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Abst rac t .  Team ISIS (ISI Synthetic) successfully participated in tile 
first international RoboCup soccer tournament (RoboCup'97) held in 
Nagoya, Japan, in August 1997. ISIS won the third-place prize in over 
30 teams that participated in the simulation league of RoboCup'97 (the 
most popular among the three RoboCup'97 leagues). In terms of re- 
search accomplishments, ISIS ithstratecl the usefulness of an explicit 
model of teamwork both in terms of reduced development time and in,- 
proved teamwork flexibility. ISIS also took some initial steps towards 
learning of individual player skills. This paper discusses the design of 
ISIS in detail, with particular emphasis on its novel approach to team- 
work. 

1 I n t r o d u c t i o n  

The ISIS (ISI  Synthetic) team of synthetic soccer-players won the third-place 
prize in the RoboCup'97 simulation league tournament.  Developed at tile Uni- 
versity of Southern California's Information Sciences Institute (ISI), ISIS was 
also the top US simulation team. In terms of research accomplishments, ISIS 
illustrated the reuse of STEAM, a general model of teamwork[16], that both 
reduced its development time and improved teamwork flexibility. 

ISIS's development is driven by the three research challenges emphasized 
in the RoboCup simulation league: (i) teamwork; (ii) multi-agent learning; and 
(iii) agent- and team-modeling[6]. With respect to teamwork, one key novelty 
in ISIS is its use of STEAM, a general, explicit model of teamwork to enable 
teamwork among player agents. This general model is motivated by the need 
for flexibility in team activities, as well as reuse of teamwork capabilities across 
domains[14, 15, 16]. STEAM uses the formal joint intentions framework[l, 7] as 
its basic building block, but with key enhancements to reflect the constraints 
of real-world domains. STEAM requires that individual team members explic- 
itly represent their team's goals, plans and mutual beliefs. It then enables team 
members to autonomously reason about coordination and communication in 
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teamwork, providing improved flexibility. Indeed, all of the current communica- 
tion among ISIS agents is driven by STEAM's general purpose reasoning about 
teamwork. Given its domain-independence, STEAM also enables reuse across 
domains - -  here, RoboCup provided a challenging test domain, given its sub- 
stantial dissimilarity from the original domain of STEAM's application (pilot 
teams for combat simulations for military training[16, 17]). Yet, a promising 
35% of the original STEAM code was reused in RoboCup, and no new general- 
purpose teamwork code was required. 

With respect to multi-agent learning, the second challenge in RoboCup, ISIS 
took some initial steps towards addressing it. Using C4.5[10], ISIS players learned 
off-line to choose an intelligent kicking direction, avoiding areas of concentration 
of opponent players. With respect to the third challenge, ISIS also performed 
limited agent- and team=modeling (particularly relevant to teamwork), but de- 
tailed plan-recognition of opponent-team's strategies remains an open issue for 
future work. 

The rest of this paper is organized as follows: Section 2 describes the archi- 
tecture of an individual ISIS agent. Section 3 describes the teamwork capability 
in ISIS. Section 4 discusses C4.5-based learning in ISIS. Section 5 then provides 
a summary and topics for future work. We will assume that the reader is famil- 
iar with Soccer, the RoboCup simulation league rules, as well as the RoboCup 
simulator[5]. 

2 I S I S  I n d i v i d u a l  A g e n t  A r c h i t e c t u r e  

An ISIS agent is developed as a two-level architecture. The lower level, developed 
in C, communicates inputs received from the RoboCup simulator (after sufficient 
pre-processing), to the higher level. The lower level also rapidly computes some 
recommended directions for turning and kicking, to be sent to the higher-level. 
For instance, it computes three possible directions to kick the ball: (i) a group 
of C4.5 rules compute a direction to kick the ball towards the opponents' goal 
while avoiding areas of concentration of opponents; (ii) a hand-coded routine 
computes kicking direction to clear the ball; (iii) a second hand-coded routine 
computes direction to kick the ball directly into the center of the opponent's goM 
(without taking opponents' location into account). The lower-level also computes 
a direction to turn if a player is to intercept an approaching ball. 

The lower level does not make any decisions with respect to its recommenda- 
tions however. For example, it does not decide which one of its three suggested 
kicking directions should actually be used by a player-agent. Instead, all such 
decision-making rests with the higher level, implemented in the Soar integrated 
AI architecture[9, tt]. Once the Soar-based higher-level reaches a decision, it 
communicates with the lower-level, which then sends the relevant information 
to the simulator. 

The Soar architecture involves dynamic execution of an operator (reactive 
plan) hierarchy. These operators consist of (i) precondition rules; (ii) application 
rules; and (iii) termination rules. Precondition rules help select operators for 



125 

execution based on the agent's current high-level goals/tasks and beliefs about 
its environment. Selecting high-level abstract operators for execution leads to 
subgoals, where new operators are selected for execution, and thus a hierar- 
chical expansion of operators ensues. Activated operators are executed by the 
application rules. If the agent's current beliefs match an operator 's termination 
rules, then the operator terminates. Agents built in other architectures such as 
PRS[4], BBI[3], RAP[2] for dynamic domains may be similarly characterized in 
this fashion. 

The operator hierarchy shown in Figure 1 illustrates a portion of the operator 
hierarchy for ISIS player-agents in RoboCup. One key novelty ill this hierarchy, 
to support  STEAM's teamwork reasoning (discussed below), is the inclusion of 
team operators (reactive team plans). Team operators explicitly express a team's 
joint activities, unlike the regular "individual operators" which express an agent's 
own activities. In the hierarchy in Figure 1, operators shown in boxes such as 

I WlN-GAMEI are team operators, while others are individual operators. The 
key here is that  when executing team operators, agents bring to bear STEAM's 
teamwork reasoning, which facilitates their communication and coordination. 

invisible ball 
ball Kick-out 

intercept ~e~-clo~ 

to-goal 

Fig. 1. A portion of the operator hierarchy for player-agents in RoboCup soccer sim- 
ulation. Boxed operators are team operators, others are individual operators. 

As with individual operators, team operators also consist of: (i) precondition 
rules; (ii) application rules; and (iii) termination rules. However, while an indi- 
vidual operator applies to an agent's private state (an agent's private beliefs), 
a team operator applies to an agent's team state. A team state is the agent's 
(abstract) model of the team's mutual beliefs about the world, e.g., the team's 
currently mutually believed strategy. The team state is usually initialized with 
information about the team, such as the team members in the team, possible 
subteams, available communication channels for the team, the pre-determined 
team leader and so forth. STEAM can also maintain subteam states for subteam 
participation. There is of course no shared memory, and thus each team member 
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maintains its own copy of the team state, and any subteam states for subteams 
it participates in. To preserve the consistency of a (sub)team state, one key re- 
striction is imposed for modifications to it - -  only the team operators executed 
by that (sub)team can modify it. 

In Figure 1, the highest-level operator is a team operator called WIN-GAME. 
When all of the player agents select WIN-GAME in their operator hierarchy, the 
WIN-GAME team operator is established. There are two possible operators that 
can be executed in service of WIN-GAME, specifically PLAY (when the ball is 
in play) or INTERRUPT (when the ball is not in play). When the team operator 
PLAY is active, one of four team operators, ATTACK, MIDFIELD, DEFEND 
and DEFEND-GOAL can be executed. Each of these four is executed by a 
different subteam. Thus, the subteam of forwards in ISIS, typically consisting of 
three players, executes the ATTACK team operator. In service of ATTACK, the 
subteam may execute FLANK-ATTACK or SIMPLE-ADVANCE. In service of 
these, one of several individual operators, such as "score-goal" may be executed. 
Meanwhile, a second subteam of three agents may execute the DEFEND team 
operator. At any one time, an ISIS player agent has only one path through this 
hierarchy that is active, i.e., executed by the agent. 

3 T e a m w o r k  in  I S I S  

As mentioned earlier, teamwork in ISIS is driven by a general, explicit model of 
teamwork called STEAM. STEAM uses the joint intentions theory as the basic 
building block of teamwork, and hence this theory is briefly discussed in Section 
3.1. STEAM's communication and coordination activities, driven by this theory, 
are discussed in Section 3.2. STEAM was originally developed in the context of 
building teams of helicopter pilot-agents for real-world military simulations[16]. 
Originally developed within Soar, STEAM is currently encoded in the form of 
283 Soar rules. RoboCup has provided a challenging domain for testing reuse of 
these STEAM rules, in a substantially dissimilar domain. Currently, ~/bout 35% 
of the rules are reused in ISIS, and this reuse may likely increase in the future. 

3.1 J o i n t  I n t e n t i o n s  

STEAM's general model of teamwork is based on the joint intentions theory[7]. 
A joint intention of a team (9 is based on its joint commitment, which is defined 
as a joint persistent goal (JPG). A JPG to achieve a team action p, denoted 
JPG((9, p) requires all teammembers to mutually believe that  p is currently 
false and want p to be eventually true. 

JPG provides a basic change in plan expressiveness, since it focuses on a team 
task. Furthermore, a JPG guarantees that  team members cannot decommit un- 
til p is mutually known to be achieved, unachievable or irrelevant. Basically, 
JPG((9, p) requires team members to each hold p as a weak achievement goal 
(WAG)) WAG(p, p, (9), where/J is a team member in (9, requires/t to achieve 

I WAG was originally called WG in [7], but later termed WAG in [12]. 
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p if it is false. However, if p privately believes that  p is either achieved, un- 
achievable or irrelevant, J P G ( O , p )  is dissolved, but p is left with a commitment  
to have this belief become O's  mutual  belief. Such a commitment  helps to avoid 
communication failures ...... to establish mutual  belief, an agent must  typically 
communicate with its teammates .  

Members of 69 must synchronize to establish J P G ( O , p ) .  To achieve such team 
synchronization we adapt  the request-confirm protocol[12], described below. The 
key here is a persistent weak achievement goal (PWAG(ui,  p, 0)), which commits  
a team member  ui to its team task p prior to a JPG.  # initiates the protocol 
while its t eammates  in O, ul,. ,ui. .un, respond: 

1. t~ executes a Request(tz, O, p), cast as an Attempt(t~,  0, ¢). That is, t~'s ultimate 
goal ¢ is to both achieve p, and have all ui Mopt PWAG(ui, p, O). However, # is 
minimally committed to 4', i.e., just to achieve mutual belief in O that # has the 
PWAG to achieve ~. With this Request ,  p, adopts the PWAG. 

2. Each ui responds via conf i rm or refuse. Conf i rm,  also an A t t e m p t ,  informs 
others that ui has the PWAG to achieve p. 

3. If V i, ui confirm, JPG(O, p) is formed, b 

Besides synchronization, this protocol enforces important  behavioral con- 
straints. In step 1, the adoption of a PWAG implies that  if after requesting, 
privately believes that  p is achieved, unachievable or irrelevant, it must  inform 
its teammates .  Furthermore, if/z believes that  the minimal commitment  ¢ is not 
achieved (e.g., the message did not get through) it must retransmit  the message. 
Step 2 similarly constrains team members  ui to inform others about p,  and to 
rebroadcast.  If everyone confirms, a J P G  is established. 

Thus, communication arises in the joint intentions theory to establish joint in- 
tentions, and to terminate them. However, communication in service of establish- 
ing and termination of each and every joint intention can be highly inefficient [16]. 
Hence, STEAM includes decision-theoretic communicat ion selectivity. In partic- 
ular, agents explicitly reason about the costs and benefits of communication,  e.g., 
they avoid costly communication if there is a high likelihood that  the relevant 
information can be obtained by other t eammates  via observation. 

3.2 J o i n t  I n t e n t i o n s  in  I S i S  

Joint intentions are operationMized ill STEAM via team operators.  In particular,  
when all team members  select a team operator  such as WIN-GAME for execu- 
tion (see Figure I), they establish a joint intention. As part icipants  in such a 
joint intention, STEAM enables individual team members  to reason about their 
coordination and communication responsibilities. 

Thus, based on the joint intentions theory, an individual cannot arbitrari ly 
terminate a team operator on its own. Instead, a team operator  can only be 
terminated if there is mutual  belief that  the operator  is achieved, unachievable or 
irrelevant. Establishing such mutual  belief in the termination of a team operator  
can lead to communication. In particular, communicat ion on termination of t eam 
operator  arises if an agent privately realizes some fact relevant to the terminat ion 
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of a current team operator. Thus, if an agent's private state contains a belief that 
terminates a team operator (because it is achieved, unachievable or irrelevant), 
and such a belief is absent in its team state, then it creates a communicative goal, 
i.e., a communication operator. The generation of this communication operator 
is regulated based on its costs and benefits. When executed, this operator leads 
the agent to broadcast the information to the team. 

Indeed, all communication in ISIS agents is currently driven by STEAM's 
general-purpose teamwork reasoning. A typical example of such communication 
is seen when three players in the "goalie" subteam execute the DEFEND-GOAL 
team operator. In service of DEFEND-GOAL, players in this subteam normally 
execute the SIMPLE-DEFENSE team operator to position themselves properly 
on the field and to try to be aware of the ball position. Of course, each player 
can only see in its limited cone of vision, and particularly while repositioning 
itself, can be unaware of the approaching ball. Here is where teamwork can be 
beneficial. In particular, if any one of these players sees the ball as being close, it 
declares the SIMPLE-DEFENSE team operator to be irrelevant. Its teammates 
now focus on defending the goal in a coordinated manner via the CAREFUL- 
DEFENSE team operator. Should any one player in the goalie subteam see the 
ball move sufficiently far away, it again alerts its team mates (that. CAREFUL- 
DEFENSE is irrelevant). The subteam players once again execute SIMPLE- 
DEFENSE to attempt to position themselves close to the goal. In this way, 
agents attempt to coordinate their defense of the goal, while also attempting to 
position themselves near it. 

4 L e a r n i n g  

Inspired by previous work on machine learning in RoboCup[13, 8], we focused 
on techniques to improve individual players' skills to kick, pass, or intercept the 
ball. Fortunately, the two layer ISIS architecture helps to simplify the problem 
for skill learning. In particular, the lower-level in ISIS is designed to provide 
several recommendations (such as several alternative kicking directions) to the 
higher-level, but it need not arrive at a specific decision (one specific kicking 
direction). Thus, an individuM skill, such as a kicking direction to clear the 
ball, can be learned independent other possible actions. That  is, the learning 
algorithm is not forced to simultaneously learn to select if clearing the ball is 
the best choice among available alternatives. Instead, that decision is left to the 
higher-level. 

For the RoboCup'97 tournament, C4.5[10] was successfully used in ISIS to 
learn to select an intelligent kicking direction. C4.5 rules were learned off-line via 
a batch of training examples to select a direction to kick towards the opponent's 
goal while avoiding areas of concentration of opponent players. This learned 
kicking direction was one among three kicking directions computed in the lower- 
level (as discussed in Section 2). The higher-level typically selected the learned 
kicking direction (from the three provided to it) when players were close to the 
goal, and were ready to directly score a goal. While we did initial exploration 
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to learn the remaining two kicking directions, those results were not ready for 
RoboCup'97. We hope to field a team with further learned skills for RoboCup'98. 

5 S u m m a r y  

The overall goal in ISIS was not and has not just been one of building a team that 
wins the RoboCup tournaments. Rather, ISIS has taken a principled approach, 
guided by the research opportunities in RoboCup. Despite the significant risk in 
following such a principled approach, ISIS won the third place in over 30 teams 
that  participated in the RoboCup'97 simulation league tournament.  

There are several key issues that remain open for future work. One key issue 
is improved agent- or team-modeling. One immediate application of such mod- 
eling is recognition that an individual, particularly a team member, is unable 
to fulfill its role in the team activity. For instance, if a forward is "covered" by 
the opponents, it may be unable to fulfill its role. In such cases, STEAM en- 
ables agents to reason about taking over others' roles, e.g., enabling a midfielder 
to take over the role of a non-performing forward. However, currently, in the 
absence of the required agent modeling capability, STEAM cannot engage in 
such reasoning. Indeed, this is partly the reason that many STEAM rules have 
currently not applied in RoboCup (so that  STEAM reuse is limited to :35% of 
rules). 

A second key issue arose as a lesson learned from ISIS's participation in 
RoboCup'97. A weakness was discovered in ISIS, that stemmed from a somewhat 
inappropriate interaction with the RoboCnp simulator - -  the simulator version 
used in RoboCup'97 allowed agents to take up to three actions (one action per 
100 ms) before sending them a sensor update (one update per 300 ms). This 
required that agents continually make predictions. Unfortunately, with weak 
predictive capabilities, ISIS agents could not always quickly locate and intercept 
the ball, or maintain awareness of positions of teammates and opponents. This 
key weakness was a factor in the single loss that ISIS suffered in the course of 
the RoboCup'97 tournament,  ftowever, the RoboCup simulator will evolve for 
RoboCup'98, towards more human-like play. 

Overall, we hope to continue working on ISIS in preparation for RoboCup'98, 
and meet the research challenges outlined for the simulation league in teamwork, 
multi-agent learning and agent rnodeling[6]. Further information about ISIS, 
including the code, is available at the following web site: 

www.isi.edu/soar/tambe/socteam.html. 

STEAM code, with detailed documentation and traces is available at: 

www. isi. edu/soar/tambe/steam/steam, html 

ISIS team members can be reached at robocup-sim@isi.edu. 
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