
Using an Explicit Model of Teamwork in
R o b o C u p

Milind Tambe, Jafar Adibi, Yaser AI-Onaizan, Ali Erdem
Gal A. Kaminka, Stacy C. Marsella, Ion Muslea, Marcello TMlis

Information Sciences Institute and Computer Science Department
University of Southern California
4676 Admiralty Way Suite 1001
Marina det Rey, CA 90292, USA

robocup-sim @isi.ed u
www.isi.edu/soar/t ambe/socteam.ht ml

Abst rac t . Team ISIS (ISI Synthetic) successfully participated in tile
first international RoboCup soccer tournament (RoboCup'97) held in
Nagoya, Japan, in August 1997. ISIS won the third-place prize in over
30 teams that participated in the simulation league of RoboCup'97 (the
most popular among the three RoboCup'97 leagues). In terms of re-
search accomplishments, ISIS ithstratecl the usefulness of an explicit
model of teamwork both in terms of reduced development time and in,-
proved teamwork flexibility. ISIS also took some initial steps towards
learning of individual player skills. This paper discusses the design of
ISIS in detail, with particular emphasis on its novel approach to team-
work.

1 I n t r o d u c t i o n

The ISIS (ISI Synthetic) team of synthetic soccer-players won the third-place
prize in the RoboCup'97 simulation league tournament. Developed at tile Uni-
versity of Southern California's Information Sciences Institute (ISI), ISIS was
also the top US simulation team. In terms of research accomplishments, ISIS
illustrated the reuse of STEAM, a general model of teamwork[16], that both
reduced its development time and improved teamwork flexibility.

ISIS's development is driven by the three research challenges emphasized
in the RoboCup simulation league: (i) teamwork; (ii) multi-agent learning; and
(iii) agent- and team-modeling[6]. With respect to teamwork, one key novelty
in ISIS is its use of STEAM, a general, explicit model of teamwork to enable
teamwork among player agents. This general model is motivated by the need
for flexibility in team activities, as well as reuse of teamwork capabilities across
domains[14, 15, 16]. STEAM uses the formal joint intentions framework[l, 7] as
its basic building block, but with key enhancements to reflect the constraints
of real-world domains. STEAM requires that individual team members explic-
itly represent their team's goals, plans and mutual beliefs. It then enables team
members to autonomously reason about coordination and communication in

124

teamwork, providing improved flexibility. Indeed, all of the current communica-
tion among ISIS agents is driven by STEAM's general purpose reasoning about
teamwork. Given its domain-independence, STEAM also enables reuse across
domains - - here, RoboCup provided a challenging test domain, given its sub-
stantial dissimilarity from the original domain of STEAM's application (pilot
teams for combat simulations for military training[16, 17]). Yet, a promising
35% of the original STEAM code was reused in RoboCup, and no new general-
purpose teamwork code was required.

With respect to multi-agent learning, the second challenge in RoboCup, ISIS
took some initial steps towards addressing it. Using C4.5[10], ISIS players learned
off-line to choose an intelligent kicking direction, avoiding areas of concentration
of opponent players. With respect to the third challenge, ISIS also performed
limited agent- and team=modeling (particularly relevant to teamwork), but de-
tailed plan-recognition of opponent-team's strategies remains an open issue for
future work.

The rest of this paper is organized as follows: Section 2 describes the archi-
tecture of an individual ISIS agent. Section 3 describes the teamwork capability
in ISIS. Section 4 discusses C4.5-based learning in ISIS. Section 5 then provides
a summary and topics for future work. We will assume that the reader is famil-
iar with Soccer, the RoboCup simulation league rules, as well as the RoboCup
simulator[5].

2 I S I S I n d i v i d u a l A g e n t A r c h i t e c t u r e

An ISIS agent is developed as a two-level architecture. The lower level, developed
in C, communicates inputs received from the RoboCup simulator (after sufficient
pre-processing), to the higher level. The lower level also rapidly computes some
recommended directions for turning and kicking, to be sent to the higher-level.
For instance, it computes three possible directions to kick the ball: (i) a group
of C4.5 rules compute a direction to kick the ball towards the opponents' goal
while avoiding areas of concentration of opponents; (ii) a hand-coded routine
computes kicking direction to clear the ball; (iii) a second hand-coded routine
computes direction to kick the ball directly into the center of the opponent's goM
(without taking opponents' location into account). The lower-level also computes
a direction to turn if a player is to intercept an approaching ball.

The lower level does not make any decisions with respect to its recommenda-
tions however. For example, it does not decide which one of its three suggested
kicking directions should actually be used by a player-agent. Instead, all such
decision-making rests with the higher level, implemented in the Soar integrated
AI architecture[9, tt]. Once the Soar-based higher-level reaches a decision, it
communicates with the lower-level, which then sends the relevant information
to the simulator.

The Soar architecture involves dynamic execution of an operator (reactive
plan) hierarchy. These operators consist of (i) precondition rules; (ii) application
rules; and (iii) termination rules. Precondition rules help select operators for

125

execution based on the agent's current high-level goals/tasks and beliefs about
its environment. Selecting high-level abstract operators for execution leads to
subgoals, where new operators are selected for execution, and thus a hierar-
chical expansion of operators ensues. Activated operators are executed by the
application rules. If the agent's current beliefs match an operator 's termination
rules, then the operator terminates. Agents built in other architectures such as
PRS[4], BBI[3], RAP[2] for dynamic domains may be similarly characterized in
this fashion.

The operator hierarchy shown in Figure 1 illustrates a portion of the operator
hierarchy for ISIS player-agents in RoboCup. One key novelty ill this hierarchy,
to support STEAM's teamwork reasoning (discussed below), is the inclusion of
team operators (reactive team plans). Team operators explicitly express a team's
joint activities, unlike the regular "individual operators" which express an agent's
own activities. In the hierarchy in Figure 1, operators shown in boxes such as

I WlN-GAMEI are team operators, while others are individual operators. The
key here is that when executing team operators, agents bring to bear STEAM's
teamwork reasoning, which facilitates their communication and coordination.

invisible ball
ball Kick-out

intercept ~e~-clo~

to-goal

Fig. 1. A portion of the operator hierarchy for player-agents in RoboCup soccer sim-
ulation. Boxed operators are team operators, others are individual operators.

As with individual operators, team operators also consist of: (i) precondition
rules; (ii) application rules; and (iii) termination rules. However, while an indi-
vidual operator applies to an agent's private state (an agent's private beliefs),
a team operator applies to an agent's team state. A team state is the agent's
(abstract) model of the team's mutual beliefs about the world, e.g., the team's
currently mutually believed strategy. The team state is usually initialized with
information about the team, such as the team members in the team, possible
subteams, available communication channels for the team, the pre-determined
team leader and so forth. STEAM can also maintain subteam states for subteam
participation. There is of course no shared memory, and thus each team member

126

maintains its own copy of the team state, and any subteam states for subteams
it participates in. To preserve the consistency of a (sub)team state, one key re-
striction is imposed for modifications to it - - only the team operators executed
by that (sub)team can modify it.

In Figure 1, the highest-level operator is a team operator called WIN-GAME.
When all of the player agents select WIN-GAME in their operator hierarchy, the
WIN-GAME team operator is established. There are two possible operators that
can be executed in service of WIN-GAME, specifically PLAY (when the ball is
in play) or INTERRUPT (when the ball is not in play). When the team operator
PLAY is active, one of four team operators, ATTACK, MIDFIELD, DEFEND
and DEFEND-GOAL can be executed. Each of these four is executed by a
different subteam. Thus, the subteam of forwards in ISIS, typically consisting of
three players, executes the ATTACK team operator. In service of ATTACK, the
subteam may execute FLANK-ATTACK or SIMPLE-ADVANCE. In service of
these, one of several individual operators, such as "score-goal" may be executed.
Meanwhile, a second subteam of three agents may execute the DEFEND team
operator. At any one time, an ISIS player agent has only one path through this
hierarchy that is active, i.e., executed by the agent.

3 T e a m w o r k in I S I S

As mentioned earlier, teamwork in ISIS is driven by a general, explicit model of
teamwork called STEAM. STEAM uses the joint intentions theory as the basic
building block of teamwork, and hence this theory is briefly discussed in Section
3.1. STEAM's communication and coordination activities, driven by this theory,
are discussed in Section 3.2. STEAM was originally developed in the context of
building teams of helicopter pilot-agents for real-world military simulations[16].
Originally developed within Soar, STEAM is currently encoded in the form of
283 Soar rules. RoboCup has provided a challenging domain for testing reuse of
these STEAM rules, in a substantially dissimilar domain. Currently, ~/bout 35%
of the rules are reused in ISIS, and this reuse may likely increase in the future.

3.1 J o i n t I n t e n t i o n s

STEAM's general model of teamwork is based on the joint intentions theory[7].
A joint intention of a team (9 is based on its joint commitment, which is defined
as a joint persistent goal (JPG). A JPG to achieve a team action p, denoted
JPG((9, p) requires all teammembers to mutually believe that p is currently
false and want p to be eventually true.

JPG provides a basic change in plan expressiveness, since it focuses on a team
task. Furthermore, a JPG guarantees that team members cannot decommit un-
til p is mutually known to be achieved, unachievable or irrelevant. Basically,
JPG((9, p) requires team members to each hold p as a weak achievement goal
(WAG)) WAG(p, p, (9), where/J is a team member in (9, requires/t to achieve

I WAG was originally called WG in [7], but later termed WAG in [12].

127

p if it is false. However, if p privately believes that p is either achieved, un-
achievable or irrelevant, J P G (O , p) is dissolved, but p is left with a commitment
to have this belief become O's mutual belief. Such a commitment helps to avoid
communication failures to establish mutual belief, an agent must typically
communicate with its teammates .

Members of 69 must synchronize to establish J P G (O , p) . To achieve such team
synchronization we adapt the request-confirm protocol[12], described below. The
key here is a persistent weak achievement goal (PWAG(ui, p, 0)), which commits
a team member ui to its team task p prior to a JPG. # initiates the protocol
while its t eammates in O, ul,. ,ui. .un, respond:

1. t~ executes a Request(tz, O, p), cast as an Attempt(t~, 0, ¢). That is, t~'s ultimate
goal ¢ is to both achieve p, and have all ui Mopt PWAG(ui, p, O). However, # is
minimally committed to 4', i.e., just to achieve mutual belief in O that # has the
PWAG to achieve ~. With this Request , p, adopts the PWAG.

2. Each ui responds via conf i rm or refuse. Conf i rm, also an A t t e m p t , informs
others that ui has the PWAG to achieve p.

3. If V i, ui confirm, JPG(O, p) is formed, b

Besides synchronization, this protocol enforces important behavioral con-
straints. In step 1, the adoption of a PWAG implies that if after requesting,
privately believes that p is achieved, unachievable or irrelevant, it must inform
its teammates . Furthermore, if/z believes that the minimal commitment ¢ is not
achieved (e.g., the message did not get through) it must retransmit the message.
Step 2 similarly constrains team members ui to inform others about p, and to
rebroadcast. If everyone confirms, a J P G is established.

Thus, communication arises in the joint intentions theory to establish joint in-
tentions, and to terminate them. However, communication in service of establish-
ing and termination of each and every joint intention can be highly inefficient [16].
Hence, STEAM includes decision-theoretic communicat ion selectivity. In partic-
ular, agents explicitly reason about the costs and benefits of communication, e.g.,
they avoid costly communication if there is a high likelihood that the relevant
information can be obtained by other t eammates via observation.

3.2 J o i n t I n t e n t i o n s in I S i S

Joint intentions are operationMized ill STEAM via team operators. In particular,
when all team members select a team operator such as WIN-GAME for execu-
tion (see Figure I), they establish a joint intention. As part icipants in such a
joint intention, STEAM enables individual team members to reason about their
coordination and communication responsibilities.

Thus, based on the joint intentions theory, an individual cannot arbitrari ly
terminate a team operator on its own. Instead, a team operator can only be
terminated if there is mutual belief that the operator is achieved, unachievable or
irrelevant. Establishing such mutual belief in the termination of a team operator
can lead to communication. In particular, communicat ion on termination of t eam
operator arises if an agent privately realizes some fact relevant to the terminat ion

128

of a current team operator. Thus, if an agent's private state contains a belief that
terminates a team operator (because it is achieved, unachievable or irrelevant),
and such a belief is absent in its team state, then it creates a communicative goal,
i.e., a communication operator. The generation of this communication operator
is regulated based on its costs and benefits. When executed, this operator leads
the agent to broadcast the information to the team.

Indeed, all communication in ISIS agents is currently driven by STEAM's
general-purpose teamwork reasoning. A typical example of such communication
is seen when three players in the "goalie" subteam execute the DEFEND-GOAL
team operator. In service of DEFEND-GOAL, players in this subteam normally
execute the SIMPLE-DEFENSE team operator to position themselves properly
on the field and to try to be aware of the ball position. Of course, each player
can only see in its limited cone of vision, and particularly while repositioning
itself, can be unaware of the approaching ball. Here is where teamwork can be
beneficial. In particular, if any one of these players sees the ball as being close, it
declares the SIMPLE-DEFENSE team operator to be irrelevant. Its teammates
now focus on defending the goal in a coordinated manner via the CAREFUL-
DEFENSE team operator. Should any one player in the goalie subteam see the
ball move sufficiently far away, it again alerts its team mates (that. CAREFUL-
DEFENSE is irrelevant). The subteam players once again execute SIMPLE-
DEFENSE to attempt to position themselves close to the goal. In this way,
agents attempt to coordinate their defense of the goal, while also attempting to
position themselves near it.

4 L e a r n i n g

Inspired by previous work on machine learning in RoboCup[13, 8], we focused
on techniques to improve individual players' skills to kick, pass, or intercept the
ball. Fortunately, the two layer ISIS architecture helps to simplify the problem
for skill learning. In particular, the lower-level in ISIS is designed to provide
several recommendations (such as several alternative kicking directions) to the
higher-level, but it need not arrive at a specific decision (one specific kicking
direction). Thus, an individuM skill, such as a kicking direction to clear the
ball, can be learned independent other possible actions. That is, the learning
algorithm is not forced to simultaneously learn to select if clearing the ball is
the best choice among available alternatives. Instead, that decision is left to the
higher-level.

For the RoboCup'97 tournament, C4.5[10] was successfully used in ISIS to
learn to select an intelligent kicking direction. C4.5 rules were learned off-line via
a batch of training examples to select a direction to kick towards the opponent's
goal while avoiding areas of concentration of opponent players. This learned
kicking direction was one among three kicking directions computed in the lower-
level (as discussed in Section 2). The higher-level typically selected the learned
kicking direction (from the three provided to it) when players were close to the
goal, and were ready to directly score a goal. While we did initial exploration

129

to learn the remaining two kicking directions, those results were not ready for
RoboCup'97. We hope to field a team with further learned skills for RoboCup'98.

5 S u m m a r y

The overall goal in ISIS was not and has not just been one of building a team that
wins the RoboCup tournaments. Rather, ISIS has taken a principled approach,
guided by the research opportunities in RoboCup. Despite the significant risk in
following such a principled approach, ISIS won the third place in over 30 teams
that participated in the RoboCup'97 simulation league tournament.

There are several key issues that remain open for future work. One key issue
is improved agent- or team-modeling. One immediate application of such mod-
eling is recognition that an individual, particularly a team member, is unable
to fulfill its role in the team activity. For instance, if a forward is "covered" by
the opponents, it may be unable to fulfill its role. In such cases, STEAM en-
ables agents to reason about taking over others' roles, e.g., enabling a midfielder
to take over the role of a non-performing forward. However, currently, in the
absence of the required agent modeling capability, STEAM cannot engage in
such reasoning. Indeed, this is partly the reason that many STEAM rules have
currently not applied in RoboCup (so that STEAM reuse is limited to :35% of
rules).

A second key issue arose as a lesson learned from ISIS's participation in
RoboCup'97. A weakness was discovered in ISIS, that stemmed from a somewhat
inappropriate interaction with the RoboCnp simulator - - the simulator version
used in RoboCup'97 allowed agents to take up to three actions (one action per
100 ms) before sending them a sensor update (one update per 300 ms). This
required that agents continually make predictions. Unfortunately, with weak
predictive capabilities, ISIS agents could not always quickly locate and intercept
the ball, or maintain awareness of positions of teammates and opponents. This
key weakness was a factor in the single loss that ISIS suffered in the course of
the RoboCup'97 tournament, ftowever, the RoboCup simulator will evolve for
RoboCup'98, towards more human-like play.

Overall, we hope to continue working on ISIS in preparation for RoboCup'98,
and meet the research challenges outlined for the simulation league in teamwork,
multi-agent learning and agent rnodeling[6]. Further information about ISIS,
including the code, is available at the following web site:

www.isi.edu/soar/tambe/socteam.html.

STEAM code, with detailed documentation and traces is available at:

www. isi. edu/soar/tambe/steam/steam, html

ISIS team members can be reached at robocup-sim@isi.edu.

130

Acknowledgement

We thank Bill Swartout, Paul Rosenbloom and Yigal Areas of USC/ISI for their
support of the RoboCup activities described in this paper. We also thank Peter
Stone and Manuela Veloso for providing us player-agents of CMUnited, which
provided a good opponent team to practice against in the weeks leading up to
RoboCup'97.

References

1. P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35, 1991.
2. J. Firby. An investigation into reactive planning in complex domains. In Proceed-

ings of the National Conference on Artificial Intelligence (AAAI), 1987.
3. B. Hayes-Roth, L. Brownston, and R. V. Gem Multiagent collaobration in directed

improvisation. In Proceedings of the International Conference on Multi-Agent Sys-
tems (ICMAS-95), 1995.

4. F. F. Ingrand, M. P. Georgeff, , and A. S. Rao. An architecture for real-time
reasoning and system control. IEEE EXPERT, 7(6), 1992.

5. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot
world cup initiative. In Proceedings of IJCA[-95 Workshop on Entertainment and
AI/Alife, 1995.

6. H. Kitano, M. Tambe, P. Stone, S. Coradesci, H. Matsubara, M. Veloso, I. Noda,
E. Osawa, and M. Asada. The robocup synthetic agents' challenge. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), August
1997.

7. H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together. In Proceedings of
the National Conference on Artificial Intelligence. Menlo Park, Calif.: AAAI press,
1990.

8. It. Matsubara, I. Noda, and K. Hiraki. Learning of cooperative actions in multi-
agent systems: a case study of pass play in soccer. In S. Sen, editor, AAAI
Spring Symposium on Adaptation, Coevolution and Learning in multi-agent sys-
tems, March 1996.

9. A. Newell. Unified Theories of Cognition. Harvard Univ. Press, Cambridge, Mass.,
1990.

10. J .R. Quinlan. C4.5: P~vgrams for machine learning. Morgan Kaufmann, San
Mateo, CA, 1993.

ll . P. S. Rosenbloom, J. E. Laird, A. Newell, , and R. McCarl. A preliminary analysis
of the soar architecture as a basis for general intelligence. Artificial Intelligence,
47(1-3):289-325, 1991.

12.]. Smith and P. Cohen. Towards semantics for an agent communication language
based on speech acts. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), August 1996.

13. P. Stone and M. Veloso. Towards collaborative and adversarial learning: a case
study in robotic soccer. In S. Sen, editor, AAAISpring Symposium on Adaptation,
Coevolution and Learning in multi-agent systems, March 1996.

14. M. Tambe. Teamwork in real-world, dynamic environments. In Proceedings of the
International Conference on Multi-agent Systems (ICMAS), December 1996.

15. M. Tambe. Agent architectures for flexible, practical teamwork. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), August 1997.

131

16. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research
(JAIR), 7:83--124, 1997.

17. M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom, and
K. Schw~mb. Intelligent agents for interactive simulation environments. A[Mag-
azine, 16(1), Spring 1995.

