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Abs t r ac t . Given an instance of an optimization problem together with 
an optimal solution, we consider the scenario in which this instance 
is modified locally. In graph problems, e.g., a singular edge might be 
removed or added, or an edge weight might be varied, etc. For a problem 
U and such a local modification operation, let LM-t/ (local-modification-
U) denote the resulting problem. The question is whether it is possible 
to exploit the additional knowledge of an optimal solution to the original 
instance or not, i.e., whether LM-U is computationally more tractable 
than U. Here, we give non-trivial examples both of problems where this 
is and problems where this is not the case. Our main results are these: 

1. The local modification to change the cost of a singular edge turns 
the traveling salesperson problem (TSP) into a problem L M - T S P 
which is as hard as TSP itself, i.e., unless P = NP, there is no 
polynomial-time p(n)-approximation algorithm for LM-TSP for any 
polynomial p. Moreover, LM-TSP where inputs must satisfy the /3-
triangle inequahty (LM-/i/3-TSP) remains NP-hard for all /3 > | . 

2. For LM-Zi-TSP (i.e., metric LM-TSP), an efficient 1.4-approxima-
tion algorithm is presented. In other words, the additional informa­
tion enables us to do better than if we simply used Christofides' 
algorithm for the modified input. 

3. Similarly, for all 1 < /? < 3.34899, we achieve a better approxima­
tion ratio for LM-Zi,3-TSP than for A^-TSP. 

4. Metric TSP with deadlines (time windows), if a single deadline or 
the cost of a single edge is modified, exhibits the same lower bounds 
on the approximability in these local-modification versions as those 
currently known for the original problem. 
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1 Introduction 

Traditionally, optimization theory has been concerned with the task of finding 
good feasible solutions to (practically relevant) input instances, little or nothing 
about which is known in advance. Many applications, however, demand good, 
sometimes optimal, solutions to a limited set of input instances which reflect 
a supposedly-constant environment (imagine, e.g., an existing railway system 
or communications network). When this environment does change, maybe only 
slightly and maybe only locally, do we have no choice but to recompute some 
good feasible solution, effectively forgetting about the old one? 

Here, we will analyze local modifications only. In a graph problem, for ex­
ample, the cost of a single edge might change, an edge might be removed or 
added, or some other local parameter might be adjusted. Results related to this 
work pertain to the question by how much a given instance of an optimization 
problem may be varied if it is desired that optimal solutions to the original in­
stance retain their optimality [12, 17, 18, 20, 21]. In contrast with this so-called 
"postoptimality analysis," our approach here is to ask, if we cannot avoid to 
lose the optimality of a given solution when an instance is varied arbitrarily, 
what can we do to restore the quality of a solution, maybe in an approximative 
sense? 

Surely, for some problems, knowing an optimal solution to the original in­
stance trivially makes their local-modification variants easy to solve because the 
given optimal solution is itself a very good solution to the modified instance. 
For example, adding an edge in the instance of a coloring problem will increase 
the cost of an optimal solution by at most the amount of one - an excellent 
approximation, but certainly not the object of our interest. 

Our goal is to present non-trivial examples of problems, some where the 
knowledge of an optimal solution to an instance close to the input is helpful 
and some where it is not. To this end, we will study TSP, its restricted versions, 
and its generalizations such as TSP with deadlines (a special case of TSP with 
time windows). 

Let A-TSP denote metric TSP, and, for ah /? > i , let Afs-TSP denote the 
special case of TSP where all instances satisfy the /^-triangle inequality 

cax,z})<(3-{c{{x,y})+ci{y,z})) 

for all vertices x, y, and 2;. If ^ < /? < 1, we call this the strengthened triangle 
inequality; and if /3 > 1, we call it the relaxed triangle inequality. 

For an optimization problem U, we denote our local-modification variant of 
U by LM-U. For the aforementioned TSP-based problems, we regard it as a local 
modification to change the cost of exactly one edge. For TSP with deadlines, 
we also regard it as a local modification to shift one deadline by the amount of 
at least one time unit. 

Our main results are as follows: 

(i) It is well-known that TSP is not approximable in polynomial time with 
a polynomial approximation ratio (unless P = NP). We show that this 
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holds for LM-TSP, too. Thus, in terms of a worst-case analysis, LM-TSP 
is as hard as TSP, and we do not have anything to gain from knowing an 
optimal solution to a close problem instance. By parameterizing TSP with 
respect to the /3-triangle inequality [1, 2, 3, 4, 5] and by introducing the 
concept of stability of approximation [15, 5], it was shown that TSP is not 
as hard as it may look like in the light of worst-case analyses. For any /? > 5, 
we have a constant polynomial-time approximation ratio, depending on (3 
only. Bockenhauer and Seibert [8] proved that zi/3-TSP is APX-hard for 
every ^ > \ (note that for /3 = ^, the problem becomes trivially solvable 
in polynomial time). Here, we prove that LM-zi/3-TSP is NP-hard for every 
13 > \. This implies in particular that LM-Zi-TSP, too, is NP-hard. We 
conjecture that this problem is also APX-hard, which, so far, we have been 
unable to prove and thus leave as an open research problem. 

(ii) For many years, Christofides' algorithm [9] with its approximation ratio 
of 1.5 has been the best known approximation algorithm for attacking 
Z\-TSP. It remains a grand challenge to improve on Christofides' algorithm. 
We will show that, intriguingly enough, LM-Z\-TSP admits an efficient 1.4-
approximation algorithm. This result can be generalized to LM-Zi^-TSP, 
and the resulting approximation guarantee beats all previously-known ap­
proximation algorithms for zi/3-TSP for all 1 < /? < 3.34899, which includes 
the practically most relevant TSP instances. 

(iii) TSP with time windows is one of the fundamental problems in operations 
research [10]. Usually, only heuristic algorithms are used to attack it al­
though the question how hard it is w. r. t. approximability has only been 
resolved in [6, 7], where even an i7(n) lower bound on the polynomial-time 
approximability of Z\-TSP with time windows was shown, in contrast to the 
constant approximability of Z\-TSP. This lower bound already holds for the 
special case of this problem where all time windows are immediately open, 
a special case of the problem which we will call TSP with deadlines, or A-
D L T S P for short. Here, we consider local-modification versions of Z\-TSP 
with deadlines. We show that already if we only allow a single deadline to 
be changed, and only by an amount of one time unit, the resulting problem, 
LM-/i-DLTSP, has the same lower bound of Q{n) on the approximation 
ratio as Z \ - D L T S P . Let us underscore the importance of this negative re­
sult: Not only does TSP with deadlines remain an intractable problem in 
its LM version, but the extra knowledge of an optimal solution to a related 
instance does not even help a single bit. Likewise, we will establish the lower 
bound of (2 — e), for any £ > 0, for L M - Z \ - D L T S P with a constant number 
of deadlines, the same as is known for / A - D L T S P with a constant number 
of deadlines [6, 7]. These results can also be obtained if, again, we modify 
the cost of an edge rather than a deadline. 

So, on the one hand, additional information about an optimal solution to a 
related input instance may be useful to some extent, and on the other hand, the 
local-modification problem variant may remain exactly as hard as the original 
problem. Yet, the final aim of our paper is to call forth the investigation of 
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the hardness of local-modification optimization problems in order to develop 
approaches to handle situations where multiple (and, potentially, dynamically 
determined) local modifications may arise. 

The paper is subdivided into two main sections. In Section 2, we will analyze 
TSP with local modifications and present hardness results as well as approxi­
mation algorithms for the metric and near-metric case. Section 3 is devoted to 
inapproximability results for the local-modification version of TSP with dead­
lines. 

2 Results for TSP 

In this section, we will analyze the local-modification version of TSP. In Subsec­
tion 2.1, we will present our hardness results. In Subsection 2.2, we will present 
a 1.4-approximation algorithm for the local-modification metric TSP, and Sub­
section 2.3 is devoted to approximability results for the case of the relaxed 
triangle inequality. 

We start off with a formal definition of TSP and its local-modification 
variants. 

Definition 1. Let G = {V,E,c) he a weighted complete graph, and let (3 > \ 
be a real value. We say that G obeys the Ap-inequality iff for all vertices x, y, 
z GV, we have 

c{{x,z})<f3-{c{{x,y}) + c{{y,z})) . (A^) 

By TSP, we denote the following optimization problem. For a given weighted 
complete graph G = {V,E,c), find a minimum cost Hamiltonian cycle, i. e., a 
tour on all vertices of cost 

OTG ••= min I ^ c(e) 
I eec 

{V,C') is a Hamiltonian cycle 

Restricting, for some value of (3, the set of admissible input instances to 
those which obey the Af}-inequality yields the problem Zi/j-TSP. Besides, de­
fine Zi-TSP := zii-TSP. 

Definition 2. Let U € {TSP, zi-TSP, Ap-TSV). The problem IM-U is defined 
as follows. 
Input: 

- two complete weighted graphs Go = {V, E,co), GN = {V, E, Cjv) such that Go 
and GM are both admissible inputs for U and such that CQ and CN coincide, 
except for one edge; 

- a Hamiltonian cycle {V,C) such that ^ co{e.) = OTGO-
eec 

Problem; Find a Hamiltonian cycle (V,C) that minimizes ^ CM{C). 
eec 
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2.1 Hardness Results 

Before presenting approximation algorithms for LM-Zi-TSP, we start by proving 
some hardness results. 

First, we will show that LM-TSP is as hard to approximate as "normal" (i. e., 
unaltered) TSP. 

Theorem 1. There is no polynomial-time p{n)-approximation algorithm for 
LM-TSP for any polynomial p (unless P = NP). 

Proof idea. We will give a reduction from the Hamiltonian cycle problem (HC): 
Given an undirected, unweighted graph G, decide whether G contains a Hamil­
tonian cycle or not. Let G = {V, E) be an input instance for HC where 
V = {vi,...,Vn]. _ 

In order to construct an input instance (Go, Gjsi, C) for LM-TSP, we employ 
a graph construction due to Papadimitriou and Steiglitz [19], who used the 
same construction in order to give examples of TSP instances which are hard 
for local search strategies: For each vertex Vi, we construct a so-called diamond 
graph Di as shown in Figure 1 (a). These diamonds are connected as shown in 
Figure 1 (b). 

The edge costs in Go are set as follows. Let M := n • 2" + 1. All diamond 
edges shown in Figure 1 (a) and the connections from Ei to Wj+i and from En 
to Wi as shown in Figure 1 (b) are assigned a cost of 1 each. Edges {Ni,Sj) 
are assigned a cost of 1 whenever {vi^Vj} € E and a cost of M otherwise. All 
other edges receive a cost of M each. In Gjv, the cost of the edge {En, Wi) is 
changed from 1 to M. The given optimal Hamiltonian cycle C is the one shown 
in Figure 1 (b). This optimal solution for Go has a cost of 8n. 

It is easy to see that if there is a Hamiltonian cycle H' in G, a corresponding 
Hamiltonian cycle H in G can traverse all diamonds from Ni via Wj via Ei to 
Si. Hence, CN{H) = 8n. All Hamiltonian cycles in Gjv that do not correspond 
(in this way) to Hamiltonian cycles in G cost at least M -\- 8n — 1. Thus, the 
approximation ratio of any non-optimal solution is at least as bad as 1-1-2""'^. 
For a more detailed description of diamond graph constructions, also see, for 
example, [16]. D 

Fig. 1. The diamond construction in the proof of Theorem 1. 
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Now, we will show that LM-Z\-TSP remains a hard problem for any /3 > | . 

Theorem 2. LM-Z\/3-TSP is NP-hard for any P>\. 

Proof. We will use a reduction from the restricted Hamiltonian cycle problem 
(RHC). The objective in RHC is, given an unweighted, undirected graph G and a 
Hamiltonian path P in G which cannot be trivially extended to a Hamiltonian 
cycle by joining its end-points, to decide whether a Hamiltonian cycle in G 
exists. This problem is well-known to be NP-complete (see, for example, [16]). 

The reduction uses an idea analogous to the standard reduction from the 
Hamiltonian cycle problem to TSP: Let {G,P) be an instance of RHC where 
G = {V,E), V = {vi,... ,Vn}, and P = (u i , . . . ,Vn)- From this, we construct an 
instance {Go, GN, C) of LM-Zi/3-TSP as follows: Let Go = (V, E, CQ) and GAT = 
{y, E, CN) where {V, E) is a complete graph, co{e) = 1 for all e e £̂ U {{t;„, vi)} 
and co{e) = 2/? otherwise, and CAr({t;„, vi}) = 2/3. Let C = {vi,V'2, • • • ,Vn,vi)-
Clearly, this reduction can be done in polynomial time, and it is easy to see 
that there is a Hamiltonian cycle in G iff there is a Hamiltonian cycle of cost n 
in GN- • 

2.2 The Met r ic Case 

In what follows, we will show that LM-Z\-TSP admits a |-approximation, which 
beats the naive approach of using Christofides' algorithm (which would yield a 
|-approximation), whereby the input cycle iV, C) would be ignored altogether. 

Theorem 3. There is a 1.4-approximation algorithm for hM-A-TSP. 

In order to prove Theorem 3, we will need the following few lemmas. Our 
crucial observation is that in a metric graph, all of the neighboring edges of 
short edges can only be modified by small amounts. 

Lem.ma 1. Let Gx = {V,E,ci) and G2 = {V,E,C2) be metric graphs such that 
Ci and C2 coincide, except for one edge e & E. Then, every edge adjacent to e 
has a cost of at least | |c i(e) — C2(e)|. 

Proof. We set {a, a'] := {ci(e),C2(e)} such that a' > a and 5 := a' — a. Let 
f G Ehe any edge adjacent to e, and for any such / , let f'GEhe the one edge 
that is adjacent to both e and / . Then, by the triangle inequality, we have: 

a ' < c ( / ) + c(/ ') c{f')<cif)+a 

and hence a' — a < 2c{f). D 

We will have to distinguish two cases. Either, an edge becomes more expen­
sive, or it becomes less expensive. In either case, our strategy is to compare the 
input solution (to the old problem instance) with an approximate solution (to 
the new problem instance). 

Let us start with the latter case. 
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Lemma 2. Let {GO,GN,C) be an admissible input for L M - Z \ - T S P such that 
6 := co{e) — Civ(e) > 0 for the edge e. If -QY— < ^, it is a ^-approximation to 

output the feasible solution C := C for LM-/1-TSP. 

Proof. 

CN{C) ^ co{C) ^ OTGO ^ OTG, + ^ _ I I ^ < i i ^ _ ^ 
OTG^ - OTG„ OTG, - OTG, OTG^ " ^ 5 5 

D 

Lemma 3. Let {GO,GN,C) be an admissible input for L M - Z \ - T S P such that 
^ := co(e) — CN{e) > 0 for the edge e. / / -QT^-— > | , there is a ^-approximation 
for LM-A-TSP. 

Proof. We may assume that optimal TSP tours in GN use the edge e. For if they 
did not, C would already constitute an optimal solution. Fix one such optimal 
tour COPT in GN- In COPT, e is adjacent to two edges / and / ' . Let v be the 
vertex incident with / , but not with e, and let v' be the vertex incident with 
/ ' , but not with e. By P, denote the path from v to v' in COPT that does not 
involve e. 

Consider the following algorithm: For every pair / , / ' of disjoint edges, both 
of which are adjacent to e, compute an approximate solution to the TSP path 
problem on the subgraph of GN induced by the vertex set V \ e (i. e., without 
two vertices) with start vertex v and end vertex v' where {v} = f \ e and 
{{;'} = f'\e. It is known [13, 14] that this can be done with an approximation 
guarantee of | . Each of these paths is augmented by / , e, and / ' so as to yield 
a TSP tour. The algorithm concludes by outputting the least expensive of all 
of these tours. 

Note that since all pairs / , / ' are taken into account, one of the considered 
tours uses exactly those edges f = f, f = f that COPT uses. This is why the 
algorithm outputs a tour of cost at most 

c{f) + c{f') + CN{e) + \c{P) = [OTG, - c{P)) + \c{P) = OTG, + \c{P) 

(where c is short-hand notation for CN wherever CQ and CN coincide) and thus 
achieves an approximation guarantee of 

1 + 2 ^(^) 
3 OTG^ 

Since by Lemma 1, min{c(/), c(/ ' )} > | for i G {1,2}, we have OTG^ -C{P) > 6 
and hence: 

OTG^ - OTG^ - 5 

So, we obtain an overall approximation guarantee of 1 + | = | . D 
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Corollary 1. There is a '^-approximation algorithm for the subproblem of 
LM-Z\-TSP where edges may only become less expensive. 

Proof. Compute, as laid out in Lemma 3, an approximate solution to LM-/A-TSP 
and compare it with the input solution C. Output the less expensive of the 
two solutions. Depending on whether the value of •Q^'— (where 5 := co{e) — 

CN{S) > 0) is less or greater than | (which we cannot necessarily tell), one of 
the considered two feasible solutions is a |-approximation. D 

We will now turn to the case where an edge becomes more expensive. We 
can state a lemma akin to Lemma 2, but notice that by reusing a formerly 
optimal solution, we incur a certain extra cost. 

Lemma 4. Let {GO,GN,C) he an admissible input for L M - Z \ - T S P such that 
5 := Cjv(e) — co{e) > 0 for the edge e. If Q^ < ^, it is a ^-approximation to 

output the feasible solution C := C for LM-Zi-TSP. 

Proof. 

CNJC) ^ cojC) + 5 ^ OTGQ + 5 _̂  OTG^ +'^ = 11 ^ < i i ^ _ ^ 
OTG^ - OTG^ OTG^ - OTG^ OTG„ " 5 5 

D 

When computing an approximate solution, things become slightly different 
from what they used to be like in Lemma 3: We may assume that e used to be 
a part of C and that a new solution should no longer use it. Instead, it will use 
two edges / and / ' such that / and / ' are non-disjoint and both incident with 
the same vertex of e. This pair may be chosen at either end-point of e, a choice 
which is completely arbitrary. 

We conjecture that, if an improvement of the approximation guarantee is 
possible, this is precisely the point where to start at. 

Lemma 5. Let {GO,GN,C) be an admissible input for L M - ^ - T S P such that 
5 := CAr(e) —co{e) > 0 for the edge e. If -QY— ^ f) there is a ^-approximation 
for LM-Z\-TSP. 

Proof. We may assume that optimal TSP tours in GN do not use the edge e. 
For if they did, C would already constitute an optimal solution. Fix one such 
optimal tour COPT, and fix one vertex w incident with e. In CQPT, W is incident 
with two edges / and / ' . Let v be the vertex incident with / , but not with e, 
and let v' be the vertex incident with / ' , but not with e. By P, denote the path 
from V to v' in COPT that does not involve w. 

Consider the following algorithm: For every pair / , / ' of edges incident with 
w, compute an approximate solution to the TSP path problem on the subgraph 
of G2 induced by the vertex set V \ {w} with start vertex v and end vertex v' 
where {v} = f \e and {v'} = / ' \ e. It is known [13, 14] that this can be done 
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with an approximation guarantee of | . Each of these paths is augmented by / 
and / ' so as to yield a TSP tour. The algorithm concludes by outputting the 
least expensive of all of these tours. 

Note that since all pairs / , / ' are taken into account, one of the considered 
tours uses exactly those edges / = / , / ' = / ' that CQPT uses. This is why the 
algorithm outputs a tour of cost at most 

c(/) + c(/') + \c{P) = {OTG, - c{P)) + \c{P) = OTG, + \c{P) , 

just as in the proof of Lemma 3. D 

Using the same arguments as in the proof of Corollary 1, the preceding 
lemma yields the following corollary. 

Corollary 2. There is a ^-approximation algorithm for the subproblem of 
LM-Zi-TSP where edges may only become more expensive. D 

2.3 The Near -Metr ic Case 

The algorithm outlined in Lemma 3 can be generalized to graphs which are not 
necessarily metric, but only near-metric, i.e., where the metricity constraint is 
relaxed by a factor of /3. Since it will pay off later, let us pay extra attention 
to the fact that input instances for all the problems from Definition 2 contain 
two distinct graphs, potentially obeying relaxed triangle inequalities according 
to different values of /?. 

Notice that the parameter /? need not be greater for the graph with the 
costlier edge. Under some circumstances, it might even decrease when we mod­
ify the cost of a single edge. In the following generalization of Lemma 1, the 
convention is therefore that ci is the cost function of the less expensive graph, C2 
that of the more expensive one, and both Cj obey the Zi^^-inequality, i G {1,2}. 

Lemma 6. Let Gi = {V, E, ci) and G2 = {V, E, C2) be graphs such that Ci obeys 
the Afj^-inequality for i S {1,2} and some values j3i,(32 > 1 and such that c\ 
and C2 coincide, except for one edge e £ E. By convention, let ci(e) < C2(e). 
Then, every edge adjacent to e has a cost of at least '̂ ^ ^ ^ " 3 ' ! ^ • 

Proof. Analogous to Lemma 1. D 

Note that for relatively small changes, the value C2(e) — /?i/32Ci(e) may well 
be non-positive, rendering Lemma 6 trivial in such a case. 

The algorithm from Lemmas 3 and 4 should be adjusted to accommodate 
for the relaxation of the triangle inequality. More precisely, in order to find a 
Hamiltonian path between a given pair of vertices in a /3-metric graph, we will 
employ the algorithm by Forlizzi et al. [11], a variation of the path-matching 
Christofides algorithm (PMCA, see [5]) for the path version of near-metric TSP, 
which yields an approximation guarantee of | /3^. This gives us Algorithm 1. 
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A l g o r i t h m 1 

Input: An instance {GO,GN,C) of LM-zi/3-TSP where Go = {V,E,co) and GN = 
{V,E,CN). 

1. Let e £ E he the edge where co{e) ¥" <^N{e)-
Let S be the set of all unordered pairs {/, f'} Q E where f y^ f are edges adjacent 
to e such that if co{e) < CN{e): / fi / ' n e is a singleton; and 

i f c o ( e ) > C i v ( e ) : / n / ' = 0. 
2. For all {f,f'} € S, compute a Hamiltonian path between the two vertices from 

( / U / ' ) \ e o n the graph G \ ( e n ( / U / ' ) ) , using the PMCA path variant by Forlizzi 
et al. [11]. Augment this path by edges / , / ' , and, if co{e) > cjv(e), edge e to 
obtain the cycle Cyj>y. 

3. Let C be the least expensive of the cycles in the set {C} U {C^fj'y \ {/, / ' } e £}. 

Output: The Hamiltonian cycle C 

L e m m a 7. Algorithm 1 achieves an approximation guarantee of 

15/3,̂  + 5A - 6 

' ^ ' ^ ^ 10/32 + 3/3U/3H + 3/3H - 6 ^ ' 

for input graph pairs {GO,GN) such that Go obeys the Ap^-inequality and GN 
obeys the Apj^-inequality and where PI := mm{po,pN} and j3„ := maxlpoj^w}-

Proof. Adhering to the convention of Lemma 6, set {01,02} = {co,cjv} such 
t ha t ci(e) < C2(e) for all edges e e E. In other words, we have C2 = ĉ v if an 
edge becomes more expensive and ci = cjv otherwise. 

We may assume tha t optimal TSP tours in GN = {V, E, CN) use the edge e 
iff CJV = ci; otherwise, C is an optimal solution, and we are done. Fix one such 
optimal tour COPT in GN, and let { / , / ' } € £ be such tha t COPT uses both / 
and / ' . By P, denote the path tha t results from COPT by removing edges / , 
/ ' , and, potentially, e. Set 

^ ( ^ ) ^ , . f K •. 9 « « 15(31 + 5(3,-6 
a := ——— and let, tor brevity, u := PLPH OTG^ ' " ' ^ ' ^ " 10/?2 + 3A/3H + 3/3H - 6 

denote the approximation guarantee claimed in (1). In terms of a, Algorithm 1 
always achieves an approximation guarantee of 

5 
1 - a + -^(3^a , 

edges / , / ' , (potentially) e are chosen optimally P will be approximated 

even if we did not have C at our disposal. (Note tha t the strategy to approximate 
P may rely on the Ap^_ inequality, i. e., the less relaxed one of the two because 
this strategy removes the edge e from the graph.) Hence, unless 
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^ - 1 

we are done. Let use therefore assume tha t (2) holds. By Lemma 6, we have 

- i n { c ( / ) , c ( / ' ) } > ^ ^ ^ t ' / f r ^ ' ^ ^ c,ie)-^Me) 

PIP2 + P2 PLPH + PH 

and hence 

^ 2.(c2(e)-/?, /?HCi(e)) 

" " - 0 T G « . ( A / 3 „ + / ? H ) • 

Put t ing this together with (2), we know tha t 

•d 1 ^ 2.(c2(e)-/3, /?HCi(e)) 

| / ? 2 - l - O T G „ - ( A / 3 „ + /3„) 

which yields 

C2(e) - /?L/3HCi(e) ^ /?,/3H + /?H (^ - 1) • {PL/^H + M 

OTG^ - 2 f / 3 ? - 2 

By adding {/3L/3H — 1 ) ^ ^ ^ to both sides, we are given: 

C 2 ( e ) - c i ( e ) A A i + A n ( ^ - 1 ) - ( ^ L / 3 H + / ? H ) , , ^ ^ .x ci(e) 
OTG^ - 2 f / 3 2 - 2 ' ^ ' ^ " ' OTG, 

and thus, substi tuting the value (1) for d, 

C 2 ( e ) - c i ( e ) ^ 3 1 (^ - 1) • ( /3A + A ) 

_ 3 . _ 1 ^ . (/3L/3H • loffff 3/35H^+3^H-6 - ^)(/^^/^" + M 
— TTPLPH + TTPH — -L — 

<1 

X5/J2 _|_ 5/5 _ g 
(tedious calculations) = • • • = /3L/3H • in^2_LQ/? ^ 1 Q/? R - 1 = ?? - 1 . 

IOPL^ + 3/3LPH + S/î H - 6 

Since, by the same reasoning as tha t of Lemmas 2 and 4, reusing the input 
optimal solution C inflicts a deviation from the new optimum by at most C2(e) — 
ci(e) < {'d — 1) • OToff, Algorithm 1 is a t?-approximation algorithm. D 

Hence, whenever the /? values of Go and GN coincide, we have Theorem 4. 

15/3^ + 5 / 3 - 6 

13/32 + 3/3 - 6 ' 

X5/52 _|_ 5/5 _ g 
T h e o r e m 4. T/iere «s a (polynomial-time) 0^ • —-—--approximation 
algorithm for LM-Zi/j-TSP. 
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Approximation 
guarantee 

13-1 

- /^V + /3 

Cor. 3 

1 1.5 2 2.5 3 

Fig. 2. Approximation guarantees of various algorithms, depending on (3 

3.5 
Parameter /9 

Interestingly, Algorithm 1 achieves a bet ter approximation guarantee not 
just than P M C A [5], but also than Bender 's and Chekuri 's 4/3-approximation 
algorithm [3] for the most practically relevant values of ^ . The turning point is 
about at (3* « 3.34899. More to the point, Andreae's (/3^+/3)-approximation [1], 
which performs better than 4/3 only when /5 < 3, always performs worse than 
Algorithm 1 in the interval /? £ (1,/?*). These observations are illustrated in 
Figure 2. 

Another practical special case is tha t where (3^_ = l,\.e., where we star t with 
a metric graph, but changing the cost of an edge will violate the Z\-inequality. 

Corol lary 3. LM-Z\/3-TSP, restricted to those inputs where Go is metric, ad­

mits a 27^-approximation. D 

3 Deadline TSP 

In this section, we will analyze the approximability of local-modification variants 
of T S P with deadlines. To begin with, let us define this problem formally. 

Def in i t ion 3 . Let G = iy,E) he a complete graph weighted by c: E ^ N"*". 
We call ( s ,D,d) a deadline set for G if s e V,D CV \ {s} and cZ: £» ^ N + . 
A vertex v £ D is called deadline vertex. A path {vo,vi,... ,Vn) satisfies the 
deadlines iff s = VQ and, for all Vi G D, we have Yl\^ic{{vj-i,Vj}) < d{vi). 

A cycle {vo,vi,... ,Vn,vo) satisfies the deadhnes iff it contains a path (VQ, 
vi, ..., Vn) satisfying the deadlines. 

Def in i t ion 4. The problem Z \ / 3 - D L T S P is defined as follows: For a given com­
plete graph G — {V,E) with edge weights c: E —^ N"*" satisfying the Ap-
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inequality, deadlines {s, D, d) for G, and a Hamiltonian cycle satisfying the 
deadlines^, find a minimum-weight Hamiltonian cycle satisfying all deadlines. 

If \D\ is a constant k, the resulting subproblem is fc-Zi^-DLTSP. We set 
Z \ - D L T S P := zii-DLTSP and fc-Z\-DLTSP := A ; - Z \ I - D L T S P for all k. 

In the case of TSP with deadlines, we will regard it as a local modification 
to change a single deadline although the LM operation from the previous section 
would let us obtain exactly the same results. The connection between these two 
LM operations will be presented in detail in the journal version of this paper. 

Definition 5. The optimization problem L M - D L T S P is defined as: 
Input: A complete weighted graph G = {V,E,c), deadlines O = {s,D,do) for 
G with a minimal Hamiltonian cycle satisfying the deadlines O, new deadlines 
N = (s, D, djv) such that do and d^ differ in exactly one vertex, and a Hamil­
tonian cycle satisfying N. 
Problem: Find a minimum-cost Hamiltonian cycle satisfying N. 

By LM-fc-DLTSP, LM-Zi-DLTSP, LM-A;-Z1-DLTSP, hU-Afj-DhHSF, LM-

fc-Zi/3-DLTSP, we denote the canonical special cases of L M - D L T S P . 

For our proofs, we will need some reductions from the following problem, 
which can easily be shown to be NP-hard analogously to the proof of the NP-
hardness of the restricted Hamiltonian cycle problem, as presented, e.g., in [16]. 

Definition 6. For a given graph G = {V,E), s, t € V and a given Hamilto­
nian path P from s to t, the problem RHP is to decide whether G contains a 
Hamiltonian path starting in s, but ending in some vertex v ^t. 

3.1 Bounded Number of Deadline Vertices 

We start with the case where only few deadline vertices occur. Note that k-A-
D L T S P can be approximated within a ratio of 2.5 [6, 7]. Furthermore, a lower 
bound of 2 — £ on the approximability, for every £ > 0, can be proved [6, 7]. We 
will show that this lower bound also holds for LM-fc-Z\-DLTSP. 

Theorem 5. Let e > 0. There is no polynomial-time (2 — e)-approximation al­
gorithm for the subproblem of LM-A;-Z\ -DLTSP where one deadline is increased 
by S, time units, £,>!, unless P = NP. 

Proof. By means of a reduction, we will show that such an approximation algo­
rithm could be used to solve RHP. Let £ > 0. 

Let (G', P) be an input instance for RHP where G' = {V, E'), \V'\ = n + 1 , 
s',t' £ V, and P is a Hamiltonian path from s' to t'. Pick a 7 > ^ ^ ^ (which 

^ Requiring a feasible Hamiltonian cycle as part of the input ensures that the problem 
is in NPO. Otherwise, it would even be a hard problem to find a feasible solution. 
For details, see [6, 7]. 
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7 

Fig. 3. Increasing a deadline. All vertices v' ^ V' \ {s',t'} are connected like v. 

We construct a complete weighted graph G — (V, E, c) as part of an input 
for LM-fe-Z\-DLTSP as shown in Figure 3: We set V := V'0{s,Di,D2}, and, 
for any edge e between two vertices wi,W2 G V, let c(e) = 1 if e G -E' and 
c(e) = 2 otherwise. All edges depicted in Figure 3 have the indicated costs 
while non-depicted edges obtain maximal possible costs. 

For these deadlines, one optimal solution C is the cycle s, Di,D2,t',... ,s',s, 
which uses the Hamiltonian path P from s' to t' in G'. It costs exactly 7 — 1 + 
7 + 7 + n-t-7 = 47 + n — 1. All other feasible solutions visit some vertices in V 
between s and Di, but cost at least the amount of 1 more. 

Now, we increase d{Di) by ^. If G' contains a Hamiltonian path P from 
s' to some vertex v ^ t', a. new optimal solution is s, P,Di,D2,s, and it costs 
7 + n + 1 + 7 + 2n = 27 + 3n + 1. If G' does not contain such a path, it is not 
possible to visit all vertices in V before reaching Di and D2. As c{{t', Di}) > 2, 
we cannot follow the given Hamiltonian path P because this would violate the 
deadline d{D2)- Similar arguments hold for every other possibility. Hence, C 
remains an optimal solution in this case. Thus, we could use any approximation 
algorithm with an approximation guarantee better than 

47-
> 2 

27 + 3n + 1 

to solve RHP. This is why approximating this subproblem of LM-fc-/i-DLTSP 
within 2 - e is NP-hard for all fc > 2. • 

Theorem 6. Let e > 0. There is no polynomial-time (2 — e)-approximation al­
gorithm for the subproblem of LM-A;-zi-DLTSP where one deadline is decreased 
by ^ time units, ^ >l, unless P = NP. 

Proof. Let £ > 0. Like in the preceding proof, we will use a reduction from 
RHP. 

Let (G", P) be an input instance for RHP where G' = (V"', E'), \V'\ = n + 1 , 
s',t' G V, and P is a Hamiltonian path from s' to t'. Pick some 7 such that 

27+8n -^ ^ *"• 

We construct a complete weighted graph G = {V, E, c) as part of an input 
for LM-fc-Z\-DLTSP as shown in Figure 4: We set V := V'U{s, Di,D2, -D3, D4}, 
and, for any edge e between two vertices vi, V2 ^ V, let c(e) = 1 if e e -E' and 
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Di =2n 7 - 1 
:==f<' \ „ 

D3 = f + 5n 

D4 = 27 + 5n 

Fig. 4. Decreasing a deadline. All vertices v' €V' \ {s',t'} are connected like v. 

c(e) = 2 otherwise. All edges depicted in Figure 4 have the indicated costs while 
non-depicted edges obtain maximal possible costs. 

The initial deadlines are depicted in Figure 4. In this setting, an optimal 
solution is the cycle s,D2,Di,t',...,s',D3,D4,s, which contains the Hamilto-
nian path from s' to t'. This path costs 2n + 7 — 1 on its way to G', spends n 
on the path from t' to s', and reaches s at time 27 + 8n — 1. 

Now, we decrease the deadline d{Di) by S,, whereby the old optimal solution 
becomes infeasible. Any new solution must visit £>i before Dg- If we try to reuse 
the Hamiltonian path from t' to s', we have to spend 2n + 7 + 1 on the way to 
t'. Therefore, we cannot reach D3 if we follow the complete Hamiltonian path. 
Furthermore, we cannot visit any vertex v G V between visiting D3 and D4 
because D3 is not reached before in + 7, going back to V would cost another 
2n, and the cheapest path from V to D4 costs more than 7. This is why any 
solution using a Hamiltonian path between s' and t' violates one of the deadlines 
diDs), d{Di). 

If G' contains a Hamiltonian path P from s' to some v ^ t', the new optimal 
solution contains this path in reverse on its way to D3. The path s, Di,D2,P, D3 
visits all vertices in V between v and s' and reaches D3 at time 7+5n. Therefore, 
this new optimal solution costs 27 + 8n. 

If G' does not contain such a Hamiltonian path, the optimal solution cannot 
visit all vertices in V before reaching D3 or even D4, and consequently, it is 
more expensive than 47. Thus, we could use an approximation algorithm with 
an approximation guarantee better than 

47 
> 2 - e 

27 + 8n 

to solve RHP. Hence, approximating this subproblem of LM-fc-Z\-DLTSP 
within 2 - e is NP-hard. D 

3.2 Unbounded Number of Deadline Vertices 

When the number of deadline vertices is unbounded, we can show a linear 
lower bound on the approximability of L M - Z \ - D L T S P . Our reduction from RHP 
involves two steps. A first construction will guarantee that an optimal path 
becomes shorter by a constant factor if a Hamiltonian path exists in the RHP 
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instance. A second construction inflates this advantage. Tours which start at 
time X, different from those that start between times X + g and X + (g, may 
spend some extra time to visit a group of vertices which, unless visited early, 
will cause belated tours to run k times zigzag across a huge distance 7. 

The following lemma describes the construction in detail. See Figure 5 for 
an overview. 

Lemma 8. Let X, g,k,^,( G N such that k is even, C > 1 o-i^d 7 > g. Let G' = 
{V',E') be a graph with deadline set {s,D',d') such that any Hamiltonian path 
in G' respecting the deadlines ends in the same vertex t. Then, we can construct 
a complete graph G D G' and deadlines {s, D, d) such that D D D', d^jy = d' 
and any path that reaches t in time X can be extended to a Hamiltonian cycle 
which costs at most 

X + (A; + 2C - 4)5 + 27 , 

while any path that reaches t after X + g, but before X + (g can only be extended 
to a Hamiltonian cycle which costs at least 

X 
k-2, 

+ C 5 + ^7 

Proof. We construct G = {V, E) with V = V U {Ei,. ..Ek} and edge costs as 
depicted in Figure 5, where b := ^(C— ̂ )- To aU other edges, we assign maximal 
possible costs. Note that the edge {t,Ei} costs exactly the same as the path 
Ek-\,Ek-3, • • • ,Ei. 

We set the deadlines 

Ek 

G' 

p, • 

E& \ 

Ei \ 

E2 [ 

'^^ 

9 

a 

9 

^ 7 

7 

7 

^T 
7 

^7 
7 

Ek 

9 

9 

b 

- 1 b \ ^ t 

i / 

'1 ( 2 1 ^)9 

\EZ/ 

d(Bi) = X + Cs + ( ^ + C)ff 

Ek-i V 

Ei I; 

s" 7 

9 ,*,1 

9 ^ 7 
7 

9 

b 

i ^ + 09 

B i 

Fig. 5. The zigzag construction for the proof of Lemma 8. The left-hand side shows 
the optimal path if t is reached at time X. The right-hand side shows the optimal 
solution if t is reached after X + g. We set b := g{(^ — | ) and d(Di+i) := d(Di) + 7. 
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d{Ei):=X + Cg+(^+c)g and 

d{Ei+i) :=^ diEi) + J for alH e { 1 , . . . ,fc - 1} . 

If a path reaches t after X+g, it must proceed immediately to Ei. Note that 
it cannot use any other edge since it would have to use an edge of an additional 
cost of at least b = g{( — 5) > ff(C ~ 1)) then. Together with even the shortest 
path to El, this would violate this deadline. But then, it is forced to follow 
the sequence E2, En,,..., Ek to reach every deadline since even if we visited £̂ 3 
before £'2, we would incur an extra cost of 6, and this would violate the deadline 
of £̂ 2- Hence, the Hamiltonian cycle costs at least X + g + ( ^ ^ + C,)g + ^7. 

A path that visits t before X can visit Ek-i,Ek^3,..., S3 before Ei because 
this path to Ei costs at most 

X + b+{^-2)g + b- X + Cg+{'^+C]9<d{Ei) 

Closing the cycle to s, we obtain a cost of at most 

X + C9 + 
k 

+ ( 9 + 1 U + 27 = X + (fc + 2C - 4)5 + 27 

D 

We will now employ Lemma 8 to prove the desired lower bound. 

Theorem 7. Let e > 0. There is no polynomial-time ((^ — e) • \V\)-approxi­
mation algorithm for the subproblem of LM-Zi-DLTSP where one deadline is 
increased by ^ >1, unless P = NP. 

do{Dx) = 3n 

do{Di) = 

doiDi) = 

do(De) = 

- 1 

n 

= 6n 

2n 

-- 8n 

2n 

Un 

<tdo{D2) = 4n dNiDi) = 3n-l + i 

.» do{D^) = lOn 

2n 

2n 

Fig. 6. Increasing a deadline: If the deadline for the vertex Di is increased, using a 
Hamiltonian path from s to v leads to a new optimal solution. 
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Proof. By means of a reduction, we will show that such an approximation algo­
rithm could be used to solve RHP. 

Let ( C , P) be an input instance for RHP, where G' = {V, E'), \V'\ = n + 1, 
s,t e V, and P is a Hamiltonian path from s to t. We construct a complete 
weighted graph G = {V, E, c) as part of an input for the L M - Z \ - D L T S P as shown 
in Figure 6: We set V = V U {Di,... ,De} and, for any edge e between two 
vertices t;i,t;2 G V, c(e) = 1, if e G E', and c(e) = 2 otherwise. To the other 
edges, assign costs as depicted in Figure 6, and maximal possible costs to the 
non-depicted edges, and set the deadlines do{Di) according to Figure 6. 

Pick some suitable 0 < (5 < 1 and 0 < o; < 1 such that -^^ ^ ^ "~ £. We use 
the zigzag construction defined in Lemma 8 with parameters X = lOn, g = 2n, 
C = 2, fc > (n -t- 7) j £ ^ , and 7 > M^iliOn ^ obtain the graph Go of our input 
instance. This guarantees 2kn + lOn < 5"f and k > a{k + n + 6). 

The given optimal Hamiltonian tour C in Go starts in s, uses the given 
Hamiltonian path in G' to t, and afterwards follows the sequence Di, D2, -D3, 
D4, Ds, DQ. Hence, it reaches DQ in time 13n. Following the zigzag construction, 
this leads to a cost of at least lOn + ( ^ ^ + C) 9 + ^7- In G^, we change the 
deadline for Di to d^^Di) = 3n — 1 + ^ for some ^ > 1. C remains a feasible 
solution. If G" contains a Hamiltonian path from s to some vertex u ^ i, an 
optimal solution uses this path and follows the sequence D2, Di, D^, D^, D4, DQ. 
This solution reaches DQ in time lOn. By Lemma 8, this cycle costs lOn + (fc + 
2C - 4)5 + 27. 

If G' does not contain any Hamiltonian path to such a vertex v, C remains 
the optimal solution in the case where ^ = 1. If ^ > 2, an optimal solution 
follows P to t and afterwards uses the sequence D2, Di, D^, D4, D5, DQ. This 
solution reaches DQ in time 12n + 1 > X + g. By Lemma 8, we obtain a cost of 
lOn + ( ^ ^ -I- ()g + k^. This leads to a ratio of at least 

10n + ( ^ - 2 ) 2 n + fc7 ^ kj 
> 10n + {k + i - 4)2n + 27 2kn + lOn + 27 

Hence, a polynomial-time (^ -e)|T/|-approximation algorithm could be used 
to solve RHP. D 

Theorem 8. Let e > 0. There is no polynomial-time ( ( | — e) \V\)-approxi-
mation algorithm for the subproblem of L M - Z \ - D L T S P where one deadline is 
decreased by ^ > 1 unless P — NP. 

Proof idea. The proof can be done in a way similar to the proof of Theorem 7. 
The relevant construction is illustrated in Figure 7. Details will be given in a 
journal version of this paper. D 

Corollary 4. Let e > 0. There is no polynomial-time ((^ — e)\V'\)-approxima­
tion algorithm for L M - Z \ - D L T S P unless P = NP. D 
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doiDi) = 4n if do(D2) = 3n 

>n - 1 ' V / ^ 

n'̂ l̂j do{D4) = 7n 

dN{D2) = 3n-$ 

• 1 

Fig. 7. Decreasing a deadline: If the deadline for the vertex D2 is decreased, the old 
optimal solution (depicted on the left-hand side) becomes infeasible. If G' contains a 
Hamiltonian path from s to v, we obtain the depicted new optimal solution. If no such 
Hamiltonian path exists, the new optimal solution must follow D2,Di,D3,Dz,Di,De. 

4 Conclusion 

In this work, we have introduced and successfully applied the concept of reusing 
optimal solutions when input instances are locally modified. In the case of metric 
TSP, we are able to improve on the previously-known upper bound of 1.5, as 
achieved by Christofides' algorithm (applied to the new instance, ignoring the 
given optimal solution), with non-trivial extensions to the near-metric case. 
As for T S P with deadlines, which is remarkably hard [6], we have been able to 
reestablish almost all known lower bounds on the approximability of its variants 
in the setting of local modifications. 

As an open problem, we state the question how hard it is to approximate 
LM-A;-Zi/3-DLTSP. Another open problem is whether the NP-hard LM-Z\-TSP 
is also APX-hard. 
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