the operations into 'readers' which return a
value without modifying the state and 'writers' which change the current
state without returning any value. Readers are furt her divided into
'constants' which return some value independent from the current state
and 'observers' which return a value based on the current state. Writers
are divided into 'generators' which return a new state, independent from

354

the current one, and 'modifiers' which modify the current state. The
dass of an operation depends on the 'position' of State in its signature:

constant:
generator:
observer:
modifier:

Type -+ Type
Type -+ State
Type x State -+ Type
Type x State -+ State

We assume that the generator init represents the initial state. In the
simplest case the only types are State and Bool, with constants and
observers as propositional variables. The first-order model adopts one
more type, say N at, and allows operations to take several arguments
and return results of this type. In the higher-order model operations
take several arguments and return results of different types. In this case
Type represents Bool, N at, Cartesian product of two types etc.

Type ::= Booll Nat I Type x Type I ...

As a simple illustration consider a component representing a stack.
The component is represented by the dass expression Stack1 which con
tains definitions of types, signatures and axioms, as below.

Stack1 = dass
type

State = Elern*
signatures

bnd: Nat
init: State
len : State -+ Nat
top : State -+ Elem
pop: State -+ State
push: Elern x State -+ State

axioms
init = ()
len(s) = ln(s)
len(s) < bnd =} push(e, s) = con(e, s)
len(s) > 0 =} pop(s) = tl(s) 1\ top(s) = hd(s)

end

Elem is the type of elements we put on stack. The operations are: one
constant bnd of type N at, the maximum number of elements on stack;
one generator init, the state of the empty stack; two modifiers push to
push an element onto the stack and pop to pop the top element; and two

Fail-Stop Components by Pattern Matching 355

observers top to return the top element and Zen, the number of elements
on stack. The axioms define the actual behavior of the operations. The
stack is implemented on the concrete state-space defined as a list of
elements, with corresponding concrete definitions for operations init,
push, pop, top and Zen. They apply the standard list functions con
(construction), hd (head), tl (tail) and Zn (length).

For the purpose of this paper we consider such components in isola
tion, as individual objects. On the other hand, to build an application
we may need a richer component including a collection of objects [10].
This would be also the right level to introduce fault-tolerance, based on
the error-detection on the lower level (individualobjects).

3. FAULT-FREE VERSUS FAIL-STOP
COMPONENTS

A generator is a typical algebraic operation to construct state values
[13]. An observer is a co-algebraic operations for making the observations
about the state [3]. A modifier is both an algebraic operation and co
algebraic. This casting of components into an algebra (a carrier set with
functions into this set) or a co-algebra (a carrier set with functions from
this set) provides the means to describe how the concrete execution of
a component unfolds. Here we are interested in the opposite: how to
abstract away from such concrete executions in order to describe how
the component should behave in the first place.

For instance for the stack component we put forward five axioms: the
length of init is zero, pop decrements and push increments the length,
top returns the element which was recently pushed onto the stack and
pop modifies the state back before the last push. All axioms except the
last relate readers and writers, involving equality over N at or EZern.
The last relates two writers and involves equality over the type State.

Stacko = dass
type

State
signatures

bnd: Nat

axioms
len(init) = 0
len(s) > 0 => len(pop(s)) = len(s) - 1
len(s) < bnd => len(push(e, s)) = len(s) + 1
len(s) < bnd => top(push(e, s)) = e /\ pop(push(e, s)) = s

end

356

Once we described the component on the abstract (Stacko) and con
crete (Stackd levels, we should be able to verify that the concrete com
ponent is fault-free. The proof has to demonstrate that eoncrete def
initions satisfy all axioms described by the specification, which boils
down to proving first-order properties about concrete value domains.
For instance, len(s) < bnd * top(push(e, s)) = e has to first expand
definitions of push and top and then apply a simple fact ab out lists.

len(s) < bnd * top(push(e, s)) = e
len(s) < bnd * top(con(e, s)) = e
len(s) < bnd * hd(con(e, s)) = e
len(s) < bnd * e = e
len(s) < bnd * true
true

However, this statie verifieation is very often impossible, given the
requirements for the availability of an implement at ion, its specifications
and the feasibility to carry out the proof. The stack example was chosen
to provide a demonstration with a minimum of the technical details,
however such details would eertainly complicate any more realistic proof.

Suppose instead of proving that the component is fault-free, we want
to make sure that faults, after they oecur, do not spread out uncontrol
lably. That we detect the errors as soon as they occur, and then make
this fact known to the environment by a boolean observer error.

error : State -+ Bool

We call such a eomponent 'fail-stop'. A fail-stop component need not
be fault-free but a fault-free component is certainly fail-stop, only it
will never experience a failure and its error indicator is permanently set
to f alse. We ean verify that the component is fail-stop, with respect
to a given specifieation, by proving that it is fault-free with respect to
the weaker 'fail-stop specifieation'. We obtain such a specification by
syntaetie transformation from the original specification, adding error
to its signatures and modifying the axioms to include the possibility of
them being violated. We only require that the value of error is true in a
given state Hf at least one of the original axioms is viola ted in this state.
When the axioms involve more than one state then we only require this
property about the last state, provided none of the prior states have set
error to true. Stack2 below describes such a fail-stop version of Stack l .

Fail-Stop Components by Pattern Matching 357

Stack2 = dass
type

State
signatures

bnd: Nat
init: State
error: State -+ Bool

axioms
true *

(len(init) = 0) {:} -.error(init)
-.error(s) /\ len(s) < bnd *

(
len(push(e,s)) = len(s) + 1)

/\ {:} -.error(push (e, s))
top (push(e, s)) = e

-.error(s) /\ len(s) < bnd /\ -.error(push(e, s)) *
(

pop(push(e, s)) = s)
/\ {:} -. error (pop (push (e, s)))

len(pop(.. .)) = len(...) - 1
end

Although we could try proving directly that the component satisfies
the fail-stop specification, this would not solve our problems, nor utilize
the special form of such specifications. Instead, we would like to guar
antee the satisfaction of the fail-stop specification by run-time checking.
We now describes a specification method to make such checking possible.

4. FAIL-STOP COMPONENTS BY
PATTERN-MATCHING

Run-time checking is only possible if the specification method allows
it to be automated - checking automatically if a given behavior com
plies with the specification. However, specification methods are usually
designed in order to be expressive, to enable abstraction and support ef
fective reasoning, not to allow automatie checkability. In particular, we
cannot check specifications which contain quantifiers (over infinite types)
and we cannot check equality between states (pop(push(e, s)) = s).

In the sequel we discuss and illustrate five methods, with increasing
expressive power, to specify software components. All allow run-time
checking, based on the component 's execution history.

358

4.1. INVARIANTS
The first specification is a simple propositional formula buHt from the

constant/observer operations, playing the role ofpropositional variables.

invariant ::=
constant lobserver I
-.invariant I invariant V invariant ...

The specification is required to hold invariantly for every state in the
execution sequence, represented by the symbol s. Note the difference
between constants and observers and how they depend on the state.

s F con iff con
obs(s) s F obs iff

s F -.inv iff not s F inv
s F invl V inv2 iff s F invl or s F inv2 ...

Consider two example invariants for the stack component: the length
of the stack never exceeds the bound and if the last operation was push
then the value of top equals the argument to push:

len:::; bnd
op = push /\ top = arg

The first is the first-order formula, written with a relation over N at.
The second is the higher-order formula where op returns the name of
the last state-changing operation and arg gives the arguments to this
operation. The first and higher orders are explained later.

4.2. ACTIONS
Invariants allow us only to formulate properties about individual states,

to hold statically over the whole execution. In contrast, an action is a
propositional formula over pairs of states. It is buHt from constants and
two kinds of observer operations: evaluated in the first state (a pre-state)
and in the second state (a post-state), the latter written with a prime.
A pre-state is the state before the execution of a generator/modifier
operation, a post-state is the state after the execution.

action ::=
constant I
observer lobserver' I
-.action I action V action . ..

Fail-Stop Components by Pattern Matching 359

The action is required to hold over any pair of adjacent states in the
execution sequence, here represented by the symbols 81 and 82. Note
that observers without prime refer to 81 and observers with prime to 82;
constants refer to none.

81,82 F con iff con
81,82 F obs iff ObS(81)
81,82 F obs' iff ObS(82)
81,82 F --,act iff not 81,82 Fact
81,82 F actl Vact2 iff 81,82 Fach or 81,82 F act2 ...

Consider two example actions for the stack component: a pU8h oper
ation increments the length of the stack, provided the stack is not fuH,
and a pop operation decrements the length, provided the stack is not
empty. Written as higher-order actions:

len > 0 => op' = pop 1\ len' = len - 1
len < bnd => op' = push 1\ len' = len + 1

4.3. PATTERNS
Actions will not suffice for specifying those components which correct

behavior in a given state depends not only on the observations in this
and the preceding state but also the states before. For instance to check
for a stack if the value returned by top is correct (if not just inserted)
we have to find the most recent state in the history in which the value
of len equals the current len value, then check if the top value in this
state and the value of top in the current state are the same. Here the
length of the search depends on the value of an observer.

The idea is to use regular expressions, similar like for specifying words
over an alphabet, but the alphabet are vectors of observer values and
words are sequences of such records (histories). A pattern is a regu
lar expression build with usual operators + (sum) , . (concatenation),
* (Kleene's star) and A (empty sequence), which basic components are
invariants and actions.

pattern ::=

AI
[invariant] I [action] I
pattern + pattern I pattern· pattern I pattern*

The operators have the usual interpretation over sequences (histories).
We denote such a history by the symbol t and its elements by 8, as before.

360

Special role in the evaluation plays the first element in the history, hd(t)
(if one exists), which is used to evaluate aH primed observers in action
components of the pattern. If t is empty then the only satisfied pattern is
.x, otherwise we use the head of t as weH as t itself to carry out evaluation
hd(t), t F pat.

t F pat iff { pat = .x if In(t) = 0
hd(t), t F pat if In(t) > 0

In general, evaluation takes the form s, t F pat where s is a given state
and t is a sequence of states, depending on the shape of the pattern pat:

1 pat = .x
Then t must be empty.

2 pat = [inv]
Then t must consist of only one state which satisfies inv, as in
Section 4.1. However, this state is not necessarily the most recent
state but any state in the history, as determined by the matching
process. Also the same invariant may be used a number of times
against different states.

3 pat = [act]
Then t must consist of only one state, such that sand this state
satisfy act, as in Section 4.2. Primed observers always refer to sand
unprimed to hd(t). Unlike before, those states are not necessarily
adjacent in the history: the post-state is always the most recent
state (s), the pre-state is the currently matched state (hd(t)). The
action can also be used many times against different pairs of states;
the same post-state, different pre-states.

4 pat = palt + pat2
Then sand t must either satisfy patl or pat2, or both.

5 pat = palt . pat2
Then it should be possible to split t into some lt and t2 such that
sand tl satisfy patl and sand t2 satisfy pat2. s remains the same
in both cases, providing the same interpretation for the primed
ob servers in the actions.

6 pat = pati
Then either t is empty or can be split into tl and t2 such that s
and tl satisfy patl and sand t2 again satisfy pati. Like above, s
is the same in both cases. Note that the same pattern appears at
both sides of the definition.

Fail-Stop Components by Pattern Matching 361

Formally, we define the relation s, t F pat as follows:

s, t F).
s, t F [inv]
s, t F [act]
s, t F patl + pat2

s, t F patl . pat2

s,tFpati

iff ln{t) = 0
iff ln{t) = 1/\ hd{t) F inv
iff ln{t) = 1/\ s, hd{t) Fact
iff s, tF patl V s, t F pat2
iff :3t1h t = tl : t2/\

s, tl F patl /\ s, t2 F pat2
iff ln{t) = 0 V :3t1h t = tl : t2/\

s, tl F patl /\ s, t2 F pati

We carry out pattern-matching with every modification of the history,
i.e. after invocation of every modifier / generator operation, from the
most recent state towards the initial state. If we can run successful
pattern-matching with every modification of the component's execution
history then it means that up till now the component behaved in a proper
way. In other words every non-empty suffix of the execution history must
satisfy the pattern to regard the component as behaving correctly. As
an example consider the pattern below.

[a V b] + [a V b] . [a ob]* . [c' a Vb]

It says the following: either the his tory contains only one state such
that a V b holds, or at least two states such that a V b holds in the last
state, a V b in the first state equals c in the last, and a ob holds for all
intermediate states (if any). Matching this pattern against the history is
shown below. We can see that the pattern is satisfied for all non-empty
suffixes until state three. However, the value of a V b in the first state is
different than c in the fourth state, thus the pattern is not satisfied by
the his tory suffix containing the states one to four.

aVb + [a V bj . [a ob * 'lc a V bj
I I x '1'1 '1'1 V

8 7 6 151 4 3 121 1

362

4.4. FIRST ORDER PATTERNS
We now demonstrate how to extend such specifications into first- and

higher-order patterns. Suppose first-order specifications allow for ob
servers which return integer values. This change will not directly affect
patterns but their elements, it is invariants and actions. They are both
build from integer express ions involving literals, arithmetic operators,
ob server names with or without prime, relations between expressions and
propositional connectives. Such first order specifications are matched
against the his tory table which contains integer values.

As a simple illustration, consider the first-order extensions to concrete
invariants, actions and patterns, as below, and how they are matched
against the execution history. The invariant is matched successfully for
every state until it fails in state eleven. The action is matched success
fully for every pair of states until it fails for states eight and nine. The
pattern is matched successfully for every non-empty suffix of the history
until and including state five, but it fails in state six.

I check I
a+b>c+2 I

a' + b' 2: c' + 2 A a' > b
I check I IxlJIJIJIJIJIJIJI

I check I

5 6 5 9 2 4 5 3 2 4 1
3 4 3 7 0 1 3 1 0 1 3
7 8 5 6 0 1 6 2 0 1 2

4.5. HIGHER ORDER PATTERNS
With higher order patterns we allow observers of any type. Each type

comes with its own set of functions and relations. We also assume two
specialobservers: op returns the name ofthe generatorjmodifier invoked
to obtain the current state (initially op = init) and arg returns the set
of arguments this generatorjmodifier was invoked with (if any). From
now on, we will also assume a [true]* trailer for any regular expression
used: any prefix of the execution history can be used to satisfy the
pattern, rat her than the whole history.

Fail-Stop Components by Pattern Matching 363

As an example consider a higher-order pattern for specifying the stack.
We have the usual observers top and Zen which come with the definition
of the stack and two generic observers op and arg. op returns the name
of one of the three possible modifier / generator operations: init, push or
pop. arg returns the argument used for the invocation, only relevant if
op = push. By x we represent that the observer value is not available.

op: State --+ {init,push,pop}
arg: State --+ EZern U {x}

The pattern includes three possibilities: if the state was produced by
init then Zen must be zero; if the state was produced by push then top
is the same as the argument of push and Zen in the previous state equals
Zen in the current state minus one; if the state was produced by pop then
Zen in the previous state equals Zen in the current state plus one, and
the value of top in the most recent state with the same Zen value (in all
intermediate states the value of Zen is greater than in the current state)
is the same as the current top value.

[op = init 1\ Jen = 0] +
[op = push 1\ top = arg] . [Jen = Jen' - 1] +
[op = pop] . [Jen = Jen' + 1] . [Jen> Jen']* . [Jen = Jen' 1\ top = top']

Below we describe how this pattern can be matched against a concrete
history where values put on the stack are real numbers. If the entry
contains x then it means that the value of a given observer was not
available, for instance arg = x when the corresponding operation op
does not take any arguments or top = x when the stack is empty. The
pattern is satisfied until and including state nine but is violated for the
state ten: the top value is 2.14 and Zen is 1 but the most recent state
with the same value of Zen has top = 1.0.

op
arg
top
Zen

x
10

op=
pop

I

pop
X

2.14
1

I
..;

I 9

len=
len'+l

pop
X

0.2
2

..;
I

..;
I

..;
8 7 6

len>len'

pop push push
X 3.5 5.9

5.9 3.5 5.9
3 4 3

I
..;

I I
..; ..;

I YI 5 3 2

len=len'
1\ true

top::j::top'
I

push pop push push init

0.2 x 2.14 1.0 x
0.2 1.0 2.14 1.0 x
2 1 2 1 0

364

5. EXAMPLE: LINE EDITOR
As an illustration of patterns, consider the example of a line editor.

The editor provides some basic operations to modify the list of elements
depending on the position of a caret. The position can be inside the
line and one past the last element (to insert at the end). We have one
generator init which makes the line empty and sets the caret position
at one. Four modifiers: right moves the caret forward, if inside the
line, Zeft moves the caret backward, if not on the first position, insert
inserts an element at the current position then moves the caret forward,
and deZete deletes an element at the current position, if inside the line.
Three observers: Zn returns the length of the line, ps returns the current
position of the caret (a natural number) and eh returns the element in
the line on the current position, if inside the line. Here are the signatures:

type
State, Elem

signatures
init: State
insert : Elem x State -+ State
delete, left, right : State -+ State
ln,ps: State -+ Nat
eh : State -+ Elem

The pattern defining the behavior of the editor is a sum of five pat
terns, depending which modifier/generator operation was executed last:

pat-init + pat-insert + pat-delete + pat-right + pat-left

pat-init only requires that the position value becomes one and the
length becomes zero in the state resulting from the execution of init.
The previous state, if any, is not consulted (no primed observers):

pat-init =dej [op = init " ps = 1 " ln = 0]

pat-insert requires that the value of the position and length after
the execution of insert both increase by one, and the character under
caret remains the same, but only if the caret is inside the line (we avoid
applying the observer eh when the caret does not point at any character).

pat-insert =def [op = insert]·
[ln' = ln + 1 " ps' = ps + 1 " (ps ln::::} eh' = eh)]

pat-delete breaks into three cases, depending if the current position,
after the execution of delete, is greater, equal or less than the length. If
greater then we only require that position and length remain unchanged.
If equal then the position must be the same and the length must decrease

Fail-Stop Components by Pattern Matching 365

by one, this is when we just deleted the character on the last position
in the list. In both cases the resulting position is outside the line, so
we are not interested in the value of eh. If less then the position must
not change and the length must decrease, like before, but we also search
the his tory to find the value corresponding to eh. We look for the state
where the caret position equals the current one, only counting from the
end of the list. This is because prior to delete, the caret was on the
left of the current character, so the list could be modified. We look for
the first state which position has the same distance from the end of the
list as the current position, In - ps = In' - ps', where we check that the
character under caret and the current character are the same.

pat-delete =def [op = deleteJ·

(
[ps' > In' 1\ ps' = ps 1\ In' = InJ+)
[ps' = In' 1\ ps' = ps 1\ In' = In - 1J+
[ps' < In' 1\ ps' = ps 1\ In' = In - 1J·

[ln - ps> In' - ps'J*[ln - ps = In' - ps' 1\ eh' = ehJ

pat-right is similar to pat-delete. It breaks into three cases for the
value ofposition which is greater, equal or less then the length. Position
must increase, provided inside the line, and the length remains the same.
We look for the value of the current character like we did for pat-delete,
counting the distance from the caret position to the end of the line.

pat-right =def [op = rightJ·

)
[ps' = In' 1\ ps' = ps + 1 1\ In' = InJ+
[ps' < In' 1\ ps' = ps + 1 1\ In' = InJ·

[ln - ps> In' - ps'J*[1n - ps = In' - ps' 1\ eh' = ehJ

pat-Ieft has also three cases. The first is when the caret is already
on the first position, then the length, position and character (provided
the caret is inside the line) must stay the same. Otherwise the length
remains unchanged and position must decrease, moreover if the previous
operation was insert then its argument must be the current character.
Otherwise we look for: (1) the earliest state with the same position
value, which character and the current one must then be the same, or
(2) the state where position is one greater than the current and insert as
the last operation, in which case the argument to insert and the current
character must be equal. The complication in this case is due to the fact
that insert not only inserts a character but also forwards the caret.

366

pat-left =def [op = left]·
[ps' = 1 /\ ps' = ps /\ ln' = ln /\ (ln' > 0 =* eh' = eh)]+
[ps' > 1 /\ op = insert /\

ps' = ps - 1 /\ ln' = ln /\ eh = arg] +
[ps' > 1 /\ op i= insert /\ ps' = ps - 1 /\ ln' = ln]·

[ps> ps' /\ (ps = ps' + 1 =* op i= insert)]*·
[ps = ps' /\ eh' = eh V

ps = ps' + 1 /\ op = insert /\ eh' = arg]

One comment is in place. This pattern may appear complicated, given
a rat her simple component it is supposed to check. There are two reasons
to explain this. The first is the fact that we specified the component in
a complete way, when normaUy one would like to specify and check
selected critical properties. The second is the fact that this pattern has
been defined directly in terms of observers, without the intermediate
level of auxiliary properties, speciaUy designed to capture reoccuring
properties. On the other hand, the pattern above is composed of five
independent patterns which, one can argue, are simple on their own.
Whatever point of view we adopt, the scalability of the whole approach
is no doubt an important practical concern, which we plan to address in
our future work, along with other issues discussed in the conclusions.

6. IMPLEMENTING THE
WRAPPER-GENERATOR

One way to make sure that a given component is fail-stop is to prove
that it satisfies the fail-stop specification. But this ignores the special
form of the fail-stop property, and typically requires a fair amount of
human assistance. Instead, we want to guarantee this property at run
time, where a specification is given in the form of a pattern and run-time
checking is carried out by an automaticaUy generated wrapper. Here we
discuss the implementation of the wrapper-generator.

Consider the structure of the wrapped component. The signature is
the same as that of the original component plus the observer error.
The state includes some part of the execution history (as necessary for
checking) and the error indicator . The wrapper takes over aU commu
nication between the original component and its users. Invocation of a
constant/observer is passed to the component and obtained results di
rectly returned to the user, no checking is done in this case. Invocation
of a generator/modifier is carried out on the original component, obser
vations about the new state and operation itself are recorded. Then we
carry out pattern-matching with respect to this modified history and set
the error Hag accordingly. The wrapper may conduct more activities, in

Fail-Stop Components by Pattern Matching 367

particular maintain the history record, remove the observations with no
effect on future checking etc. Figure 2 depicts this structure.

r ead I write error? wrapped component

I set I error

original
component pattern

checking
component '--I history component

update component check

Figure 2 Structure of the wrapped component.

We would like this wrapped component to be generated automatically
for a given pattern. We designed a prototype wrapper generator for
components written in a small subset of Java. The generator is intended
as a tool for writing case studies on the use of patterns for specifying
components and pattern-matching for checking their behavior at run
time. At this moment there are several constraints we impose on the
input Java classes: the only data type is natural numbers, modifiers
take zero or one argument, class constructors take no arguments and
exceptions are not allowed. The wrapper generator W rap is itself written
in Java, using the JavaCC tool to support parsing. The input is the
specification file that contains the name of the class to be wrapped, its
signature in a simplified form and the pattern specifying the correct
behavior of the class. Here is the specification file for the stack:

#Classname #Actions #Pattern
NatStack qO = {op = init /\ len = O} qO +

#Modifiers ql = {op = push /\ arg = top'} q1.q2 +
pushO; q2 = {len = len' - 1} q3.q4.q5*.q6
pop; q3 = {op = pop}

#Observers q4 = {len = len' + 1}

top; q5 = {len > len'}
len; q6 = {len = len' /\ top = top'}

Wrap pro duces the source code for the wrapper class, which is a
subclass of the class specified in the input file. The class contains some
additional variables to store the execution history, the automaton which
represents the regular expression, error indicator , methods to update
and check the execution his tory etc. All observers are inherited from
the parent class and all modifiers and generators are overridden: call the

368

parent method, update the history record, carry out pattern-matching
and set accordingly the error indicator. W rap also creates an applet
which can be used to test the execution of the produced wrapped dass.
The applet allows to invoke modifiers, individually or in a sequence,
display the execution history, observer values and indication of an error.
It also compares the execution times for original and the wrapped dass.

A few comments on the implementation and the use of wrappers.
As our main purpose is error-detection, we do not consider how the
wrapped component should be used to build reliable distributed systems.
This belongs to the next level - implement at ion of fault-tolerance. One
idea would be to integrate patterns with a component framework like
CORBA: make them part of the IDL description of a component, gener
ate the code for run-time checking along with the usual stub code, build
applications which actively inspect the error status for the components
they are built from. Another idea is to use the wrapper in a remote
way, as a smart proxy for its component, or as a CORBA interceptor
to become part of the growing dass of objects providing infrastructure
services for other objects. Whatever method is used, wrappers repre
sent the knowledge (reflection) how their components should behave.
They cannot change how the components behave, but the behavior of
applications built from such components.

7. CONCLUSIONS
We demonstrated how regular expressions can be used to formally

specify software components, in order to be able to check their behavior
at run-time. We build such expressions from the propositions about the
pairs of states of a component, one of which is the current state, another
is some previous state determined by the checking process. Checking is
carried out by a specification-generated wrapper, as a kind of pattern
matching, which pro duces a fail-stop component [14] from a component
which may fail in an arbitrary way. We also presented an architecture
of the wrapped component and the prototype wrapper-generator, for
components written as Java dasses.

We argue that run-time checking is particularly suitable for open,
object-based distributed systems. Distribution makes testing such sys
tems difficult in general, given the large number of components and many
possible ways for them to interact. Openness means such systems are
relatively easy to modify, but also hard to verify. In particular, decid
ing at run-time which components should be used (dynamic invocation)
makes it hard to approach an apriori verification. Openness also means
the components come from many origins, they may lack proper certifi-

Fail-Stop Components by Pattern Matching 369

cation or make it difficult (being remote or proprietary) to inspect the
quality ourselves. Moreover, decisions to include a component are based
on its IDL description, which typically lacks the semantic information
or describes this semantics in a naturallanguage. Run-time checks pro
vide often the only method of protection for the whole system from its
unsound, unreliable components. The paper showed how to introduce
such checks in a systematic way, generated from formal specifications.

This paper is a revised version of [6]. Related work on software spec
ification with regular expressions include [2], but the focus is symbolic
reasoning, not run-time checking. Specification-based testing [12] is an
other related area which purpose is mainly analysis (off-line), unlike here
where we try to improve reliability (on-line). Run-time checks are prac
tically implemented in the Java Assert class (of java.lang.object) but
only to check invariants. One more related area is fault-tolerance [7].
Formalization of fault-tolerance has been carried out by several authors,
e.g. [8, 5], where they explain how to formally specify and verify an
existing system. Here, in contrast, we provide a constructive approach
to actually build such systems, the wrapper-generator, although for now
we focus only on error-detection.

We plan to continue this work in several directions. First, we plan
to produce some real-life case studies for specifying components with
patterns. Among others we look at the components described in the
CORBA services documents. Based on such case studies we intend to
study how the approach scales up. Another direction is to further in
vestigate the foundations for run-time checking: we continue to look at
co-algebras, with their approach to specification of classes [4], but also
at the alternating automata [1]. It remains to see how we can relate pat
terns to the more abstract algebraic or co-algebraic specifications, and
how to define refinement between patterns according to their strength.
We also plan to study how run-time checking with pattern-matching
can be used to build fault-tolerant systems, in particular how to verify
fault-tolerance on the system level [5] based on the run-time checking on
the component level. This could provide a demonstration how symbolic
and run-time techniques can work together. Then there are real-time
and memory requirements for the whole scheme to work in practice. It
must be possible to analyze patterns to see which parts of the history
we have to remember for future checking and which we can discard. At
best we would like to analyze patterns statically in this respect, at worst
include some run-time mechanisms like garbage collection. We also want
to analyze patterns with respect to the performance overheads.

370

Acknow ledgments

We wish to thank anonymous referees for their useful, constructive comments.

References

[1] A.K. Chandra and L.J Stockmeyer. Alternation. In FOGS 17, pages
98-108, 1976.

[2] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property speci
fications for finite-state verification. In International Gonference on
Software Engineering, 1999.

[3] B. Jacobs and J. Rutten. A tutorial on (co)algebras and
(co)induction. EATGS Bulletin, 62:222-259, 1997.

[4] Bart Jacobs. Objects and dasses, co-algebraically. In Object
Orientation with Parallelism and Persistence. Kluwer, 1996.

[5] T. Janowski. On bisimulation, fault-monotonicity and provable
fault-tolerance. In Prac. 6th AMAST, volume 1349 of LNGS, 1997.

[6] T. Janowski and W. Mostowski. Fail-stop software components by
pattern matching. Presented at the Workshop on Run-Time Result
Verification, part of the Federated Logic Conference, Trento, 1999.

[7] J.C. Laprie. Dependability: Basic concepts and associated termi
nology. Technical report, PDCS, 1990.

[8] Z. Liu and M. Joseph. Specification and verification of fault
tolerance, timing, and scheduling. AGM TOPLAS, 21(1), 1999.

[9] R. Milner. Gommunication and Goncurrency. Prentice Hall, 1989.

[10] C. Pfister and C. Szyperski. Why objects are not enough. In Int.
Gomponent Users Gonference, Munich, Germany, 1996.

[11] The RAISE Language Group. The RAISE Specijication Language.
Prentice Hall, 1992.

[12] D. Richardson, O. O'Malley, and C. Tittle. Approaches to
specification-based testing. In AGM Symposium on Software Test
ing, Analysis and Verijication, 1989.

[13] Donald Sannella and Andrzej Tarlecki. Essential Concepts of Alge
braic Specification and Program Development. Formal Aspects of
Gomputing, 9:229-269, 1997.

[14] R.D. Schlichting and F.B. Schneider. Fail stop processors: An ap
proach to designing fault-tolerant computing systems. AGM TOGS,
1(3):222-238, 1983.

	FAIL-STOP COMPONENTS BY PATTERN MATCHING
	1. INTRODUCTION
	2. COMPONENTS
	3. FAULT-FREE VERSUS FAIL-STOP COMPONENTS
	4. FAIL-STOP COMPONENTS BY PATTERN-MATCHING
	4.1. INVARIANTS
	4.2. ACTIONS
	4.3. PATTERNS
	4.4. FIRST ORDER PATTERNS
	4.5. HIGHER ORDER PATTERNS

	5. EXAMPLE: LINE EDITOR
	6. IMPLEMENTING THE WRAPPER-GENERATOR
	7. CONCLUSIONS
	Acknow ledgments
	References

