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A b s t r a c t .  A comparison of two different approaches to fast correla- 
tion attacks on stream ciphers is conducted. One is based on standard 
or modified iterative probabilistic decoding algorithms, and the other 
is a recent, so-called free energy minimisation approach. Two different 
comparisons are presented: one based on the Hamming distance and the 
other on error-free information sets. The results indicate that a modi- 
fied iterative probabilistic decoding attack outperforms the free energy 
minimisation attack in high noise probability regions. 

1 I n t r o d u c t i o n  

The  concept of a fast correlation attack was first introduced in [8] where a bit- 
by-bit reconstruction procedure based on iterative probabilistic and threshold 
decoding is proposed (see also [13]). The underlying ideas regarding the prob- 
abilistic decoding of low density parity-check linear codes can be found in [3], 
[7] and [2]. After the pioneering work of Meier and Staffelbach [8] and Zeng and 
Huang [13], various algorithms of this type have been published and theoreti- 
cally or experimentally analysed (for example, see [1], [9, 10, 11], [14] and [5]). 
All of them share two basic features, an iterative error-correction algorithm and 
a method of obtaining low density parity-checks. 

In this paper a modified version [10, 4] of the Meier-Staffelbach attack [8] 
is considered which we label the iterative probabilistic decoding (IPD) approach. 
A simple modification [4] to the IPD attack based on fast resetting is shown to 
produce improved results. This is called the modified IPD (or MIPD) attack. 
In [6] MacKay proposed a new, interesting approach to fast correlation attacks 
using a free energy minimisation (FEM) algorithm. This algorithm gives an 
improvement over the basic IPD attack. 

In Section 2 a basic iterative probabilistic decoding algorithm is defined which 
is a variation on the original Meier-Staffelbach attack. The fast resetting modi- 
fication to this algorithm is also described in Section 2. Section 3 introduces the 
free energy minimisation algorithm as proposed by MacKay. In Section 4 the 
experimental results and a comparison of the algorithms are given. Two differ- 
ent comparisons are applied: the first is based on the Hamming distance and the 
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second makes use of error-free information sets [2]. Recall that  an information 
set is any set of linearly independent bits in a LFSR sequence, from which one 
can reconstruct the whole sequence. A comparison based simply on whether or 
not the algorithm successfully recovers the entire LFSR sequence [6] may be mis- 
leading. One set of results is based on the minimum Hamming distance between 
the recovered sequence and the actual LFSR output  stream. The second set of 
results presented here make use of a sliding window technique [9] which searches 
for an information set containing r consecutive bits (where r is the length of the 
shift register). This is especially useful when considering the high noise probabil- 
ity region where some, but not all, of the LFSR sequence has been successfully 
reconstructed. The experimental results show that  the MIPD algorithm is supe- 
rior to the FEM algorithm [6]. In Section 5 a summary of results and conclusions 
are presented. 

2 I t e r a t i v e  P r o b a b i l i s t i c  D e c o d i n g  A l g o r i t h m  

z N As Fig. 1 indicates, the observed keystream sequence z = { i}i----1 is  regarded as 
a N a noise-corrupted version of the LFSR sequence a = { i}~=1, that  is, z{ = ai ~ ei, 

N ' ~ '  denoting the modulo 2 addition, where e = {e{}{=l is a binary random noise 
sequence such that  Pr{e{ -- 1} = p for every i = 1 , . . . ,  N. This model [12] is 
called a binary symmet r i c  memoryless  channel. Without  loss of generality, the 
correlation coefficient defined as c = 1 - 2p is assumed to be positive. L e t / ( x )  
be the characteristic polynomial of a LFSR of length r which is assumed to be 

a N known. The problem is to reconstruct the LFSR sequence, a { i}i=l, from 
N the observed keystream sequence, z = {zi}~=l, where r < N < 2 r - 1 and the 

value of N should be as small as possible. 

LFSR 

f(x) 
{a,} 

BSC 

1 - - p  

1 1 
1 - - p  

Fig. 1. Model of a stream cipher as used in the correlation attack. 

A parity-check is any linear relationship satisfied by a LFSR sequence. It is 
well known that  the parity-checks correspond to polynomial multiples o f / ( x )  
(see [1]). In fact, any polynomial multiple whose weight (the number of nonzero 



147 

terms) equals W defines a set of W parity-checks corresponding to its differ- 
ent phase shifts. In [8] a simple algebraic technique is applied to derive a set 
of parity-checks. This technique involves repeated squaring of the characteris- 
tic polynomial f ( x )  until a polynomial is found with the maximum degree not 
greater than N - 1. Each corresponding parity-check then involves the same 
number of terms, i.e., has the same weight w + 1, where w is the number of taps. 
A set of parity-checks is called orthogonal on a given bit if, except for that  bit, 
every other involved bit appears in exactly one of the parity-checks. 

Let Hi r~ ~i~In~I = ~ k~ )~k=l (IH~I denotes the cardinality of Hi) be a set of parity- 
checks orthogonal on the i th bit, i = 1, . . . ,  N.  Let a parity-check value be defined 
as the modulo 2 sum Ck(i)  = ~ Z c ~ ( i )  zl .  Since the noise sequence e is random, 
so are the parity-check values. When the parity-checks are orthogonal, the cor- 
responding posterior probability for noise bits given the parity-check values is 
then given as [10] 

Pi = Pr(ei = ll{ek(i)}~u__~l) 

q (i7 (1 - 

(1) 

ql 1--[l[~2~ qk (i)'~k(i) (1 - qk( i ) )  ck(i) + (1 -- q i ) I - [ ~  (1 -- q k ( i ) ) ' ~ ( i ) q k ( i y k ( i )  

for any i = 1 , . . . ,  N, where qi denotes the prior probability for the ith noise bit 
to be equal to one, ~k(i) 1 - ck ( i ) ,  qk (i) (1 ~ 1 = = -- I 'It=] ( - 2 q m , ) ) / 2  and {ml}~=l 
denotes the set of indices of the bits involved in the parity-check 7rk (i), for any 
k = 1 , . . . ,  IHi[ and i = 1 , . . . ,  N. Initially, the prior probabilities for noise bits 
are all set to p. In the succeeding iterations, the posterior probabilities from the 
preceding iteration are used as the prior probabilities for the current one. The 
same expression (1) can be used even if the parity-checks are not orthogonal. 
An analogous expression can be derived for the parity-checks of different weights 
[11]. 

2.1 Basic IPD Algorithm 

In this section we consider a decoding algorithm given in [10] which is an iter- 
ative procedure employing the parity-checks of possibly different weights and a 
Bayesian decision rule in error-correction for each bit. Each iteration consists of 
two main stages. In the first stage the parity-checks are calculated bit-by-bit. In 
the second stage, the Bayesian bit-by-bit error-correction is made based on the 
estimation of the relevant posterior probabilities obtained by using the posterior 
probabilities from the preceding iteration as the prior probabilities in the cur- 
rent iteration, and in the first iteration the prior probabilities are all set to p. 
Namely, if the posterior probability Pi is greater than one half, then the noise 
bit ei is set to one, the keystream bit z~ is complemented and Pi is set to 1 - Pi. 

In the first iteration the optimal Bayesian decision minimises the symbol 
error-rate, p~. In the succeeding iterations the error-rate almost always decreases 
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for two reasons. Firstly, the error-correction performed by the algorithm may re- 
duce the number of errors in the updated observed keystream sequence and, 
secondly, recycling the probability vector according to (1) causes the probabili- 
ties for most noise bits to converge to zero (after complementation). Often the 
algorithm becomes t rapped in a local minimum of the error-rate, Pe ~ 0, after 
which the error-correction of the observed keystream sequence ceases. In this 
case (as was proposed in [8]), when the error-rate is less than e, one can sub- 
stitute the initial probability vector for the prior one and continue from step 
1. This is called r e s e t t i n g  the algorithm. Resetting the algorithm enhances the 
error-correction capability of the algorithm and increases the number of satis- 
fied parity-checks. The set of iterations between two successive resets is called a 
round .  Note that  the information set decoding technique, when applied, is also 
used as a stopping criterion. The basic error-correcting algorithm is as follows. 

A l g o r i t h m  I P D  

z N - I n p u t :  The observed keystream sequence z = { i}i=l, P and a set of (orthog- 

onal) parity-checks Hi = {~rk(i)}kn=~, i = 1 , . . . ,  N.  
- I n i t i a l i z a t i o n :  j = O, k = 0 and qi = P, i  = 1 , . . . , N ,  where j is current 

iteration index and k is the current round index. Also define the maximum 
number of rounds kma=, the minimum error-rate e and the maximum number 
of iterations without change in the number of satisfied parity-checks, J .  

- R e s e t t i n g  Cr i t e r ia :  Probabilities are reset when the average error probability 
per symbol (error-rate) p~ drops below e or when the number of satisfied 
parity-checks has not changed for J iterations. 

- S t o p p i n g  C r i t e r i a :  The algorithm stops when the number of rounds reaches 
kma=, or, ideally, when all the parity-checks are satisfied. 

c " In~l - S t e p  1: Calculate the parity-check values { k(*)}k_-l, i = 1 , . . . , N ,  on the 
observed keystream sequence. If all parity-checks are satisfied, go to step 7. 
If the number of satisfied parity-checks has not changed for J iterations, go 
to step 6 .  

- S t e p  2: Using equation (1) calculate posterior probabilities Pi, i = 1 , . . . ,  N. 
- S t e p  3: If pi > 0.5, set zi = zi @ 1, pi = 1 - pi, i = 1 , . . . ,  N.  
- S t e p  4: Substitute the posterior probabilities of the current iteration for the 

prior probabilities of the next iteration: qi = Pi, for i = 1 , . . . ,  N.  
S t e p  5: If Pe 1 N -- = ~i=1  Pi > e, increment j by 1 and go to step 1. 

- S t e p  6: Set qi = p , i  = 1 , . . . , N ,  and increment k by 1. If k < kmaz ,  go to 
step 1. 

- S t e p  7: Set ai = zi, i = 1 , . . . ,  N, and stop the procedure. 
a N z N - O u t p u t :  The reconstructed LFSR sequence is { i}i=l = { i}i=l- 

2.2 M o d i f i e d  I P D  A l g o r i t h m  w i t h  Fast  R e s e t t i n g  

The underlying idea of resetting is explained above. By modifying this idea [4] 
we have improved the power of resetting which has resulted in increased number 
of satisfied parity-checks. The resetting used in step 4 of the basic algorithm is 
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called slow resetting. We introduce another  type of resetting which is called fast 
resetting. Fast resetting is defined in the  modified step 5 below. 

Reconstruction of the observed keystream sequence is performed in step 3 of 
the basic algorithm when zi = zi @ 1. However, the complementat ions are not 
effective due to the posterior probabili ty t ransformation pi ~ 1 - p~ (recycling 
with or without complementations is all the same for orthogonal parity-checks, 
see [14]). They become effective only after resetting, where such a t ransformat ion 
does not take place. Of course, not all of these complementations are correct and 
the algorithm may introduce new errors to the observed keystream sequence. If 
the number  of correct complementations exceeds the number of incorrect com- 
plementations, then the probability of error is reduced in the observed keyst ream 
sequence. This may not occur if we wait till the error-rate goes to zero due to the 
self-composition property of the basic algorithm. Accordingly, one may expect 
the performance to be improved if the resetting is done before the error-rate 
falls below a threshold. More precisely, when the cumulative number  of comple- 
mentations in each round reaches a predefined value, C, we subst i tute qi -- P, 
i = 1 , . . . ,  N .  This is called fast resetting, and significantly improves the perfor- 
mance of the basic algorithm. 

Step 5: If pe 1 N -- = ~ ~ i = 1  P~ > e and the cumulative number of complementa-  
tions is less than  C, increment j by 1 and go to step 1. 

In practice, C can be optimised depending on the observed keystream sequence, 
the noise probabili ty or the parity-checks used. 

3 Free Energy Minimisation Algorithm 

MacKay [6] presents an algorithm for solving a class of problems which can 
be represented in the form (As + n) mod 2 = r, where s is a binary vector of 
length N,  n and r are binary vectors of length M and A is a binary matr ix.  Tile 
problem, then, is to solve for s given A and r. The algorithm is based oil the 
'variational free energy minimisation method' .  For a discussion of this method 
the reader is referred to MacKay 's  paper  [6]. When applied to a fast correlation 
attack, s denotes the unknown LFSR output  sequence, r contains M parity-check 
values and n is essentially ignored (let it gradually approach 0). The  mat r ix  A 
has as its rows all the parity-checks for each bit position. 

The problem is parameterized by a real valued vector 0 of length N.  Then 
q~ and qO are defined as follows: 

q l  1 
1 + e - ~  (2) 

q O _  1 
1 + e+0~ (3) 

for n = 1 , . . . ,  N .  It  follows that  q~ and qo are related so tha t  0,~ = log(q~/q~ 
A constant 
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is called the bias constant, where p is the noise probability from Fig. 1. Let 9 
be a (1 , -1)  binary encoding of the parity-check vector (or syndrome vector) 
r = Az ,  obtained from the observed keystream sequence. Probabilities pl ,~  and 

0 v Pm,~ are defined as the probability that  the partial sum ~,~=1 Am,,~sn rood 2 is 
equal to 1 and 0, respectively. These probabilities 

1 0 1 1 0 
Pm,~ = qvPm,~-I + qvPm,v-1 ~ if Am ~ 1 

0 0 0 1 1 , = 
Prn,v qvPm,v-1 + qvPm,v-1 

pL,__ 1 } 
- P . ~ , ~ - I  i f  A . ~ , ~  = 0 

pore, v __ 0 - -  P r o , v - 1  

(5) 

have the initial condition pin, 0 = 0 and p~ 0 = 1. Similarly, let r,~,~l and rm,~0 be 
N the probabilities that  the partial sum ~,~=~ Am,nsn  mod 2 is equal to 1 and 0, 

respectively. They are obtained by an analogous reverse recursion of (5). 
The free energy is broken up into three terms: likelihood energy, prior energy 

and entropy: 

where 

F(O) = EL(O) + Ep(O) - s(o) (6) 

1 EL (0) = - ~ 9,.p~,u 
~Tt 

E p ( O )  = - ~bq~ 

S(O) = - E o o 1 1 (q,~ log q,~ + q,~ log qn)- 
n 

It can be shown that  the derivative of the free energy is given by: 

where 

) 09,~ = q'~q'~ o,~ - b - gmdm,,~ 

(7) 

(s) 

(9) 

(lO) 

d m , n  (~1 r I o o = k- t 'm,n-I  m , n + l  + P r n , n - - l r m , n + l )  -- 

( p l  r 0 o 1 
r e , n - - 1  m , n + l  + P m , n - - l r m , n + l ) "  (11) 
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By setting the derivative to zero a 're-estimation optimiser' is obtained which 
defines a recursive update procedure for the 0 parameter.  MacKay introduces an 
'annealing' parameter  r which gradually increases as the algorithm progresses. 
Its purpose is to prevent the search from heading too quickly into a local min- 
imum. It should be noted that  the annealing procedure is deterministic unlike 
some other annealing procedures (such as the simulated annealing approach [4]). 
The 0 vector is then updated according to 

O ~ = b + f l ~ g m d , ~ , n ,  n =  l , . . . , N .  (12) 
m 

Algorithm FEM 

Input: Syndrome vector r, parity-check matrix A, p the noise probability, 
the initial value for fl (rio), the scaling factor for fl (fir), the maximum value 
for fl (time=) and the maximum number of iterations. 

- Initial Conditions: Number of iterations = 0, fl = rio, 

+1 i f r m  = 1 

g ' ~ =  - 1  i f r m = 0  ' 

b = 0,, = log ( ~ _ p )  , 

, , } Pm,O = = 0 rTn,O 
0 0 1 ' Pm,O Tm,O = 

m = 1, . . . , M  

n =  l , . . . , N  

m =  1 , . . . , M .  

Stopping Condition: Stop after a fixed number of iterations or when fl exceeds 

Step 1: Update q~, qO n = 1 , . . . , N ,  by using (2) and (3). 
Step 2: (Forward Pass) Update a 0 Pm,,~ and 1, . , M ,  and n = Pro,n, m = .. 
1 , . . . ,  N,  according to the recursion (5). 

- Step 3: (Reverse Pass) Update rm, n l  and rm,, ~ o  this time using (5) in the 
reverse direction, i.e., m = M , . . . ,  1 and n = N , . . . ,  1. 

- Step 4: Update each 8~, n = 1 , . . . ,  N,  by calculating the gradient and using 
~qu,al, iuu Li~). 

- Step 5: Increment the number of iterations. 
- Step 6: Calculate the free energy using (6). If the energy has decreased since 

the previous iteration return to step 1. 

Step 7: Scale fl by fl/, i.e., let fl = f l x  f l / .  If/3 < rma= and the number of 
iterations is less than the maximum, then return to step 1. 

- Step 8: Output  the noise sequence as determined from 0 as follows: if 0 ,  > 0 
output 1, otherwise output 0, for n = 1 , . . . ,  N.  The LFSR sequence can be 
obtained as the modulo 2 sum of the output  noise sequence and the observed 
keystream sequence. 
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4 E x p e r i m e n t a l  R e s u l t s  a n d  C o m p a r i s o n  

In this section we present experimental results for the fast correlation attacks 
based on the IPD, MIPD and FEM algorithms. All results are averaged over 50 
different noise samples. Shift registers using three different characteristic poly- 
nomials are used. In each case the number of taps is different (two, four and six). 
The chosen polynomials are all primitive and are given in 

Number of taps LFSR length 
2 31 
4 50 
6 72 

Primitive characteristic polynomial 
1 + x 3 + x ~ 

1 + x 2 T x 3 + X 4 -~- X 50 

1..~ x ...b x~ + x3 -t- x4 + x6 + x72 

For each trial, 10000 bits of observed keystream sequence are used. The charac- 
teristic polynomials were deliberately chosen to produce a set of non-orthogonal 
parity-checks (different phases are not orthogonal) to test the robustness of the 
attacks, since the IPD algorithm requires that  the parity-checks be orthogonal 
while the FEM algorithm does not. 

The best value for the variable threshold C in the fast resetting MIPD al- 
gorithm was determined experimentally. In the case of two taps, C was chosen 
to be 10. For the shift registers with four and six taps a value of 100 was used 
for C. For the FEM algorithm we used the values that  are suggested in [6]: 
flo = 0.25,/~f = 1.4 and time= = 4. Both algorithms used the same set of parity- 
checks for each of the respective characteristic polynomials. The parity-checks 
were obtained simply by repeated squaring of f ( x )  until a polynomial with the 
maximum degree not exceeding N -  1 (in this case 9999) is found. The number of 
parity-checks in each case is equal to [log2(N - 1)/rJ + 1 where r is the degree of 
f ( x ) .  For shift registers of lengths 31, 50 and 72 the numbers of parity-checks are 
9, 8 and 8, respectively. As suggested in [8], all the phases of the parity-checks 
are utilised. However, in the end regions only some of the phases can be used. 
In this case as many phases of the parity-checks as possible were used. 

For each test, two sets of results were obtained. The first involved finding the 
minimum Hamming distance between the actual LFSR output and the solution 
that each algorithm found. This gives an indication of how close the algorithm 
is getting to the actual solution. The second test makes use of error-free in- 
formation sets. A sliding window technique [9] is used in which a search for r 
consecutive bits satisfying the characteristic polynomial is made (r is the shift 
register length). If r such bits can be found, then the attack is deemed successful. 

It is clear from each of Figures 2-4 that  the fast resetting MIPD algorithm 
outperforms MacKay!s FEM algorithm for each considered number of taps. It 
can also be seen that  the FEM algorithm performs better than the slow reset- 
ting IPD algorithm if the number of taps increases. The two testing techniques, 
minimum Hamming distance and error-free information sets, appear to correlate 
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well with the results being consistent in all the cases except when the number of 
taps is six and the probability is 0.26. Here the Hamming distance result shows 
fast resetting to be superior but the result obtained using the information set 
technique shows the FEM algorithm to be (just slightly) better. 

According to [11], the critical noise probability beyond which the successful 
iterative error-correction (particularly for the original IPD algorithm with slow 
resetting and orthogonal parity-checks) is not possible with a determined set of 
parity-checks can be approximated (the exact expression can be found in [11]) 
a s  

. . A _  

1 - MS -1 (13) 
Pcr - 2 

where M~ is the average number of parity-checks (of weight w+ 1) per bit used in 
the algorithm. In the three cases examined, we have M~ = 22.248, M4 = 33.625 
and M6 = 43.148, so that Pcr is then given as 0.477, 0.345 and 0.265, respectively. 
These noise probabilities are in accordance with the experimental results shown 
in Figures 2-4. So, if p > Pcr, then the fast correlation attacks are bound to 
fail on the average. However, it may be possible to extend the set of low weight 
parity checks by using techniques other than repeated squaring which in turn 
increases the critical noise probability. 

5 C o n c l u s i o n s  

In this paper two iterative error-correction techniques involving different criteria 
have been used to compare three fast correlation attacks. A sliding window 
technique which makes use of information sets is used to give useful results for 
probabilities exceeding the critical noise probability below which the attacks a re  
successful. The Hamming distance is also shown to give meaningful results for 
this intermediate range of probabilities. 

Our experimental results do not contradict the results of MacKay [6] which 
show that the free energy minimisation technique extends the critical noise prob- 
ability (beyond which success is no longer guaranteed) from the value obtained 
using the standard Meier-Staffelbach approach. However, it is shown that by 
making a simple modification to the iterative probabilistic decoding technique 
such as fast resetting [4] even better results can be obtained than by FEM. 
From this we draw the conclusion that the fast resetting technique is superior to 
the FEM algorithm. Another advantage of the iterative probabilistic decoding 
approach is that it is easy to understand why it works since it maintains and 
updates a posterior probability for each bit position. Such an interpretation of 
MacKay's approach is not so obvious. The complexity (in terms of running time) 
is comparable for each of the algorithms, so that there is no considerable com- 
putational advantage of one algorithm over the other. It would be interesting to 
consider a combination of the two approaches in the hope of further improving 
the results. 
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