
Chapter 18

DATA RECOVERY FROM WINDOWS CE
BASED HANDHELD DEVICES

Antonio Savoldi and Paolo Gubian

Abstract Data hiding creates serious problems for digital forensic practitioners
attempting to recover evidence. It is possible to conceal large amounts
of sensitive data in handheld devices in a manner that prevents their
recovery using standard forensic tools. This paper describes a technique
for recovering data stored in the slack memory of Windows CE based
devices. A case study involving data hiding in a Toshiba E740 PDA is
discussed.

Keywords: Data recovery, handheld devices, Windows CE, Toshiba E740 PDA

1. Introduction

Personal digital assistants (PDAs) and cell phones are the most per-
vasive pieces of electronic equipment in modern society. These devices
contain a wealth of information of evidentiary value – subscriber data,
call data, contact lists, SMS and email messages, images, audio and video
files, as well as sensitive data concealed by exploiting weaknesses in the
operating system and/or hardware. Data can be hidden in a variety of
ways, usually for illicit purposes. Two common techniques involve hiding
data in images, audio or video files using steganography and allocating
sensitive data in the slack memory of electronic devices [11, 12].

Covert channels [14] are frequently used for the surreptitious trans-
fer of sensitive data in a manner that violates the security policy of a
computer system. In the case of a storage channel, data is transferred
from one party to another by writing to shared storage; a timing channel
signals sensitive data by modulating temporal system resources. Due to
their popularity and functionality, PDAs and cell phones are attractive
devices for implementing storage channels. It is common to find such
communications devices with 256 MB RAM and 128 MB flash ROM, var-

Please use the following format when citing this chapter:

Savoldi, A. and Gubian, P., 2008, in IFIP International Federation for Information Processing, Volume 285; Advances in
Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), pp. 219–230.

220 ADVANCES IN DIGITAL FORENSICS IV

ious built-in wireless capabilities (Wi-Fi, Bluetooth, IrDa, GSM, UMTS,
HSDPA) along with a high resolution camera and a GPS receiver. Large
amounts of data can be hidden in these handheld devices in a manner
that prevents their recovery using standard forensic tools.

This paper describes techniques for data concealment and recovery
from devices running Windows CE (WinCE) [9], one of the most pop-
ular operating systems for handheld devices. A case study involving
data hidden in the slack memory of a Toshiba E740 PDA is presented.
Also, guidelines are provided to assist digital forensic practitioners in
identifying and recovering hidden data in WinCE devices.

2. Background

This section describes Windows CE and the Toshiba E740 PDA used
in our case study.

2.1 Windows CE Operating System

Windows CE [9], often referred to as WinCE, is a modular operating
system, which serves as the foundation for several classes of embedded
devices. It is supported by Intel Xscale processors and compatibles, and
MIPS, ARM and Hitachi SH processors. WinCE is optimized for de-
vices with minimal storage and small scale factors (small-scale digital
devices); its kernel requires less than 1 MB of memory. WinCE devices
are often configured without any disk storage and may be configured
as closed systems, with the operating system burned on a flash ROM.
WinCE is compliant with the definition of a real-time operating system
with deterministic interrupt latency. It supports 256 priority levels and
uses priority inheritance to deal with priority inversion. Furthermore,
WinCE is a multitasking operating system, where the fundamental unit
of execution is a “thread.” Since the first edition of WinCE (called Pe-
gasus) was released in 1996, the operating system has evolved to support
platforms other than handheld devices. The basic WinCE core is used
in AutoPC, PocketPC 2000/2002, Mobile 2003, Mobile 2003 SE, Mobile
5.0/6.0, Smartphone 2002/2003 and many other embedded systems and
industrial devices.

The WinCE kernel uses a paged virtual memory system to manage
and allocate program memory. The virtual memory system provides
contiguous blocks of memory, between 1 KB and 4 KB within 64 KB
regions, so that applications do not have to deal with memory allocation.
In a WinCE device, the operating system and the applications bundled
with the operating system are stored in ROM. The entire operating sys-
tem is mapped to a binary ROM image divided logically into two types

Savoldi & Gubian 221

of modules. The first type corresponds to executable in place (XIP)
modules; these modules save RAM space and reduce the time needed to
start applications. The second type includes compressed modules, which
are decompressed by the operating system and paged into RAM before
execution.

In WinCE devices, the RAM is divided into two regions, “object store”
and “program memory.” The object store resembles a permanent, vir-
tual RAM disk. Data in the object store is retained when the system
is suspended or when a soft reset operation is performed. Normally, de-
vices have a backup power supply for the RAM to preserve data when
the main power supply is interrupted. When operations resume, the sys-
tem searches for a previously-created object store in RAM and uses it (if
one is found). Devices without battery-backed RAM may use a special
flag in the registry to preserve data during multiple boot processes.

The remaining portion of the RAM on a WinCE device is designated
for program memory. This space holds various stacks and heaps belong-
ing to executing applications.

WinCE has a virtual memory address space of 4 GB. The operating
system is able to manage at most 32 processes by assigning a “slot”
corresponding to 32 MB of virtual address space to each process. This
is partly due to the fact that Windows CE keeps the address spaces of all
processes available at all times, even when the processes are not running.
Thus, the lower portion of the address space is split into 32 MB slots.
The address space is divided as follows (note that 32 MB corresponds
to 0x02000000 in hexadecimal code):

Slot 0 is assigned the memory locations in the range 0x00000000

to 0x01FFFFFF.

Slot 1 is assigned the memory locations in the range 0x02000000

to 0x03FFFFFF.

Slot 31 (last slot) ends at memory location 0x41FFFFFF.

Memory locations in the range 0x42000000 to 0x7FFFFFFF mostly
correspond to the “shared area” used for VirtualAlloc functions
and memory-mapped files.

Memory locations above 0x80000000 are reserved for the kernel.
The kernel and the DLLs that load into the kernel (e.g., installable
interrupt service routine (ISR) DLLs) execute from this memory
space.

222 ADVANCES IN DIGITAL FORENSICS IV

Kernel
Space

User
Space

0xFFFF FFFF

0xE000 0000

0xC400 0000

0xC200 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x7FFF FFFF

0x7E00 0000

0x4200 0000

0x0400 0000

0x0200 0000

0x0000 0000

Kernel address: KPAGE,
Trap area, others

Statically mapped virtual
addresses: OEM additional

Slot 97: Nk.exe (Secure slot)

Unused

Statically mapped virtual
addresses: UNCACHED

Statically mapped virtual
addresses: CACHED

Slot 63: Resource mappings

Slots 33−62: Object store and
memory mapped files

Slots 2−32: Processes

Slot 1: XIP dlls

Slot 0: Current process

Figure 1. Virtual address space managed by WinCE.

Figure 1 shows the layout of the virtual memory managed by WinCE.
Note that the kernel and user space each have 2 GB of addressable
memory.

The Remote Application Program Interface (RAPI) protocol [8] is
often used by tools to extract the ROM and RAM contents of WinCE
devices. The RAPI library enables applications running on a desktop
computer to perform actions on a remote WinCE device; these include
manipulating the file system on the remote device (e.g., creating and
deleting files and directories). RAPI interfaces can be used to create
and modify databases, either in the object store or in mounted database
volumes. RAPI applications can also query and modify registry keys as
well as launch applications and invoke methods on the remote device.

2.2 WinCE Test Device

A Toshiba E740 PDA equipped with the PocketPC 2002 OS (a WinCE
derivative) was used in our investigation of data hiding and recovery at
the firmware level. It has an Intel PXA240 (400 Hz) processor, 64 MB
of SDRAM (main memory) and 32 MB of CMOS flash memory (ROM),

Savoldi & Gubian 223

which holds the operating system. The device also has built-in Wi-Fi
and IrDa transceivers. Two slots for secure digital and compact flash
cards are available for memory expansion. Later in this paper we will
demonstrate the ease with which data can be hidden in the ROM and
RAM in a manner that precludes its recovery using commercial digital
forensic tools.

2.3 Data Extraction Techniques

The two main classes of data extraction techniques are logical extrac-
tion and physical extraction. A logical extraction technique focuses only
on the visible content at the file system level, i.e., data pertaining to
files, databases and registry along with other file system data. Device
Seizure [10] is a popular logical data extraction tool for PDAs and cell
phones (although it can access some physical data from certain devices).

A physical extraction technique, on the other hand, is attractive be-
cause it can recover all the data stored in an electronic device. In most
cases, however, only the flash ROM and the RAM content are recovered
using a special operating mode of the device (e.g., Palm OS debugger
mode) or by communicating with the operating system (e.g. using the
RAPI protocol [8]).

According to Breeuwsma and co-workers [2], three techniques may be
used to obtain a complete copy of flash memory: (i) using “flasher” tools,
(ii) using JTAG test access ports, and (iii) using forensic de-soldering.

Flasher tools are designed to copy the memory of certain families of
electronic devices. They employ APIs that interact with the addressable
memory. Generally, these tools originate from manufacturers, who use
them for debugging purposes, or they come from the hacker community,
which creates the tools to modify the functionality of handheld devices.
An important advantage of this technique is that flash memory can be
imaged without de-soldering the chip. However, many flasher tools do
not make complete forensic copies of flash memory, mostly because of
the limited functionality of the API provided by the embedded device.
Furthermore, it is important to acknowledge Locard’s Exchange Prin-
ciple [3] in that a data extraction process executing in device memory
can potentially affect the integrity of the memory. Gershteyn and co-
workers [4] have used flasher tools to recover hidden data from BIOS
chips. Savoldi and Gubian [11] have used similar tools to extract data
from SIM/USIM cards.

The second physical extraction method involves the use of JTAG test
access ports of embedded devices. JTAG ports in most devices are de-
signed for debugging purposes, but they can also be used to access the

224 ADVANCES IN DIGITAL FORENSICS IV

flash memory [1]. The JTAG extraction technique is complex and time
consuming; however, it is possible to guarantee that no data is written
to memory during the data recovery phase.

The third physical extraction technique is to de-solder the memory
chip and use a chip programmer or reader to extract the data. This
method is expensive, time consuming and the most invasive; however, it
can be used to recover data from damaged devices.

3. Data Extraction Methodology

This section discusses the use of open source tools based on the RAPI
protocol [8] for acquiring the binary ROM image and major portions
of the RAM of a WinCE device. The software-based approach falls in
the category of using flasher tools. It can be used to extract data in a
non-invasive manner from a variety of WinCE devices.

Our experiments employed a set of open source tools [6] based on the
RAPI and ActiveSync protocols. Two tools, pmemdump and pmemmap, are
particularly useful.

The pmemdump tool is very effective at extracting ROM and RAM
data. To use the tool, it is necessary to copy a DLL library to the device
file system. The following options are provided by pmemdump:

Usage: pmemdump [-m | -p procname | -h prochandle] start length

[filename]

numbers can be specified as 0x1234abcd

-1 -2 -4 : dump as bytes/words/dwords

-w NUM : specify number of words per line

-s SIZE : step with SIZE through memory

-a : ascdump iso hexdump

-f : full -- do not summarize identical lines

-c : print raw memory to stdout

-x : print only hex

-xx : print only fixed length ascii dumps

-v : verbose

-n NAME : view memory in the context of process NAME

-h NUM : view memory in the context of process with handle NUM

-m : directly access memory -- not using ReadProcessMemory

-p : access physical memory instead of virtual memory

if -p, -h and -m are not specified, memory is read from the

context of rapisrv.exe

By specifying the virtual starting address (in hexadecimal notation)
with the length of the memory block, it is possible to obtain, for example,
the entire ROM image (32 MB). This is saved in the file rom pda.bin

as follows:

pmemdump.exe 0x80000000 0x02000000 rom_pda.bin

Savoldi & Gubian 225

Table 1. Complete dump of the system pagetable.

Virtual Address Physical Address Size KB

v160f9000-160fa000 pa3f77000-a3f78000 100016 4

v1649f000-164a0000 pa3f60000-a3f61000 100016 4

v1686f000-16870000 pa3d1f000-a3d20000 100016 4

v17f66000-17f67000 pa3d54000-a3d55000 100016 4

v80000000-80400000 pa0100000-a0500000 40000016 4096

v80400000-82000000 p00400000-02000000 1c0000016 28672

v88200000-88300000 p48000000-48100000 10000016 1024

v88300000-88400000 p44000000-44100000 10000016 1024

v88400000-89800000 p40000000-41400000 140000016 20480

v8b400000-8b500000 p28000000-28100000 10000016 1024

v8b500000-8b600000 p20000000-20100000 10000016 1024

v8b600000-8b700000 p38000000-38100000 10000016 1024

v8b700000-8b800000 p30000000-30100000 10000016 1024

v8c000000-8d000000 p0c000000-0d000000 100000016 16384

v90000000-90100000 pa0000000-a0100000 10000016 1024

v90100000-90500000 p00000000-00400000 40000016 4096

v90500000-94000000 pa0500000-a4000000 3b0000016 61440

v98000000-9c000000 p2c000000-30000000 400000016 65536

v9c000000-a0000000 p3c000000-40000000 400000016 65536

va0000000-a0400000 pa0100000-a0500000 40000016 4096

va0400000-a2000000 p00400000-02000000 1c0000016 29696

va8200000-a8300000 p48000000-48100000 10000016 1024

va8300000-a8400000 p44000000-44100000 10000016 1024

va8400000-a9800000 p40000000-41400000 140000016 20480

vab400000-ab500000 p28000000-28100000 10000016 1024

vab500000-ab600000 p20000000-20100000 10000016 1024

vab600000-ab700000 p38000000-38100000 10000016 1024

vab700000-ab800000 p30000000-30100000 10000016 1024

vac000000-ad000000 p0c000000-0d000000 100000016 16384

vb0000000-b0100000 pa0000000-a0100000 10000016 1024

vb0100000-b0500000 p00000000-00400000 40000016 4096

vb0500000-b4000000 pa0500000-a4000000 3b0000016 61440

vb8000000-bc000000 p2c000000-30000000 400000016 65536

vbc000000-c0000000 p3c000000-40000000 400000016 65536

vfffd0000-fffd1000 pa05a0000-a05a1000 100016 4

vfffd1000-fffd2000 pa05a0000-a05a1000 100016 4

vfffd2000-fffd3000 pa05a0000-a05a1000 100016 4

vfffd3000-fffd4000 pa05a0000-a05a1000 100016 4

vfffd4000-fffd5000 pa05a0000-a05a1000 100016 4

vfffd5000-fffd6000 pa05a0000-a05a1000 100016 4

vfffd6000-fffd7000 pa05a0000-a05a1000 100016 4

vfffd7000-fffd8000 pa05a0000-a05a1000 100016 4

vffff0000-ffff1000 pa05a8000-a05a9000 100016 4

vffff2000-ffff3000 pa05a8000-a05a9000 100016 4

vffff4000-ffff5000 pa05a8000-a05a9000 100016 4

vffff6000-ffff7000 pa05a8000-a05a9000 100016 4

vffffc000-ffffd000 pa05a9000-a05aa000 100016 4

The pmemmap tool can be used to sample the entire 4 GB of virtual
memory as follows (each step of 16 MB takes 16 bytes):

pmemmap.exe -s 0x01000000 0 0xfff00000

An important task is to locate the starting and ending addresses of
the ROM and RAM memory blocks. These addresses can be identified
by analyzing the content of the system pagetable (Table 1), which was
obtained using the pmemmap tool.

226 ADVANCES IN DIGITAL FORENSICS IV

The entire binary ROM image is obtained by starting with the virtual
address 0x80000000 and specifying a length of 32 MB (0x02000000).
This can be verified by summing up the two physical block sizes identified
with the virtual and physical addresses as shown below. Note that only
one virtual memory block is present, which is mapped to two physical
ROM blocks; the two physical blocks together constitute the 32 MB
ROM block.

v80000000-80400000 -- pa0100000-a0500000 4096 KB

v80400000-82000000 -- p00400000-02000000 28672 KB

Extracting the RAM contents is important, especially as the RAM
contains all the installed programs along with sensitive user data. Un-
fortunately, as will be explained below, it is not possible to obtain a
complete forensically-sound copy of the RAM. Also, according to Lo-
card’s Exchange Principle, the integrity of the RAM memory image
cannot be guaranteed because the acquisition process executes in the
same memory from where data is being extracted. The pagetable shows
a 60 MB block, which contains the object file store (32 MB) along with a
substantial portion of the program memory (except for the kernel area).
The portion of the pagetable presented below shows six virtual blocks
that refer to three physical blocks.

v90500000-94000000 -- pa0500000-a4000000 60 MB

v98000000-9c000000 -- p2c000000-30000000 64 MB

v9c000000-a0000000 -- p3c000000-40000000 64 MB

vb0500000-b4000000 -- pa0500000-a4000000 60 MB

vb8000000-bc000000 -- p2c000000-30000000 64 MB

vbc000000-c0000000 -- p3c000000-40000000 64 MB

Our experiments indicate that only the 60 MB block is related to the
main RAM. Therefore, it is possible to carve the signatures of all the
known programs that are present in memory to verify the correctness of
the extracted RAM block.

The main drawback of this data recovery technique is the possible
lack of integrity of the extracted program memory. This is because
the stack and heap portions of the memory are modified as the data
extraction process executes. However, the memory portion related to
the object store should not change because it is not influenced by the
extraction process. Thus, the most important portions of the RAM can
be successfully extracted if some integrity loss is acceptable. In any case,
the integrity of the extracted data can be verified by analyzing the RAM
contents and carving all the signatures related to user objects (programs,
sensitive data, etc.).

Savoldi & Gubian 227

An important point worth noting is that it is not necessary to scan
the entire 4 GB virtual address space, which can take more than two
hours. It is much more efficient to analyze the pagetable and focus on
the memory blocks that have forensic value; this requires no more than
20 minutes to obtain the entire ROM and RAM contents. We believe
that this methodology is applicable to the full range of WinCE devices.

4. Experimental Results

This section presents the results of the case study involving data hid-
ing in WinCE devices. It shows how data can be hidden in the slack
portion of the binary ROM of a Toshiba E740 PDA in a manner that
prevents its recovery using standard digital forensic tools.

4.1 Binary ROM Image

The Toshiba E740 PDA has a regular binary ROM image of 32 MB.
The ROM has a section allocated to the boot loader; the remaining
portion of the memory holds the operating system kernel. Inspection
of the ROM image released by Toshiba reveals that about 40% of the
binary image is empty – this corresponds to about 12 MB of slack space.

Two principal techniques may be used to hide data in the slack portion
of the binary ROM image. One approach is to use a flasher tool that has
been modified using reverse engineering techniques. The second, simpler
approach is use a compact flash card.

Generally, tools for upgrading the operating system are released by
the manufacturer. They incorporate a checksum mechanism to verify the
integrity of the official binary ROM image and, consequently, to permit
its upload. In order to upload a modified version of the binary ROM
image, it is necessary to remove this control in the original executable
file using reverse engineering techniques. Other checksum tests may be
implemented at the boot loader level to verify that a trusted ROM image
is loaded into the PDA. It is also necessary to defeat these protection
schemes in order to upload arbitrary ROM images.

In the case of the Toshiba E740 PDA, we have developed a technique
for re-flashing the device without modifying the executable file or the
boot loader. Specifically, it is possible to initiate the re-flashing process
by uploading a ROM image on a compact flash card and performing
a soft reset with the card inserted in the PDA. This bypasses all the
integrity controls, enabling a modified ROM image to be installed in the
device.

The binary ROM image is a sequence of contiguous blocks, some of
which may be empty; these empty blocks can be used to hide sensitive

228 ADVANCES IN DIGITAL FORENSICS IV

data. To simplify memory allocation, we used only the empty blocks
with size greater than 1 KB to hide data. Since about 40% of the ROM
image is empty, approximately 12 MB is available to hide data. Of
course, it is necessary to first identify all the empty and usable blocks
and locate their starting and ending addresses.

4.2 Hiding Data

Standard strategies used for allocating pages in main memory (e.g.,
first fit, best fit and worst fit techniques [5, 13]) may be used to hide
data within the slack portion of the ROM. We recommend the following
data hiding strategy to accommodate the fact that empty blocks in the
ROM are of varying size.

A script (e.g., written in Perl) is used to identify all the empty
blocks with size above a certain threshold (e.g., 1 KB). Each block
has a starting and an ending address. In addition, a unique number
is assigned to each block in order to apply a steganographic scheme.
The total slack space, Stot, is represented as:

Stot = {(n1, s1, e1), (n2, s2, e2), ..., (nK , sK , eK)} (1)

where nk is the number assigned to the kth empty block for stegano-
graphic purposes, and sk and ek are its starting and ending ad-
dresses, respectively.

A file, F , is created with size less than or equal to Dim(Stot)
(F | Dim(F) ≤ Dim(Stot)), where Dim() is the space occupied by
a specific block of data. Next, an allocation policy is chosen based
on a block sequence specified according to Equation 1. Thus, the
file F is mapped as follows:

F 1 = {(n1, s1, e1), ..., (np, sp, ep)} (2)

where
(K

p

)
= K!

p!(K−p)! possibilities exist for selecting the p blocks

from the K possible blocks. The F 1 file is the result of allocation
using an arbitrary sequence of blocks in the set {1, ...,K}:

Dim(F 1) =

p∑
i=1

b(i) | Dim(F 1) ≥ Dim(F). (3)

Savoldi & Gubian 229

Note that F 1 differs from F in the last block used, which can be
greater than the last chunk of the file. The sequence of used blocks
forms the steganographic key for recovering the original file.

4.3 Recovering Hidden Data

Every certified binary ROM image has a unique MD5/SHA1 signature
that may be used to verify its integrity. An image with a different
signature potentially contains hidden data.

The first step in recovering hidden data is to analyze the differences
between the two images. Next, data carving techniques and a steganal-
ysis approach are used to recover the hidden data. The procedure for
recovering hidden data can be summarized as follows:

Having verified that the extracted binary image is not original,
analyze the differences between the certified ROM image and the
extracted image.

Apply data carving techniques [7] to obtain headers and fragments
that might indicate the type of the data and the techniques used
to hide it.

If it is evident that scrambling techniques have been applied, at-
tempt to identify the correct sequence of blocks used for data hid-
ing.

Standard commercial tools such as Device Seizure [10] can be be used
for logical data extraction. However, logical data extraction does not
recover hidden data allocated within the slack portion of the ROM; only
standard objects present at the file system level (e.g., user files, reg-
istry and installed programs) are visible and, consequently, recoverable.
Unfortunately, Device Seizure was not very effective at physcial data
extraction – it was unable to reveal any hidden data.

5. Conclusions

Large amounts of illicit data may be concealed in handheld devices
in a manner that prevents their recovery using standard forensic tools.
Due to the ubiquity of WinCE devices, digital forensic practitioners
must be aware of techniques used for hiding data and for recovering this
data. As verified in the case study involving a Toshiba E740 PDA, the
methodology proposed for discovering and extracting hidden data from
the slack portion of flash ROM and RAM is both sound and efficient.
Moreover, the guidelines proposed for identifying and recovering hidden
data hold for WinCE devices in general. Our future work will investigate

230 ADVANCES IN DIGITAL FORENSICS IV

data hiding and recovery techniques for embedded devices using other
operating systems (e.g., Symbian OS and iPhone OS X).

References

[1] M. Breeuwsma, Forensic imaging of embedded systems using JTAG
(boundary-scan), Digital Investigation, vol. 3(1), pp. 32–42, 2006.

[2] M. Breeuwsma, M. De Jongh, C. Klaver, R. van der Knijff and
M. Roeloffs, Forensics data recovery from flash memory, Small Scale
Device Forensics Journal, vol. 1(1), pp. 1–17, 2007.

[3] W. Chisum and B. Turvey, Evidence dynamics: Locard’s exchange
principle and crime reconstruction, Journal of Behavioral Profiling,
vol. 1(1), 2000.

[4] P. Gershteyn, M. Davis and S. Shenoi, Forensic analysis of BIOS
chips, in Advances in Digital Forensics II, M. Olivier and S. Shenoi
(Eds.), Springer, New York, pp. 301–314, 2006.

[5] M. Gorman, Understanding the Linux Virtual Memory Manager,
Prentice-Hall, Upper Saddle River, New Jersey, 2004.

[6] W. Hengeveld, RAPI tools (www.xs4all.nl/∼itsme/projects/xda/to
ols.html), 2003.

[7] K. Kendall and J. Kornblum, Foremost (version 1.5.3) (foremost
.sourceforge.net).

[8] Microsoft Corporation, Remote API 2 (RAPI2), Redmond, Wash-
ington (msdn2.microsoft.com/en-us/library/aa920150.aspx).

[9] Microsoft Corporation, Windows CE overview, Redmond, Washing-
ton (msdn2.microsoft.com/en-us/library/ms899235.aspx).

[10] Paraben Corporation, Device Seizure v1.2, Orem, Utah (www.para
ben-forensics.com/catalog).

[11] A. Savoldi and P. Gubian, Data hiding in SIM/USIM cards: A
steganographic approach, Proceedings of the Second International
Workshop on Systematic Approaches to Digital Forensic Engineer-
ing, pp. 86–100, 2007.

[12] A. Savoldi and P. Gubian, SIM and USIM file system: A forensics
perspective, Proceedings of the ACM Symposium on Applied Com-
puting, pp. 181–187, 2007.

[13] A. Silberschatz, P. Galvin and G. Gagne, Operating System Con-
cepts, John Wiley and Sons, Hoboken, New Jersey, 2005.

[14] U.S. Department of Defense, Department of Defense Trusted Com-
puter System Evaluation Criteria, Technical Report DOD 5200.28-
STD, Washington, DC, 1985.

