
I/O Data Mapping in ParFiSys: Support for
High-Performance I/O in Parallel and

Distributed Systems

J. Car re te ro and F.P6rez and P. de Miguel and F. Garcla and L. Alonso

Universidad Polit6cnica de Madrid (UPM)
e-28660 Madrid, Espafia, E-mail: jcarrete@fi.upm.es

A b s t r a c t . This paper gives an overview of the I /O data mapping mech-
anisms of ParFiSys. Grouped management and parallelization are pre-
sented as relevant features. I /O data mapping mechanisms of ParFiSys,
including atl levels of the hierarchy, are described in this paper.

1 I n t r o d u c t i o n

MPPs, distributed memory systems with a high number of processors, provide a new
I /O system, relying on parMlel hardware. Their I /O subsystem architecture, which is
distributed in nature, usually consists on several independent I /O nodes supporting one
or more secondary storage devices. Using parallel I /O systems and parallel file systems
seems to be a good approach to take advantage of the inherent parallelism of the MPP,
as shown in some parallel file systems as Vesta [3]. In this paper we give an overview of
some aspects of ParFiSys [2], a parallel file system developed at the UPM to provide I /O
services for the GPM~MD machine, an MPP developed withiu the ESP1KIT program
P-5404. The m~in design goals of ParF4Svs were to provide I /O services to scientific
applications requiring high I /O bandwidth, to minimize application porting effort,
and to exploit the parallelism of generic message-passing multicomputers, including
processing nodes (PNs) and I /O nodes (IONs). To fully exploit all the parallel features
of the I /O hardware, the architecture of ParFiSys is clearly divided in two levels:
file services and block services. The first level is comprised into a component named
ParCtient. The second architecturM level, named ParServer and located at the ION,
deals with logical block requests interacting directly with the I /O devices located on
its own ION.

2 D a t a D i s t r i b u t i o n in ParFiSys

To enhance flexibility, ParFiSys mapping is based on a very generic d i s t r i b u t e d par t i -
t i on represented as the tuple ({NODE,}, {CTLR~},~, {DEVa}~), which describes the
set of I /O nodes, controllers per node, and devices per controller of the partition. The
current implementation of ParFiSys supports three kinds of predefined file systems (fig-
ure 1): UNIX-like, distributed extended, and distributed cyclic. To reduce contention
in ParServe~s and to increase ~ault tolerance, the distribution is applied to data and
metadata of the file system. A distributed file system has a replicated superblock, and
distributed bitmaps and i-node blocks. Having replicated superblocks allows ParFiSys
to moun~ file systems with some devices damaged. Distributing bitmaps and i-nodes

523

f i : [~ : i : i : i | : i : ! 3 ~ $ i ! i : ~ : r

:: :i:i:i:i:i:!:::::i:i

:::::::::::::::::::::: ::::::::::::::::::::::: .:~.:.:.:.:::ii/.: :.:::.:::.:.:.:.:.: :::: :.:~:.:.:.:::. :.:.:.:.:+:.: :.:. lii iiiiiilii i iiiiiiiiii!i iI',iiiiiiiiii iii iiiil l i!il li li l iiil
E x t e n d e d C y c l i c ,SI n g l e

Fig. 1. ParFiSys Distributed File Systems

increase ParFiSys performance by balancing the load due to metadata management
among all the ParServers of the file system.

3 D a t a Mapping in ParFiSys

Usually the user vision of the file is a byte stream, whereas the file system vision is a set
of scattered logical blocks. Moreover, in parallel and distributed file systems, the blocks
may be spread out among several ION and devices [1]. Thus, a parallel file system as
ParFiSys must be able to establish some correspondence between the user and the
physical image of data. To satisfy user I /O requests, each ParClient and ParServer
must have some knowledge of where the data corresponding to the user image are
located. Mapping functions have to be established from the user data structure to the
relevant ION, controllers, devices, and disk blocks. The approach suggested for the
NCube's I /O software [4] has been followed in ParFiSys, where data mapping is solved
stepping through four correspondences: File Block to Byte (FBB), File Block to I /O
Node (FBION), File Block to Controller (FBC), and File Block to Device (FBD). The
two uppermost levels (FBB and FBION) are accomplished at the ParClients. The two
lowermost levels are provided by the ParServers. A complete translation to write data
is defined as F B B -1 o (F B I O N o F B C o FBD)

FBB is only related to the file image used in ParFiSys, a UNIX-like image viewed
as a string of bytes. High level I /O operations executed in each ParClient (read, write,
. . .) translate user I /O requests, defined in bytes, to file system block ones. The block-
based approach, used on most file systems, has several drawbacks in high-performance
I /O systems, where I /O requests are usually large: cache management cost is propor-
tional to the number of blocks, there is no support to manage several user requests as
a single one, and a remote access to a ParServer may be required for each requested
block. To enhance FBB correspondence the whole user buffer is mapped to blocks on a
single operation in ParFiSys, which highly reduces the number of accesses to indirect
blocks. In block-based file systems, the number of accesses (ha) is linear to the depth

524

]ii ii!l] iiiilliiiii iiiiIiiiiii!l
, , iliiii iiiilii !iii]i !iiiiii,iiiiiiiiii!iI!iiiiilili !,
, liii[!{g?l? l lii!i iiiilli iiilIiii! ii!ili!N 1

J o,I!i!iiiiill Niiiiiiliill I! I I! I
Imp'7125 / :41 I ii Iiii~ I l ii[iii iili~i[!~

i00
Fig . 2. FBB Improvement in ParFiSys

of the indirection level used (single, double, triple). The FBB correspondence used in
ParFiSys Mlows to obtain a lists of n blocks corresponding to the whole user request
with a single mapping operation. To avoid problems due to greedy processes executing
many large I / O requests, a uppermost limit (FBB factor) is defined for the size of the
user buffer tha t can be mapped on a single operation. It is computed using a configu-
ration parameter (FBB maximum) affected by a weight factor, which depends on the
process I / O behavior. The number of accesses (ha) is now reduced proportionMly to
the FBB factor (k), as reflected below:

{
n a ---- + i) * j (I)

j = l

where n is the number of blocks, and i is the indirection level. The improvement
achieved with the ParFiSys approach is shown in figure 2, crossed section reflects the
percent ratio in number of accesses to indirect blocks required to map a user buffer
with several grouping factors. Even when only the first indirection level is shown in the
figure, the number of accesses avoided is almost the 80% for a FBB factor of 5 blocks.
To improve accesses smaller than the former threshold, 5 blocks are always premapped.

Minimizing indirect block accesses highly reduces the number of operations required
to execute FBB mapping and the number of operations requested to the ParServer,
which increases scal~bility. The improvement of the mapping t ime when using the
ParFiSys FBB correspondence compared with a t radi t ional FBB correspondence is
shown in figure 2. This figure shows the experimental results obtained by reading a
10 MBytes file, using 8 Kbyte blocks, with request size varying from 8 KBytes to 512
KBytes. The FBB factor is equal to the request size. As can be seen, the improvement

525

in t ime is almost exponential for ParFiSys, which is highly affected by the request
size. For accesses larger than 128 KBytes, the improvement is very small, so it can
be considered as a maximum FBB factor. A similar test to evaluate write operations
shown an analogous behavior.

FBION, FBC, and FBD depends on the distribution strategy defined by the user
or the file system to map da ta on I /O devices. The FBION correspondence must deter-
mine the relation between a file block x and the node where it is located. Establishing
the former correspondences for extended and cyclic partit ions having an non uniform
layout of controllers and devices is heavy. To enhance the former computations, some
information about the distr ibuted part i t ion and file system is computed when the file
system is created and stored in the superblock. A symmetrical layout which greatly im-
proves the mapping functions, as showm below for a cyclic part i t ion with e controllers,
d devices , and s blocks per device, are:

F B I O N = x rood pd
ed (2)

F B C = (x rood pd) rood cd

F B D = ((x mod pd) mod ed) rood d (4)

where pd = n * c * d is the number of devices in the parti t ion, and ed = c * d is the
number of devices per ION.

4 C o n c l u s i o n

The concurrent architecture of ParFiSys provides high concurrency and parallelism in
ParClients and ParServers, reducing the latency of services and increasing the overall
performance. Multi-level mapping is a very flexible and scalable mechanism to connect
the user da t a image with the file system internal image. The correspondence used to
map user space to file blocks provides a very good performance because of grouped
algorithms and parallelization. Data distribution algorithms have shown a high flexi-
bility to map da ta onto different kind of file systems, becuase of the generality of the
part i t ion structure. Finally, it is very important to remark that users may define da ta
mapping functions to be used by ParFiSys, even when three mapping strategies are
predefined internally.

R e f e r e n c e s

1. R. Bordawekar, J. Rosario, and A. Choudhary. Design and Evaluation of Primitives
for Parallel I /O. In Supercomputing 93, pages 452-462. IEEE, 1993.

2. J. Carretero, F. P@rez, P. De Miguel, F. Garc[a, and L. Alonso. ParFiSys: A Paral-
lel File System for MPP. A C M SIGOPS, 30(2):74-80, April 1996.

3. P. Corbett , S. Johnson, and D. Feitelson. Overview of the Vesta Parallel File Sys-
tem. A C M Computer Architecture News, 21(5):7-15, December 1993.

4. E. DeBenedictis and J. M. del Rosario. nCUBE Parallel I /O Software. In Eleventh
Annual IEEB International Phoenix Conference on Computers and Communica-
tions (IPCCC), pages 117-124, April 1992.

