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Abstract We describe an approach to formally specify object-based software com
ponents, in order to be able to automatically check their behavior at 
run-time. The specification is a regular expression built from the propo
sitions about the states (or pairs of states) of a component. Checking is 
done by a specification-generated wrapper, which pro duces a fail-stop 
component from a component which fails in an arbitrary way. The 
wrapper-generator is implemented for a subset of Java classes. We ar
gue that specification-based error-detection is particularly suitable for 
the components of open, object-based distributed systems. 

Keywords: Formal specifications, run-time checking, component wrapping, appli
cation generators, correctness by construction, fault-tolerance. 

1. INTRODUCTION 
Open object-based distributed systems challenge the traditional ways 

of applying formal methods via specification and proof. One of the prob
lems is the large number of the components involved, which are partly 
decided at compile-time (static invocation) and partly at run-time (dy
namic invocation). Another problem is having to rely on the vendor's 
claims about correctness of individual components, without being able 
(lacking the implement at ion details) to verify such claims ourselves. Yet 
another is expressing component specifications in an interface defini
tion language, which describe how to communicate with a component 
(syntactic level), but not the expected results of such communication 
(semantics). Such problems make static verification difficult, at best. 
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On the other hand, the structuring of the whole system in terms of the 
independent, distributed components, is particularly suitable for fault
tolerance [7]. The goal is to make sure that the failures of individual 
components (violation of their specifications) will not cause the whole 
system to fail (violation of the system's specification). The latter spec
ifications can be used at design-time to prove if the system is indeed 
fault-tolerant. The former can be used at run-time to detect if a com
ponent has failed. This paper describes an approach to formally specify 
software components in order to make such error-detection possible. 

Defining such specifications is not without problems. Specifications 
may contain infinite constructs like quantifiers (for all values of a type), 
liveness properties (for all states in a sequence) or modal properties of 
branching time (for all transitions from astate). Such constructs are gen
erally non-executable - we cannot execute them directly on the machine, 
and non-checkable - we cannot check effectively at run-time that they 
indeed hold. On the other hand, specifications based on propositional 
logic are not enough expressive in practice. Finally, checking specifi
cations which use equality of states is not possible when the state can 
be only accessed via defined operations; the best we can do is checking 
bisimilarity [9]. Such problems require a different kind of specification 
for effective run-time checking than those for static verification. 

In this paper we propose a specification approach for software com
ponents which is suitable for their checking at run-time. The technical 
approach is as follows: (1) Specifications are formally-based. They are 
defined as logic-based regular express ions built from the propositions 
about the states (or pairs of states) of a component, via its ob server 
operations. (2) Specifications are checkable at run-time, based on the 
recorded his tory of the component's execution, a sequence of observer 
values about individual states and the operations which caused state
changes. (3) Checking is carried out by a wrapper which is generated 
from the component and its specification. The wrapper takes over all 
communication between the component and its environment. It remains 
transparent to the clients except being able to detect (carrying out run
time checking after every state-change) and announce (via the additional 
boolean ob server error) the occurrence of an error. (4) The required ef
fect of run-time checking is described formally as the fail-stop property. 
The wrapper-generator is to transform a given component, which may 
fail in an arbitrary way, into a component which only fails by refusing 
to operate, also announces this fact. The formal model in RAISE [11] 
with justification of the correctness of the wrapper-generator (that every 
wrapped component is fail-stop), is the subject of a companion paper. 
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comp ?t== spec 

generator 1 faiLstop 

wrap ( comp ) 
spec 

!p v ( spec /\ -, error ) 
-,spec /\ error 

Figure 1 Fault-free versus fail-stop software components 

Figure 1 provides an illustration. It describes the intended result of 
the wrapper generator for specifications given as state invariants. The 
component camp may or may not satisfy the invariant spec but its trans
formed version wrap(camp, spec) satisfies the 'fail-stop' version of spec: 
spec holds if and only if error is false. Importantly, this property is not 
verified for each component and its specification but proved ab out the 
wrapper-generator, then applied to all components and specifications. 

The rest of this paper is as follows. Section 2 explains and illus
trates the concept of a 'component'. Section 3 discusses and compares 
'fault-free' and 'fail-stop' behaviors of components. Section 4 shows how 
to ensure fail-stop behavior by patter-matching. Section 5 presents an 
example, a li ne editor. Section 6 describes how pattern-matching can 
become part of an automatically generated wrapper, also describes a 
prototype implement at ion for components written in Java. Section 6 
provides some conc1usions and directions for our future work. 

2. COMPONENTS 
We treat a component as a entity with its own state and the opera

tions defined on it. The state is internal - the operations are the only 
means to give access to it, persistent - it maintains its value between 
operation invocations, and the operations are atomic - to execute them 
concurrently is the same as executing them in an arbitrary order. 

We represent the state-space of a component as an abstract type State 
and its operations by the functions on this type. Depending on the 
type of access we divide the operations into 'readers' which return a 
value without modifying the state and 'writers' which change the current 
state without returning any value. Readers are furt her divided into 
'constants' which return some value independent from the current state 
and 'observers' which return a value based on the current state. Writers 
are divided into 'generators' which return a new state, independent from 
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the current one, and 'modifiers' which modify the current state. The 
dass of an operation depends on the 'position' of State in its signature: 

constant: 
generator: 
observer: 
modifier: 

Type -+ Type 
Type -+ State 
Type x State -+ Type 
Type x State -+ State 

We assume that the generator init represents the initial state. In the 
simplest case the only types are State and Bool, with constants and 
observers as propositional variables. The first-order model adopts one 
more type, say N at, and allows operations to take several arguments 
and return results of this type. In the higher-order model operations 
take several arguments and return results of different types. In this case 
Type represents Bool, N at, Cartesian product of two types etc. 

Type ::= Booll Nat I Type x Type I ... 

As a simple illustration consider a component representing a stack. 
The component is represented by the dass expression Stack1 which con
tains definitions of types, signatures and axioms, as below. 

Stack1 = dass 
type 

State = Elern* 
signatures 

bnd: Nat 
init: State 
len : State -+ Nat 
top : State -+ Elem 
pop: State -+ State 
push: Elern x State -+ State 

axioms 
init = () 
len(s) = ln(s) 
len(s) < bnd =} push(e, s) = con(e, s) 
len(s) > 0 =} pop(s) = tl(s) 1\ top(s) = hd(s) 

end 

Elem is the type of elements we put on stack. The operations are: one 
constant bnd of type N at, the maximum number of elements on stack; 
one generator init, the state of the empty stack; two modifiers push to 
push an element onto the stack and pop to pop the top element; and two 
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observers top to return the top element and Zen, the number of elements 
on stack. The axioms define the actual behavior of the operations. The 
stack is implemented on the concrete state-space defined as a list of 
elements, with corresponding concrete definitions for operations init, 
push, pop, top and Zen. They apply the standard list functions con 
(construction), hd (head), tl (tail) and Zn (length). 

For the purpose of this paper we consider such components in isola
tion, as individual objects. On the other hand, to build an application 
we may need a richer component including a collection of objects [10]. 
This would be also the right level to introduce fault-tolerance, based on 
the error-detection on the lower level (individualobjects). 

3. FAULT-FREE VERSUS FAIL-STOP 
COMPONENTS 

A generator is a typical algebraic operation to construct state values 
[13]. An observer is a co-algebraic operations for making the observations 
about the state [3]. A modifier is both an algebraic operation and co
algebraic. This casting of components into an algebra (a carrier set with 
functions into this set) or a co-algebra (a carrier set with functions from 
this set) provides the means to describe how the concrete execution of 
a component unfolds. Here we are interested in the opposite: how to 
abstract away from such concrete executions in order to describe how 
the component should behave in the first place. 

For instance for the stack component we put forward five axioms: the 
length of init is zero, pop decrements and push increments the length, 
top returns the element which was recently pushed onto the stack and 
pop modifies the state back before the last push. All axioms except the 
last relate readers and writers, involving equality over N at or EZern. 
The last relates two writers and involves equality over the type State. 

Stacko = dass 
type 

State 
signatures 

bnd: Nat 

axioms 
len(init) = 0 
len(s) > 0 => len(pop(s)) = len(s) - 1 
len( s) < bnd => len(push( e, s)) = len( s) + 1 
len(s) < bnd => top(push(e, s)) = e /\ pop(push(e, s)) = s 

end 
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Once we described the component on the abstract (Stacko) and con
crete (Stackd levels, we should be able to verify that the concrete com
ponent is fault-free. The proof has to demonstrate that eoncrete def
initions satisfy all axioms described by the specification, which boils 
down to proving first-order properties about concrete value domains. 
For instance, len(s) < bnd * top(push(e, s)) = e has to first expand 
definitions of push and top and then apply a simple fact ab out lists. 

len(s) < bnd * top(push(e, s)) = e 
len(s) < bnd * top(con(e, s)) = e 
len(s) < bnd * hd(con(e, s)) = e 
len( s) < bnd * e = e 
len( s) < bnd * true 
true 

However, this statie verifieation is very often impossible, given the 
requirements for the availability of an implement at ion, its specifications 
and the feasibility to carry out the proof. The stack example was chosen 
to provide a demonstration with a minimum of the technical details, 
however such details would eertainly complicate any more realistic proof. 

Suppose instead of proving that the component is fault-free, we want 
to make sure that faults, after they oecur, do not spread out uncontrol
lably. That we detect the errors as soon as they occur, and then make 
this fact known to the environment by a boolean observer error. 

error : State -+ Bool 

We call such a eomponent 'fail-stop'. A fail-stop component need not 
be fault-free but a fault-free component is certainly fail-stop, only it 
will never experience a failure and its error indicator is permanently set 
to f alse. We ean verify that the component is fail-stop, with respect 
to a given specifieation, by proving that it is fault-free with respect to 
the weaker 'fail-stop specifieation'. We obtain such a specification by 
syntaetie transformation from the original specification, adding error 
to its signatures and modifying the axioms to include the possibility of 
them being violated. We only require that the value of error is true in a 
given state Hf at least one of the original axioms is viola ted in this state. 
When the axioms involve more than one state then we only require this 
property about the last state, provided none of the prior states have set 
error to true. Stack2 below describes such a fail-stop version of Stack l . 
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Stack2 = dass 
type 

State 
signatures 

bnd: Nat 
init: State 
error: State -+ Bool 

axioms 
true * 

(len(init) = 0) {:} -.error(init) 
-.error(s) /\ len(s) < bnd * 

( 
len(push(e,s)) = len(s) + 1 ) 

/\ {:} -.error(push ( e, s)) 
top (push( e, s)) = e 

-.error( s) /\ len( s) < bnd /\ -.error(push( e, s)) * 
( 

pop(push(e, s)) = s ) 
/\ {:} -. error (pop (push ( e, s))) 

len(pop( .. . )) = len( ... ) - 1 
end 

Although we could try proving directly that the component satisfies 
the fail-stop specification, this would not solve our problems, nor utilize 
the special form of such specifications. Instead, we would like to guar
antee the satisfaction of the fail-stop specification by run-time checking. 
We now describes a specification method to make such checking possible. 

4. FAIL-STOP COMPONENTS BY 
PATTERN-MATCHING 

Run-time checking is only possible if the specification method allows 
it to be automated - checking automatically if a given behavior com
plies with the specification. However, specification methods are usually 
designed in order to be expressive, to enable abstraction and support ef
fective reasoning, not to allow automatie checkability. In particular, we 
cannot check specifications which contain quantifiers (over infinite types) 
and we cannot check equality between states (pop(push( e, s)) = s). 

In the sequel we discuss and illustrate five methods, with increasing 
expressive power, to specify software components. All allow run-time 
checking, based on the component 's execution history. 
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4.1. INVARIANTS 
The first specification is a simple propositional formula buHt from the 

constant/observer operations, playing the role ofpropositional variables. 

invariant ::= 
constant lobserver I 
-.invariant I invariant V invariant ... 

The specification is required to hold invariantly for every state in the 
execution sequence, represented by the symbol s. Note the difference 
between constants and observers and how they depend on the state. 

s F con iff con 
obs(s) s F obs iff 

s F -.inv iff not s F inv 
s F invl V inv2 iff s F invl or s F inv2 ... 

Consider two example invariants for the stack component: the length 
of the stack never exceeds the bound and if the last operation was push 
then the value of top equals the argument to push: 

len:::; bnd 
op = push /\ top = arg 

The first is the first-order formula, written with a relation over N at. 
The second is the higher-order formula where op returns the name of 
the last state-changing operation and arg gives the arguments to this 
operation. The first and higher orders are explained later. 

4.2. ACTIONS 
Invariants allow us only to formulate properties about individual states, 

to hold statically over the whole execution. In contrast, an action is a 
propositional formula over pairs of states. It is buHt from constants and 
two kinds of observer operations: evaluated in the first state (a pre-state) 
and in the second state (a post-state), the latter written with a prime. 
A pre-state is the state before the execution of a generator/modifier 
operation, a post-state is the state after the execution. 

action ::= 
constant I 
observer lobserver' I 
-.action I action V action . .. 
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The action is required to hold over any pair of adjacent states in the 
execution sequence, here represented by the symbols 81 and 82. Note 
that observers without prime refer to 81 and observers with prime to 82; 
constants refer to none. 

81,82 F con iff con 
81,82 F obs iff ObS(81) 
81,82 F obs' iff ObS(82) 
81,82 F --,act iff not 81,82 Fact 
81,82 F actl Vact2 iff 81,82 Fach or 81,82 F act2 ... 

Consider two example actions for the stack component: a pU8h oper
ation increments the length of the stack, provided the stack is not fuH, 
and a pop operation decrements the length, provided the stack is not 
empty. Written as higher-order actions: 

len > 0 => op' = pop 1\ len' = len - 1 
len < bnd => op' = push 1\ len' = len + 1 

4.3. PATTERNS 
Actions will not suffice for specifying those components which correct 

behavior in a given state depends not only on the observations in this 
and the preceding state but also the states before. For instance to check 
for a stack if the value returned by top is correct (if not just inserted) 
we have to find the most recent state in the history in which the value 
of len equals the current len value, then check if the top value in this 
state and the value of top in the current state are the same. Here the 
length of the search depends on the value of an observer. 

The idea is to use regular expressions, similar like for specifying words 
over an alphabet, but the alphabet are vectors of observer values and 
words are sequences of such records (histories). A pattern is a regu
lar expression build with usual operators + (sum) , . (concatenation), 
* (Kleene's star) and A (empty sequence), which basic components are 
invariants and actions. 

pattern ::= 

AI 
[invariant] I [action] I 
pattern + pattern I pattern· pattern I pattern* 

The operators have the usual interpretation over sequences (histories). 
We denote such a history by the symbol t and its elements by 8, as before. 
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Special role in the evaluation plays the first element in the history, hd(t) 
(if one exists), which is used to evaluate aH primed observers in action 
components of the pattern. If t is empty then the only satisfied pattern is 
.x, otherwise we use the head of t as weH as t itself to carry out evaluation 
hd(t), t F pat. 

t F pat iff { pat = .x if In(t) = 0 
hd(t), t F pat if In(t) > 0 

In general, evaluation takes the form s, t F pat where s is a given state 
and t is a sequence of states, depending on the shape of the pattern pat: 

1 pat = .x 
Then t must be empty. 

2 pat = [inv] 
Then t must consist of only one state which satisfies inv, as in 
Section 4.1. However, this state is not necessarily the most recent 
state but any state in the history, as determined by the matching 
process. Also the same invariant may be used a number of times 
against different states. 

3 pat = [act] 
Then t must consist of only one state, such that sand this state 
satisfy act, as in Section 4.2. Primed observers always refer to sand 
unprimed to hd(t). Unlike before, those states are not necessarily 
adjacent in the history: the post-state is always the most recent 
state (s), the pre-state is the currently matched state (hd(t)). The 
action can also be used many times against different pairs of states; 
the same post-state, different pre-states. 

4 pat = palt + pat2 
Then sand t must either satisfy patl or pat2, or both. 

5 pat = palt . pat2 
Then it should be possible to split t into some lt and t2 such that 
sand tl satisfy patl and sand t2 satisfy pat2. s remains the same 
in both cases, providing the same interpretation for the primed 
ob servers in the actions. 

6 pat = pati 
Then either t is empty or can be split into tl and t2 such that s 
and tl satisfy patl and sand t2 again satisfy pati. Like above, s 
is the same in both cases. Note that the same pattern appears at 
both sides of the definition. 
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Formally, we define the relation s, t F pat as follows: 

s, t F ). 
s, t F [inv] 
s, t F [act] 
s, t F patl + pat2 

s, t F patl . pat2 

s,tFpati 

iff ln{t) = 0 
iff ln{t) = 1/\ hd{t) F inv 
iff ln{t) = 1/\ s, hd{t) Fact 
iff s, tF patl V s, t F pat2 
iff :3t1h t = tl : t2/\ 

s, tl F patl /\ s, t2 F pat2 
iff ln{t) = 0 V :3t1h t = tl : t2/\ 

s, tl F patl /\ s, t2 F pati 

We carry out pattern-matching with every modification of the history, 
i.e. after invocation of every modifier / generator operation, from the 
most recent state towards the initial state. If we can run successful 
pattern-matching with every modification of the component's execution 
history then it means that up till now the component behaved in a proper 
way. In other words every non-empty suffix of the execution history must 
satisfy the pattern to regard the component as behaving correctly. As 
an example consider the pattern below. 

[a V b] + [a V b] . [a ob]* . [c' a Vb] 

It says the following: either the his tory contains only one state such 
that a V b holds, or at least two states such that a V b holds in the last 
state, a V b in the first state equals c in the last, and a ob holds for all 
intermediate states (if any). Matching this pattern against the history is 
shown below. We can see that the pattern is satisfied for all non-empty 
suffixes until state three. However, the value of a V b in the first state is 
different than c in the fourth state, thus the pattern is not satisfied by 
the his tory suffix containing the states one to four. 

aVb + [a V bj . [a ob * 'lc a V bj 
I I x '1'1 '1'1 V 

8 7 6 151 4 3 121 1 
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4.4. FIRST ORDER PATTERNS 
We now demonstrate how to extend such specifications into first- and 

higher-order patterns. Suppose first-order specifications allow for ob
servers which return integer values. This change will not directly affect 
patterns but their elements, it is invariants and actions. They are both 
build from integer express ions involving literals, arithmetic operators, 
ob server names with or without prime, relations between expressions and 
propositional connectives. Such first order specifications are matched 
against the his tory table which contains integer values. 

As a simple illustration, consider the first-order extensions to concrete 
invariants, actions and patterns, as below, and how they are matched 
against the execution history. The invariant is matched successfully for 
every state until it fails in state eleven. The action is matched success
fully for every pair of states until it fails for states eight and nine. The 
pattern is matched successfully for every non-empty suffix of the history 
until and including state five, but it fails in state six. 

I check I 
a+b>c+2 I 

a' + b' 2: c' + 2 A a' > b 
I check I IxlJIJIJIJIJIJIJI 

I check I 

5 6 5 9 2 4 5 3 2 4 1 
3 4 3 7 0 1 3 1 0 1 3 
7 8 5 6 0 1 6 2 0 1 2 

4.5. HIGHER ORDER PATTERNS 
With higher order patterns we allow observers of any type. Each type 

comes with its own set of functions and relations. We also assume two 
specialobservers: op returns the name ofthe generatorjmodifier invoked 
to obtain the current state (initially op = init) and arg returns the set 
of arguments this generatorjmodifier was invoked with (if any). From 
now on, we will also assume a [true]* trailer for any regular expression 
used: any prefix of the execution history can be used to satisfy the 
pattern, rat her than the whole history. 
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As an example consider a higher-order pattern for specifying the stack. 
We have the usual observers top and Zen which come with the definition 
of the stack and two generic observers op and arg. op returns the name 
of one of the three possible modifier / generator operations: init, push or 
pop. arg returns the argument used for the invocation, only relevant if 
op = push. By x we represent that the observer value is not available. 

op: State --+ {init,push,pop} 
arg: State --+ EZern U {x} 

The pattern includes three possibilities: if the state was produced by 
init then Zen must be zero; if the state was produced by push then top 
is the same as the argument of push and Zen in the previous state equals 
Zen in the current state minus one; if the state was produced by pop then 
Zen in the previous state equals Zen in the current state plus one, and 
the value of top in the most recent state with the same Zen value (in all 
intermediate states the value of Zen is greater than in the current state) 
is the same as the current top value. 

[op = init 1\ Jen = 0] + 
[op = push 1\ top = arg] . [Jen = Jen' - 1] + 
[op = pop] . [Jen = Jen' + 1] . [Jen> Jen']* . [Jen = Jen' 1\ top = top'] 

Below we describe how this pattern can be matched against a concrete 
history where values put on the stack are real numbers. If the entry 
contains x then it means that the value of a given observer was not 
available, for instance arg = x when the corresponding operation op 
does not take any arguments or top = x when the stack is empty. The 
pattern is satisfied until and including state nine but is violated for the 
state ten: the top value is 2.14 and Zen is 1 but the most recent state 
with the same value of Zen has top = 1.0. 

op 
arg 
top 
Zen 

x 
10 

op= 
pop 

I 

pop 
X 

2.14 
1 

I 
..; 

I 9 

len= 
len'+l 

pop 
X 

0.2 
2 

..; 
I 

..; 
I 

..; 
8 7 6 

len>len' 

pop push push 
X 3.5 5.9 

5.9 3.5 5.9 
3 4 3 

I 
..; 

I I 
..; ..; 

I YI 5 3 2 

len=len' 
1\ true 

top::j::top' 
I 

push pop push push init 

0.2 x 2.14 1.0 x 
0.2 1.0 2.14 1.0 x 
2 1 2 1 0 
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5. EXAMPLE: LINE EDITOR 
As an illustration of patterns, consider the example of a line editor. 

The editor provides some basic operations to modify the list of elements 
depending on the position of a caret. The position can be inside the 
line and one past the last element (to insert at the end). We have one 
generator init which makes the line empty and sets the caret position 
at one. Four modifiers: right moves the caret forward, if inside the 
line, Zeft moves the caret backward, if not on the first position, insert 
inserts an element at the current position then moves the caret forward, 
and deZete deletes an element at the current position, if inside the line. 
Three observers: Zn returns the length of the line, ps returns the current 
position of the caret (a natural number) and eh returns the element in 
the line on the current position, if inside the line. Here are the signatures: 

type 
State, Elem 

signatures 
init: State 
insert : Elem x State -+ State 
delete, left, right : State -+ State 
ln,ps: State -+ Nat 
eh : State -+ Elem 

The pattern defining the behavior of the editor is a sum of five pat
terns, depending which modifier/generator operation was executed last: 

pat-init + pat-insert + pat-delete + pat-right + pat-left 

pat-init only requires that the position value becomes one and the 
length becomes zero in the state resulting from the execution of init. 
The previous state, if any, is not consulted (no primed observers): 

pat-init =dej [op = init " ps = 1 " ln = 0] 

pat-insert requires that the value of the position and length after 
the execution of insert both increase by one, and the character under 
caret remains the same, but only if the caret is inside the line (we avoid 
applying the observer eh when the caret does not point at any character). 

pat-insert =def [op = insert]· 
[ln' = ln + 1 " ps' = ps + 1 " (ps ln::::} eh' = eh)] 

pat-delete breaks into three cases, depending if the current position, 
after the execution of delete, is greater, equal or less than the length. If 
greater then we only require that position and length remain unchanged. 
If equal then the position must be the same and the length must decrease 
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by one, this is when we just deleted the character on the last position 
in the list. In both cases the resulting position is outside the line, so 
we are not interested in the value of eh. If less then the position must 
not change and the length must decrease, like before, but we also search 
the his tory to find the value corresponding to eh. We look for the state 
where the caret position equals the current one, only counting from the 
end of the list. This is because prior to delete, the caret was on the 
left of the current character, so the list could be modified. We look for 
the first state which position has the same distance from the end of the 
list as the current position, In - ps = In' - ps', where we check that the 
character under caret and the current character are the same. 

pat-delete =def [op = deleteJ· 

(
[ps' > In' 1\ ps' = ps 1\ In' = InJ+ ) 
[ps' = In' 1\ ps' = ps 1\ In' = In - 1J+ 
[ps' < In' 1\ ps' = ps 1\ In' = In - 1J· 

[ln - ps> In' - ps'J*[ln - ps = In' - ps' 1\ eh' = ehJ 

pat-right is similar to pat-delete. It breaks into three cases for the 
value ofposition which is greater, equal or less then the length. Position 
must increase, provided inside the line, and the length remains the same. 
We look for the value of the current character like we did for pat-delete, 
counting the distance from the caret position to the end of the line. 

pat-right =def [op = rightJ· 

) 
[ps' = In' 1\ ps' = ps + 1 1\ In' = InJ+ 
[ps' < In' 1\ ps' = ps + 1 1\ In' = InJ· 

[ln - ps> In' - ps'J*[1n - ps = In' - ps' 1\ eh' = ehJ 

pat-Ieft has also three cases. The first is when the caret is already 
on the first position, then the length, position and character (provided 
the caret is inside the line) must stay the same. Otherwise the length 
remains unchanged and position must decrease, moreover if the previous 
operation was insert then its argument must be the current character. 
Otherwise we look for: (1) the earliest state with the same position 
value, which character and the current one must then be the same, or 
(2) the state where position is one greater than the current and insert as 
the last operation, in which case the argument to insert and the current 
character must be equal. The complication in this case is due to the fact 
that insert not only inserts a character but also forwards the caret. 
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pat-left =def [op = left]· 
[ps' = 1 /\ ps' = ps /\ ln' = ln /\ (ln' > 0 =* eh' = eh)]+ 
[ps' > 1 /\ op = insert /\ 

ps' = ps - 1 /\ ln' = ln /\ eh = arg] + 
[ps' > 1 /\ op i= insert /\ ps' = ps - 1 /\ ln' = ln]· 

[ps> ps' /\ (ps = ps' + 1 =* op i= insert)]*· 
[ps = ps' /\ eh' = eh V 

ps = ps' + 1 /\ op = insert /\ eh' = arg] 

One comment is in place. This pattern may appear complicated, given 
a rat her simple component it is supposed to check. There are two reasons 
to explain this. The first is the fact that we specified the component in 
a complete way, when normaUy one would like to specify and check 
selected critical properties. The second is the fact that this pattern has 
been defined directly in terms of observers, without the intermediate 
level of auxiliary properties, speciaUy designed to capture reoccuring 
properties. On the other hand, the pattern above is composed of five 
independent patterns which, one can argue, are simple on their own. 
Whatever point of view we adopt, the scalability of the whole approach 
is no doubt an important practical concern, which we plan to address in 
our future work, along with other issues discussed in the conclusions. 

6. IMPLEMENTING THE 
WRAPPER-GENERATOR 

One way to make sure that a given component is fail-stop is to prove 
that it satisfies the fail-stop specification. But this ignores the special 
form of the fail-stop property, and typically requires a fair amount of 
human assistance. Instead, we want to guarantee this property at run
time, where a specification is given in the form of a pattern and run-time 
checking is carried out by an automaticaUy generated wrapper. Here we 
discuss the implementation of the wrapper-generator. 

Consider the structure of the wrapped component. The signature is 
the same as that of the original component plus the observer error. 
The state includes some part of the execution history (as necessary for 
checking) and the error indicator . The wrapper takes over aU commu
nication between the original component and its users. Invocation of a 
constant/observer is passed to the component and obtained results di
rectly returned to the user, no checking is done in this case. Invocation 
of a generator/modifier is carried out on the original component, obser
vations about the new state and operation itself are recorded. Then we 
carry out pattern-matching with respect to this modified history and set 
the error Hag accordingly. The wrapper may conduct more activities, in 
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particular maintain the history record, remove the observations with no 
effect on future checking etc. Figure 2 depicts this structure. 

r ead I write error? wrapped component 

I set I error 

original 
component pattern 

checking 
component '--I history component 

update component check 

Figure 2 Structure of the wrapped component. 

We would like this wrapped component to be generated automatically 
for a given pattern. We designed a prototype wrapper generator for 
components written in a small subset of Java. The generator is intended 
as a tool for writing case studies on the use of patterns for specifying 
components and pattern-matching for checking their behavior at run
time. At this moment there are several constraints we impose on the 
input Java classes: the only data type is natural numbers, modifiers 
take zero or one argument, class constructors take no arguments and 
exceptions are not allowed. The wrapper generator W rap is itself written 
in Java, using the JavaCC tool to support parsing. The input is the 
specification file that contains the name of the class to be wrapped, its 
signature in a simplified form and the pattern specifying the correct 
behavior of the class. Here is the specification file for the stack: 

#Classname #Actions #Pattern 
NatStack qO = {op = init /\ len = O} qO + 

#Modifiers ql = {op = push /\ arg = top'} q1.q2 + 
pushO; q2 = {len = len' - 1} q3.q4.q5*.q6 
pop; q3 = {op = pop} 

#Observers q4 = {len = len' + 1} 

top; q5 = {len > len'} 
len; q6 = {len = len' /\ top = top'} 

Wrap pro duces the source code for the wrapper class, which is a 
subclass of the class specified in the input file. The class contains some 
additional variables to store the execution history, the automaton which 
represents the regular expression, error indicator , methods to update 
and check the execution his tory etc. All observers are inherited from 
the parent class and all modifiers and generators are overridden: call the 
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parent method, update the history record, carry out pattern-matching 
and set accordingly the error indicator. W rap also creates an applet 
which can be used to test the execution of the produced wrapped dass. 
The applet allows to invoke modifiers, individually or in a sequence, 
display the execution history, observer values and indication of an error. 
It also compares the execution times for original and the wrapped dass. 

A few comments on the implementation and the use of wrappers. 
As our main purpose is error-detection, we do not consider how the 
wrapped component should be used to build reliable distributed systems. 
This belongs to the next level - implement at ion of fault-tolerance. One 
idea would be to integrate patterns with a component framework like 
CORBA: make them part of the IDL description of a component, gener
ate the code for run-time checking along with the usual stub code, build 
applications which actively inspect the error status for the components 
they are built from. Another idea is to use the wrapper in a remote 
way, as a smart proxy for its component, or as a CORBA interceptor 
to become part of the growing dass of objects providing infrastructure 
services for other objects. Whatever method is used, wrappers repre
sent the knowledge (reflection) how their components should behave. 
They cannot change how the components behave, but the behavior of 
applications built from such components. 

7. CONCLUSIONS 
We demonstrated how regular expressions can be used to formally 

specify software components, in order to be able to check their behavior 
at run-time. We build such expressions from the propositions about the 
pairs of states of a component, one of which is the current state, another 
is some previous state determined by the checking process. Checking is 
carried out by a specification-generated wrapper, as a kind of pattern
matching, which pro duces a fail-stop component [14] from a component 
which may fail in an arbitrary way. We also presented an architecture 
of the wrapped component and the prototype wrapper-generator, for 
components written as Java dasses. 

We argue that run-time checking is particularly suitable for open, 
object-based distributed systems. Distribution makes testing such sys
tems difficult in general, given the large number of components and many 
possible ways for them to interact. Openness means such systems are 
relatively easy to modify, but also hard to verify. In particular, decid
ing at run-time which components should be used (dynamic invocation) 
makes it hard to approach an apriori verification. Openness also means 
the components come from many origins, they may lack proper certifi-
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cation or make it difficult (being remote or proprietary) to inspect the 
quality ourselves. Moreover, decisions to include a component are based 
on its IDL description, which typically lacks the semantic information 
or describes this semantics in a naturallanguage. Run-time checks pro
vide often the only method of protection for the whole system from its 
unsound, unreliable components. The paper showed how to introduce 
such checks in a systematic way, generated from formal specifications. 

This paper is a revised version of [6]. Related work on software spec
ification with regular expressions include [2], but the focus is symbolic 
reasoning, not run-time checking. Specification-based testing [12] is an
other related area which purpose is mainly analysis (off-line), unlike here 
where we try to improve reliability (on-line). Run-time checks are prac
tically implemented in the Java Assert class (of java.lang.object) but 
only to check invariants. One more related area is fault-tolerance [7]. 
Formalization of fault-tolerance has been carried out by several authors, 
e.g. [8, 5], where they explain how to formally specify and verify an 
existing system. Here, in contrast, we provide a constructive approach 
to actually build such systems, the wrapper-generator, although for now 
we focus only on error-detection. 

We plan to continue this work in several directions. First, we plan 
to produce some real-life case studies for specifying components with 
patterns. Among others we look at the components described in the 
CORBA services documents. Based on such case studies we intend to 
study how the approach scales up. Another direction is to further in
vestigate the foundations for run-time checking: we continue to look at 
co-algebras, with their approach to specification of classes [4], but also 
at the alternating automata [1]. It remains to see how we can relate pat
terns to the more abstract algebraic or co-algebraic specifications, and 
how to define refinement between patterns according to their strength. 
We also plan to study how run-time checking with pattern-matching 
can be used to build fault-tolerant systems, in particular how to verify 
fault-tolerance on the system level [5] based on the run-time checking on 
the component level. This could provide a demonstration how symbolic 
and run-time techniques can work together. Then there are real-time 
and memory requirements for the whole scheme to work in practice. It 
must be possible to analyze patterns to see which parts of the history 
we have to remember for future checking and which we can discard. At 
best we would like to analyze patterns statically in this respect, at worst 
include some run-time mechanisms like garbage collection. We also want 
to analyze patterns with respect to the performance overheads. 
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