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ABSTRACT This paper describes the use of timed Condition/Event (C/E) 
systems, a real-time extension of the C/E system framework introduced by 
Sreenivas and Krogh, for building models of chemical plants in a modular 
fashion and as a basis for the model-based analysis of their discrete control. 
The approach is illustrated by applying it to the safety control logic of a 
laboratory batch process. 

1 Introduction 

Most plants in the chemical industry are controlled by discrete controllers, 
realized by distributed control systems (DCS), programmable  logic con- 
trollers (PLC), PC ' s  or dedicated hardware. These controllers have to en- 
sure correct s tar tup  and shutdown, realize sequence control, and guarantee 
safe and reliable process operation. Although there are successful research 
activities in the field of controller verification (see for example [2], [6], and 
[7]), up to now the correctness of discrete controllers is only tested man-  
ually and no model-based analytical verification methods are applied in 
practice. The main reason is that  the development of a formal model of the 
uncontrolled plant behavior including all disturbances and operator fail- 
ures is hardly feasible due to the complexity of such systems. To overcome 
this situation, modeling procedures have to be developed which make it 
possible to handle complexity by appropriate structuring strategies. One 
approach in this direction is modular  modeling, i. e. the building of com- 
plex system descriptions by setting up small, local models independently 
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from each other and representing the interaction by signals connecting the 
subsystems. A modeling framework which is particularly well suited for 
modular modeling are the Condition/Event systems (C/E systems) intro- 
duced by Sreenivas and Krogh [9]. C/E systems provide the possibility to 
couple interconnected discrete event systems by real-time signals in a block 
diagram and signal flow fashion. 

In this paper we will describe the use of the C/E  system framework to 
build discrete models of chemical processes and to analyse discrete con- 
trollers for such processes. Since the latter task makes it necessary to treat 
timing functions in the control programs whereas the original C /E  model is 
untimed, we introduce a real-time extension for C /E  systems and describe 
teachability analysis for timed C/E systems. 

The paper is organized as follows. In the next section the basic concept of 
a C/E system is reviewed and illustrated with the help of a small example. 
Section 3 presents the real-time extension of C /E  systems which is realized 
by introducing C/E  timers and the corresponding analysis. The modeling 
and analysis approach is then applied to a process control example in Sec. 
4. Finally, in Sec. 5, we draw some conclusions, look at the relation of our 
approach to related work and discuss possible directions for future research. 

2 Condition/Event Systems: Basic Concepts 

Condition/Event systems were introduced by Sreenivas and Krogh in [9]. 
The authors were motivated by the observation that in existing DES models 
the interaction between systems is either based on synchronization of events 
or conditioning of event occurence depending on state information. Some- 
times, both options are used for different purposes as for instance in the su- 
pervisory control theory of Ramadge and Wonham [8]. To incorporate both 
concepts into a single, unified representation of interconnected DES, Sreeni- 
vas and Krogh define two classes of signals which can both be input and out- 
put signals of one system: condition signals and event signals. A condition 
signal c(.) is a right continuous function c : [to, oo) -+ C with limits from 
the left, with C being a nonempty, finite, and countable set of conditions. 
Therefore, condition signals are time-dependent signals which are piecewise 
constant. An event signal e(e) is a function e : [to, cr -+ Eo = E U 0 for 
which e(to) = 0 (the null or zero event) and t �9 [tl,t2]Je(t) # 0 is finite 
for all finite intervals [tl,t2] �9 [to, cr and E is a nonempty, finite, and 
countable set of events. We may say that  event signals are only pointwise 
"nonzero". The set of all condition or all event signals on [to, cr is written 
as C(C, to) or E(E,  to), respectively. 
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FIGURE 1. Condition/Event signals and systems. 

In general, a C/E system has a conditon input signal u(t), an event input 
signal v(t), a condition output signal y(t) and an event output signal z(t), as 
it is illustrated in Fig. 1. The corresponding sets of conditions or events are 
U, V, Y, and Z, respectively. A C/E  system is then defined as a mapping 
which gives the set of admissable output signal trajectories for each possible 
input signal trajectory: ~ : C(U, to) x E(V, to) -+ 2 c(Y't~176 such that 
for any input (u(-), v(*)) E C(U, to) x E(V, to) there exists at least one out- 
put (y(*), z(+)) E C(Y, to) • E(Z, to) fulfilling (y(.), z(*)) E E(u(-),  v(*)). 

In the definition above, a C /E  system is characterized by its input /output  
behaviour. There is no specification or restriction on the model of the in- 
ternal dynamics of a C/E system. In [9], any formal representation which 
describes an appropriate input /output  relation is called a C/E model. One 
example of a C /E  model, based on Petri nets, is presented in [10]. Here, we 
will consider two different C/E models which realize C/E systems: First, 
we recall discrete state C /E  systems which are used to model untimed DES 
(Def 1). Then, in Sec. 3, we introduce C/E timers (Def. 2) to incorporate 
quantitative timing information into C/E systems. 

D e f i n i t i o n  1 (Discrete State C/E System): A discrete state C/E system is 
a 9-Tupel S = (U, V, X, Y, Z, f ,  g, h, x0), where U, V, X, Y and Z are finite, 
countable mutually disjoint sets representing the input conditions, the in- 
put events (not including the null event 0, we write V0 for V U {0}), the 
states, the output conditions and the output events (again not including 
the null event, Z0 = Z U {0}), respectively, f ,  g and h are functions de- 
fined as: f : X • U • V0 --~ 2 x - 0, the state transition function satisfying 
Vx E X , u  E U : x C f(x,u,O), and g : X • U --+ Y, the condition output 
function, and h : X • X • V0 -+ Z0, the event output function satisfying 
Yx E X : 0 = h(x,x,O); and x0 E X is the initial state. Given a C/E 
system as defined above and input signals u(.)  and v(.),  the set of valid 
state trajectories x(.)  and output signals y(.) and z(*) is represented by 
the following three equations. 

x(t) e f (x( t - ) ,u( t - ) ,v ( t ) ) ,  (1) 
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y(t) = g( . (t) ,u(t)) ,  (2) 
z(t) = h ( . ( t - ) , . ( t ) ,  v(t)),  (3) 

where x ( t - )  is an abbreviation of limA-~0 z(t -- A) (the same applies to 
u(t-)) .  �9 

A C/E system can be regarded as an untimed finite state machine which 
is embedded in a time-dependent signals space formed by the condition 
and event input and output signals. The condition input signal consti- 
tutes conditions for changes of the state of the system (hence can disable 
or enable certain transitions) whereas the event input signal can force 
transitions. Event outputs can be generated if and only if the state of 
the system changes, condition outputs provide information about the ac- 
tual state of the system. Transitions can be forced (by event signals) or 
occur spontaneously, and can be nondeterministic. The two properties 
Vx e X , u  E U : x e f (x ,u,O) andVx e X : 0 = h(x,x,0)  stated in 
Def. 1 guarantee that transitions and output events cannot be forced by 
condition input changes. 

To provide a flavour of how technological systems are modeled by mean- 
s of C/E systems we present a small example. Figure 2 shows a tank 
which can be filled via an inlet valve and illustrates the corresponding C/E 
model for the tank level and its influences by its block diagram representa- 
tion. Condition signal flow lines are characterized by two black rectangles 
whereas event signal flow lines can be recognized by a lightning symbol. 
The model is divided into three subsystems, "valve", "feed pressure" and 
"level", which are connected by condition signals and event signals. The 
dynamic behaviour of each system is represented as a state graph. For a de- 
tailed description of the behaviours and interactions between these blocks, 
the possible successor states and output signal values have to be specified 
for all combinations of states and input signal values for all three systems. 
This information is represented for each system by the three functions f, g 
and h which were introduced in Def. 1. For this example, we will not discuss 
the complete model but only some aspects of it in order to illustrate the 
important concepts of forcing and enabling/disabling. 

Consider the situation when the tank is empty, the valve is closed and the 
pressure is sufficient. A transition from "open" to "closed" in the system 
"valve" will then be indicated to the system "level" by the event signal 
value "valve opens" and it will force the transition from "empty" to "medi- 
um FA risinff'. This is possible because the feed pressure is sufficient which 
is indicated to the system "level" by the condition signal value "pressure 
is up". So, the transition is enabled by the condition input signal. If the 
system "feed pressure ~' would be in state "not suJ]icienf', the condition in- 
put signal would have the value "pressure is down" and therefore disable 
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FIGURE 2. Example of a C/E system model. 

the transition from "empty" to "medium ~J risin]'. 

An example of a spontaneous event is given by the transition from "medi- 
um 8J rising' to "full". It has to be enabled by the condition input "valve 
is open" and "pressure is sufficienf', but the actual occurence is sponta- 
neous and cannot be forced by any external input. 

The relevant part of the state transition function of the system "level" 
for the behavioural aspects described above is the following (note that  
u( t - )  and v(t) are pairs of signals because they are determined by the 
cross product of all input signals coming from different systems): 

f(empty, (pressure is up, valve is closed ), (O,valve opens )) 
= {medium 8J rising}, 

f(empty, (pressure is down, valve is closed ), (O,valve opens )) 
= {empty}, 

f(medium 8J rising, (pressure is up, valve is open ), (0, 0)) 
= {medium 8t rising, full}. 

3 Timed C/E Systems 

3.1 C / E  T imers  

The C/E  system paradigm as described above constitutes an untimed dis- 
crete event system model. In technological systems however, transitions 
usually require a certain amount of time or have to occur within certain 
time intervals. Consequentially, the qualitative behaviour is strongly influ- 
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enced by timing constraints. Effective modeling paradigms therefore must 
allow one to include timing constraints in a natural manner. Since the com- 
munication between C /E  systems is already defined in terms of continuous 
time signals, the C/E system paradigm is very well suited to incorporate 
time without giving up the advantages mentioned above. For this purpose, 
a special class of C /E  models called C/E timers are introduced (see Def. 2). 
The C/E  timers are coupled to the untimed logical system part to represent 
the overall timed behaviour of the system. Thus the timed model remains 
completely within the original conceptual framework. The advantage is ob- 
vious: Describing the timing is part of the modular concept. The untimed 
dynamics and the timing conditions are seperated and can be modeled 
independendly. Timing information can be added to an already existing 
model without changing any block of the C/E block diagram by simply 
adding the necessary timer blocks and connecting them to the appropriate 
discrete blocks. We will call such an configuration timed C / E  system. 

D e f i n i t i o n  2 (C/E timer): Given an initial time to E ~  and a threshold 
time To E ~+ - {0}, a C/E timer 0 on [to, r162 is a mapping 0 : E(Vo, to) 
C(Yo,to) • E(Z0,to), with Vo = {"to := 0"},Yo = {"to < To", "to > To"}, 
and Zo = {"to = To"}, such that  for any event input signal vo(t) E 
E(Vo, to), the output (ya(t), zo(t)) is determined by 

"to < To" i f  r(t) < To, 
yo(t) = "to > Te" i f  r(t) > To, (4) 

and 
"to = To" i f  r(t) = To, 

~o(t) = o etse (5) 

in which r : [to, cr --+ [to, cr is the clock function given by 

r ( t 0 )  = To + c, e > 0, 

and for all t E [to, cr 

+(t)= ~ i i f  
undefined else k 

,o(t)  = 0, 

(6) 

and r(t) = 0 if ve(t) # 0. 

A C /E  timer can be regarded as an alarm clock which is reset and start- 
ed by the input event "to : -  0" and which indicates that  it has reached 
its threshold time To by sending out an event "to = To". The condition 
outputs "to < To" and "to > To" indicate that the threshold has not yet 
been reached or has been crossed, respectively. 

(7) 
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FIGURE 4. Clock function r(t). 

Figure 3 illustrates this concept for a small example. The left block rep- 
resents an untimed C / E  model for the emptying of a tank filled with liquid, 
say the tank from the example in Fig. 2. The tank content is drained into 
two tank wagons which are placed under the outlet valve of the tank one 
after another, which leads to the four states shown in the state graph. In 
this model, all transitions are spontaneous. Usually, the t ime needed to 
empty  the full t ank  completely can easily be determined. So this informa- 
tion should be incorporated into the model. In Fig. 3, this is done by simply 
adding a C / E  t imer to the discrete "draining" block which is started by 
the event "level starts to fall" and generates the event "draining time has 
elapsed" after the appropriate  time. The transition from "filling of second 
wagon" to "empty " is now no longer spontaneous but forced by the event 
"draining time has elapsed ". 

Figure 4 shows a sample trajectory of the clock function r( t ) .  It  is easy 
to see that  To is the only free parameter  for the C / E  t imer behavior, while 
it is not affected by the value of the initial offset e. The internal behaviour 
of a C / E  t imer is comparable to an integrator with constant input which is 
reset by an event input (here by "level starts to fall" at t ime t l )  and sends 
out an event when a threshold is reached (here "draining time has elapsed" 
at t ime t2). 
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3.2 Reachability Analysis 

To be useful in the context of controller verification, t imed C / E  systems 
must be eligible for reachability analysis. In the following, we propose an 
algorithm to solve this problem. Since spontaneous transitions are still al- 
lowed and t ime is continuous, the problem arises that  the number of possi- 
ble t imed state trajectories becomes infinitely large. However, it is still pos- 
sible to represent the available information of the past of the system in finite 
expressions and to determine an upper bound of the possible t imed system 
behaviors. For this purpose, the set of (uncountable many) possible current 
clock function values of all C /E  timers under consideration is represented 
by a so-called distance matrix. A distance matr ix  M is an n-dimensional 
matr ix which is assigned to an n-tupel IM = (01,02, . . . , t~n_l ,now) in 
which each 0i represents a C /E  timer and now stands for the current point 
of time for which M describes the timing status of the system. For the 
teachability algorithm, now will be the t ime when the last state of the cur- 
rently considered path has been reached. The matr ix  entries of M have the 
following meaning: 

�9 For i < j ,  m0~,ai is interpreted as an upper bound for the distance 
between the last reset of the i-th and the j - th  timer (resp. now) in 
IM. If there is no such upper bound ma~,0j is 'oo'. Otherwise, the 
entries are natural numbers and represent time units. 

�9 For i > j ,  m0~,0~ is interpreted as a lower bound for the distance 
between the last reset of the i-th and the j - th  timer (resp. now) in 
IM. These entries are always natural numbers giving a lower bound 
in t ime units. 

�9 The entries on the main diagnal are not used and always set to zero. 

The reachability analysis is realized by a depth first search algorithm 
that  is given in pseudo code in Figure 5. The algorithm starts in the ini- 
tial state with no timing information (i.e. the empty distance m a t r i x ) an d  
moves along any admissible path of the state graph of a C /E  system. In 
every step of the recursion it determines the possible successor states from 
logical and t ime dependent desription of the system, i.e. the state transi- 
tion function f and the current distance matrix. Depending on the result, 
it updates the distance matr ix  and moves to an admissible successor state. 
The recursion terminates when the current state is visited with the same 
distance matr ix  a second time or when it has no more admissible successor 
states. 

For the termination of the algorithm, it is crucial to  determine whether 
a discrete state has been visited already with the same timing information. 
This is possible because distance matrices provide a canonical representa- 
tion of this information. A distance matr ix  M of dimension n is said to be 
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PRQCEDURE Rain 
{ 

READ input_sysZem; 

Goto_State(initial_state , empty_distance_matrix); 

WRITE set_of_reachable_states; 
} 

PROCEDURE Gore_State(state , distance_matrix) 
{ 

ADD state TO set_of_reachable_states; 
{ 

IF distance_matrix NOT_IN set_of_distance_matrices(state) 
{ 

ADD distance_matrix TO set_of_distance_matrices(stats); 

FIND list_Ofmadmissible_succ_states; 

FOE_ALL succ_states IN list_of_admissible_succ_states; 
{ 

FIND succ_distance_matrix; 

Goto_State(succ_state , succ_distance_matrix); 
} 

} 
} 

FIGURE 5. Algorithm in pseudo code. 

in normal form if two constraints hold for M: 

Vi E (1, 2 , . . . ,  n - 1} : me,,,~o,,, < Te, Y me,,,o,~ --- "co" (8) 

V i E { 1 , 2 , . . . , n - 1 }  : rn~o~,e, <_Te, (9) 

The  first constraint postulates tha t  the upper bound me,,no~ for the dis- 
tance between the last reset t ime of t imer 0i and the current t ime now is 
always less than or equal the threshold of 0i or otherwise it is the symbol 
'oo' .  To normalize the distance mat r ix  if this constraint is broken, the sym- 
bol 'oo'  is entered for mo,,,o~. This means that  in a normalized distance 
ma t r ix  the irrelevant information for how long a clock might be over its 
threshold is generalized to the information tha t  this clock simply might  be 
over its threshold. 

The second constraint postulates that  the lower bound m,~o~,o, for the 
distance between the last reset of a t imer 0i and now is always less than or 
equal the threshold of 0i. If  this constraint is broken, the distance mat r ix  is 
normalized by deleting the symbol 8i from IM and all matr ix  entries related 
to clock 0i from M.  Consequentially, a distance matr ix  in normal  form 
contains no symbols of t imers which are definitely over their threshold. Two 
normalized distance matrices/141 and M2 are said to be equal if all entries 
in the matrices and the tupel IM1 and IM2 are equal. If  normalized distance 
matrices are used to determine whether a state has been visited with the 
same t iming information before, the algorithm in Fig. 5 will terminate  
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FIGURE 6. Example of a state graph of a C/E system with timers. 

because the number of normalized distance matrices for a given timed C /E  
system is finite. 

3.3 Example 

We illustrate the basic idea of the reachability algorithm based on distance 
matrices with the help of a small example. Fig. 6 shows the state graph of 
a C /E  system with three C /E  timers, A, B, and C. The threshold times 
are TA "- 3 time units, TB ---- 5 , and Tc -- 6. The state transitions are 
labeled according to their temporal conditions. For example, tA < TA in- 
dicates that  this transition may only occur when the clock function value 
of t imer TA is below its threshold. A transition forced by a timer output  is 
labeled by to = To. If this case does not include the possibility to stay in 
the current state, a small "f" is written above the "=" .  If no condition is 
assigned to an arc, the transition is not depending on any timer. 

Consider the case that  the reachability algorithm has followed the path 
xl ,  x2, x3, x4, xs. The available information about the temporal  pas t  at 
state x~ is the following: First, t imer A was started. Then the system 
remained in x~ for an unknown period of time, because the transition to x3 
is purely spontaneous. With this transition, timer B and C were started. 
The residence times in xa and ~4 again are unknown. The transition from 
x4 to x~ is forced by timer B. This means, we know that  timer B has just  
reached its threshold when the system moves to x5 and that  the distance 
between the instant when the transition from x2 to x3 took place and the 
instant when the transition from x4 to xs occured is exactly 5 t ime units. 
So, the last reset of t imer A at the transition from xl to x2 is at least 5 
time units ago. The corresponding distance matr ix is: 

0 c~ e c )  
M ( A , C ,  n o w ) =  0 0 0 

5 5 5 

Obviously, M(A, C, now) does not fulfill constraint (7) because mA,,~o~, = 5 
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and TA = 3. This means that  t imer A must  have reached its threshold, too. 
For this reason, M(A, C, now) has to be normalized in the following man-  
ner. 

M(C, now)= 5 0 

Based on the information represented by M(C, now), the reachability al- 
gor i thm will now discover tha t  when the system has moved along the pa th  
xl ,  x2, x3, x4, x~, it will not go to x6 in the next transition because the 
condition "tA < TA" is not fulfilled. In fact, x6 is not reachable. 

4 Application 

We illustrate the application of the described analysis method to the veri- 
fication of discrete controllers with the help of a process control example. 
Consider the flowchart in Fig. 7. It  shows a part  of a laboratory batch plant 
at the Chemical Engineering Dept. in Dortmund.  In this part  of the plant,  
the following production sequence takes place: Salt solution is filled into 
tank  T1 and then evaporated until a desired concentration is reached. Du- 
ring evaporation, the condenser C1 is in operation and captures the s team 
coming from T1. When the desired concentration is reached, the material  
is drained from T1 into T2 as soon as T2 becomes empty. A postprocessing 
step takes place in T2, before the material  can be pumped out of T2 to a 
subsequent par t  of the plant. We suppose that  in the undisturbed case the 
operation sequence described above is ensured by the controller and direct 
our interest to the problem of appropriate  control reaction on disturbances. 
In particular,  we look at the consequences of a cooling breakdown in the 
condenser. This failure can lead to a dangerously high pressure in the con- 
denser tube, if the evaporating is continued. When the heating in T1 is 
switched off, the pressure in C1 will not rise any more. To make the prob- 
lem more demanding, we assume that  the material  in T1 gets solid after a 
certain t ime when it cools down and cannot be drained into T2. As a con- 
sequence, it is possible that  the controller should not switch off the heating 
immediately  after cooling breakdown, because this may lead to solid mate-  
rial in T1. If  T2 is still full, it has to wait some t ime to ensure that  T1 can 
be drained before the material  gets solid. However, a meaningful controller 
will s tart  draining T2 as soon as a cooling breakdown occures, so that  no 
t ime is lost. The described behavior and more details are represented by 
the t imed C / E  system shown in Fig. 8. 

The names of the states are based on the following convention: The first 
character describes the state of TI :  e = empty, p = processing (evaporat- 
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FIGURE 7. Flowchart of the example process. 

ing), r = ready ( and waiting for T2), d = being drained, i = interrupt 
(heating switched off before desired concentration was reached), and s = 
solid; the second character represents T2: e = empty, p = (post-)processing, 
f = being filled, d = being drained; and the third character symbolizes the 
state of the condenser: n= not in operation, c = cooling, b = breakdown, 
and a = pressure a larm (too high). For all devices, an x stands for unde- 
termined. Table 1 and 2 explains the states and timers in more detail. 

The verification problem now is to analyze whether a given controller 
with a waiting t ime Tw = 5 (which means tha t  it waits 5 minutes after 
cooling breakdown before it will switch off the heating) will prevent the sys- 
t em from reaching the forbidden states pxa and sxx, Applying teachability 
analysis shows tha t  for such a controller, the state sxx is reachable for the 
system while it prevents the system from reaching state pxa. So, in case of 
a cooling breakdown, the material  in T1 will get solid. Two recursion steps 
of the algori thm will now be presented in detail. 

After 5 steps the algorithm may  reaches the state pdp if it is currently 
following a pa th  consisting of the sequence of states: een ,  pec ,  d f n ,  epn ,  
ppc ,  pdb, Start ing with the empty  distance mat r ix  Mo(now) in the initial 
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States  
epn T1 empty, T2 processing, C1 not in operation. 
edn T1 empty, T2 is being drained, C1 not in operation. 
een T1 empty, T2 empty, C1 not in operation. 
ppc T1 evaporating, T2 processing, C1 cooling. 
pdc T1 evaporating, T2 is being drained, C1 cooling. 
pec  T1 evaporating, T2 empty, C1 cooling. 
pxa Alarm: pressure in C1 too high. 
pdb T1 evaporating, T2 is being drained, cooling breakdown in 

C1. 
pob T1 evaporating, T2 empty, CI: cooling breakdown. 
rpn  T1 ready and waiting for T2, T2 processing, C1 not in 

operation. 
rda  T1 ready and waiting for T2, T2 is being drained, C1 not 

in operation. 
d fn  Draining from T1 into T2. 
sxx Material in T1 has become solid. 
idb  Interrupt in T1 (heating switched off), T2 is being drained, 

cooling breakdown. 
d fb  Emergency draining of T1. 

TABLE 1. States from Fig. 8 

T i m e r s  
A Time between cooling breakdown and pres- TA -=- 8 rain 

sure alarm if heating is continued. 
D Time for draining of T2. TD = 10 min 
E Minimal time for evaporation in T1. TE = 60 min 
P Time for processing the material in T2. Tp = 40 min 
S Time between heating switched off and ma- Ts = 4 min 

terial becoming solid. 
W Time which the controller waits after cool- Tw = 5 rain 

ing breakdown before it switches off the 
heating. 

TABLE 2. Timers from Fig. 8 
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FIGURE 8. State graph for the example. 

state een, the algorithm then is at state pdb with the distance matrix: 

Ms(P, E, D, A, W, now) "- 

0 40 40 40 40 4 0 )  
0 0 40 40 40 40 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

With this distance matrix the algorithm can only choose the transition 
to idb in its next step, because clock W will reach its threshold before 
the clocks A and D. Taking the transition from pdb to idb as the next 
transition in its 6th step the algorithm calculates the following distance 
matrix: 

M6 (P, E, D, A, S, now) :- l 
0 40 40 40 45 45 / 
0 0 40 40 45 45 
0 0 0 0 5 5 
0 0 0 0 5 5 
5 5 5 5 0 0 
5 5 5 5 0 0 
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After normalisation: 

M6(P, E, D, A, S, now) = 

0 40 40 40 45 oe 
0 0 40 40 45 45 
0 0 0 0 5 5 
0 0 0 0 5 5 
5 5 5 5 0 0 
5 5 5 5 0 0 

} 
Analysing the distance matr ix  M6 (P, E, D, A, S, now) reveals that  the state 
sxx  is reachable, because timer S will reach its threshold before timer D 
does. So, the given controller is incorrect and in case of a cooling breakdown, 
the material  in T1 will get solid. 

5 Discussion 

We have reported on the use of C /E  systems for a model-based verification 
of discrete controllers for chemical plants. To capture critical timing con- 
straints, the original framework was extended by C /E  timers which make it 
possible to model quantitative time in C /E  systems without changing the 
conceptual framework. A reachabilty algorithm has been sketched. Finally, 
we described the application of the approach to a laboratory batch plant 
and parts of its safety control. 

The timed C /E  system model has many similarities to the timed au- 
tomata  approach by Alur and Dill [1]. In fact, the creation and updating 
of the distance matr ix  during the reachability algorithm can be regarded 
as a method to build the region graph used by Alur and Dill to analyze 
reachability. We are currently investigating further relations between the 
two approaches. The reason why timed automata  were not applied to model 
the laboratory plant is twofold. First, they do not provide special support 
for modular modeling in form of intuitive interaction concepts as C / E  sys- 
tems do. Second, discrete state C /E  models were already available for the 
laboratory batch plant ([4], [3]) and it was necessary to add the timing 
information without changing the basic framework. 

There are several directions of further research. In the described model, 
transitions can depend at most on the standings of a single timer. We are 
currently extending the framework to be able to use Boolean connectives 
on timer queries and compare different timer standings. Since the described 
analysis method is based on a comprehensive search, we are also interested 
in symbolic and compositional analysis. 
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