
INCREMENTAL SYMBOL PROCESSING

by

Peter Fritzson

Department of Computer and Information Science
LinkSping University

S-581 83 LinkSping, Sweden
EMAIL: paf@ida.liu.se

Abstract:

This paper introduces a novel entity*relational model for incremental symbol processing.
This model forms the basis for the generation of efficient symbol processing mechanisms
from high-level declarative specifications and query expressions, using program

transformation techniques such as data type refinement.

The model is conceptually simple~ but powerful enough to model languages of the
complexity of Ado. The new model is compared to earlier, more restricted, incremental
hierarchical symbol table models. The differences between symbol processing in conventional
compilers and incremental symbol processing are also discussed.

1. I N T R O D U C T I O N

Symbol processing and scope analysis is one of the tasks usually performed by the syntax
and semantics analysis phases of compilers. As programs grow larger, containing more
interfaces and declarative information, symbol processing operations such as definition and
lookup tend to consume a large fraction of the total compilation time. Also, scope analysis
and lookup of definitions can be quite complex for several languages in the ALGOL family,
where ADA is one example.

It is well known that interactive and incremental programming environments can enhance

the programming process by preventing or quickly detecting errors, and by helping the
programmer maintain and understand large programs. Thus it is essential that the
programming environments use incremental methods for symbol processing.

This paper introduces a high-level declarative entity-relational data model for incremental
symbol processing and scope analysis. The new model, which also can be regarded as

This research was supported by the National Swedish Board for Technical Development

12

object-oriented, gives several advantages:

Language-independence
The model contains a few simple, yet powerful, language-independent modelling
primitives. Thus it serves well as the basis for generation of language-oriented
incremental symbol processing mechanisms from compact specifications.

Integration
Since the model is entity-relational, it can be interfaced to existing relational

database technology. Thus the symbol table can be viewed as a part of an
integrated relational program database, which can hold both programmatic and
documentation information.

Query language
The relational formalism provides a general query language.

Efficient compilation of Queries
The current model has been embedded into a very high level language which
includes program transformation facilities [Refine-g7]. Using such transformations

the current model can be compiled to lower level procedural code for in-core data
bases, ultimately matching the efficiency of handwritten symbol table packages.

The current model is aimed at languages such as Pascal, Modula-2, C, Ada, etc., but may
well have wider applicability. An earlier incremental hierarchical symbol table model for
Pascal is presented in this paper as a comparison. As mentioned, the model can be viewed
either as entity-relational or object-oriented, it is largely a matter of choice. Entities are
objects. A disadvantage of a pure object-oriented view is the absence of a general query
language. A disadvantage of a pure relational implementation is that the performance of
current relational databases is not satisfactory for compiler symbol processing applications,
see e.g. [Linton-84]. Therefore, the methods presented here more or less assume an in-core
database, or a database with a high degree of clustering and in-core caching of relevant data.

There are at least two alternatives of integrating this model into a compiler or editing
environment. Through the fundamental operations Define and Lookup represented as
procedures, the model can be interfaced to an incremental compiler [Fritzson-83] or to an
editing environment based on action routines [Medina-Mora,Feiler-81]. Alternatively, Define
and Lookup can be regarded as implicit relations, and the model interfaced to an editing

environment based on relationally attributed grammars [Horwitz,Teitelbaum-86].

Attr ibute grammars are currently a popular means of specifying semantics for programming
languages. Their strength is a declarative equational style notation, which enhances
correctness and readability. Another advantage is the existence of general incremental
attribute propagation methods for editing applications [Reps-83]. However, there are also
disadvantages. The attribute grammar style of specification is somewhat low-level - each
equation specifies a too small fraction of the total computation. This fragmentation can
make the attribute grammar formulation of certain problems to be hard to understand. For
example, the specification of syntax and semantics of Ada requires a 20000 line attribute
grammar [Uhl, et.al-82]. Also, although advances have been made, efficiency still seems to be
a problem. Difficulty in optimization is often due to information loss and constraints
introduced when a problem is expressed in a too low-level formalism. For example,

13

optimizers of intermediate code often need to reconstruct control-flow and data-flow which
may have been explicit in higher level formalisms. Another example is the copy bypass

optimization [Hoover-86], which eliminates unnecessary copy operations introduced by the

constraints of attribute grammar formalisms.

We propose an alternative paradigm, based on program transformations, in the search for
suitable specification languages. In this paradigm, the freedom in choosing transformations

should create a greater chance of combining clarity of specification languages and efficient
execution of target code. On the one hand, specialized high level notations can be devised for

certain application areas. Certain notations are powerful precisely because they have a

narrow applicability - more can be expressed with less. On the other hand, there are also

general formalisms with powerful constructs. Examples are relational and set-theoretic

operators, pattern-matching and logic. Such very high level notations can be compiled into

lower level efficiently executable code by program transformation techniques such as
automatic data structure refinement and control structure refinement, see

[Goldberg,Kotik-83]. A special case of data structure refinement can be found in
[Horwitz,Teitelbaum-86] where queries on implicit relations are transformed into queries on
tree structures. The very high level specification-style notation implies greater freedom in

applying various optimizations. Our symbol processing model is aimed at being a step in this

direction, oriented towards the task of generating incremental programming environments

from specifications.

Since the transformations from specification to executable code are automatic, correctness of

executable programs follows automatically if the transformations have been proved correct,
and if the specification is correct with respect to intuitions. Correctness criteria for

transformations are briefly described later in this paper.

2. B A C K G R O U N D

Programs define and use programming objects such as variables, types, and procedures.

These objects are referred to in programs by means of symbols. The symbol processing
component of a programming system supports all activities that define and use symbols
referring to programming objects. These activities include the use of symbols by tools such
as the compiler, linker, debugger, and librarian, and the browsing of symbols by users in

cross reference queries.

By a symbol table or symbol database we mean the totality of the state needed to manage
the definition and use of the symbols required for producing a software object, e.g., an
executable module, from source program units. This state can be described as a set of
relations between a set of entities. For example, there may be a relation define that
describes all definitions within a set of source modules. It would relate entities such as the
symbols being defined, the modules in which they are defined, and the declaration objects
the symbols represent. A symbol processing system provides a programmatic interface to the
state described in the symbol table.

]4

A symbol processing system is integrated if the same symbol table is used for all

programmatic and user activities, e.g., compiling, linking, debugging, cross referencing, and
browsing. An integrated symbol processing system has the advantage that information is not
duplicated in several places with possibly inconsistent format. A change in a source program

can be incorporated once into the symbol table, and used by all applications. The system
provides a uniform interface to the symbol table information, so that applications using this

information are easier to write and maintain. A symbol processing system is incremental if

the symbol table is persistent, and if a change in the source code dynamically causes
corresponding updates in the symbol table. An incremental symbol table is one important
prerequisite to make it possible for small changes to source code to be incorporated at

minimal cost into corresponding executable program, object code modules, and symbol table

database.

Before we continue our discussion on the role of incremental symbol processing in
incremental compilation, let us briefly discuss the difference between separate compilation

and incremental compilation. In both eases the goal is to decrease the turn-around time by
re-using results from previous compilations. However, there is an order of magnitude time

difference between these two technologies. In program development environments based on
incremental compilation the time lag until execution can be resumed after a small program

modification is usually a few seconds or less - even for big programs. By contrast, the
recompilation and relink time in traditional separate compilation environments is usually
measured in minutes or more, even though advanced change analysis [Tichy=86] has

improved the situation. In addition the program need to be restarted from scratch after a

rebuild.

The better performance of incremental compilation technology depends on several factors.

The unit of recompilation is smaller for incremental compilation - a procedure or statement -
than for separate compilation where it is usually a file or module. Also, maintenance of
dependencies between declaration objects is at a finer granularity in an incremental
environment. Incremental system components such as compiler, debugger and linker are

better integrated - sometimes they even do not exist as separate entities! For example, in
traditional environments, the compiler, debugger and linker usually build their own symbol
tables, whereas a true incremental environment uses the same symbol table for all these
purposes. In addition, an incremental environment usually preserves the current execution

state, which makes debugging more convenient by providing continued execution after most

small program changes.

3. INCREMENTAL SYMBOL PROCESSING IN INCREMENTAL COMPILATION

Incremental symbol processing is one important part of the total incremental compilation
transformation, which translates source code and old executable code to updated executable
code. Symbol processing becomes increasingly important when compiling really big programs
[Rational-85], [Conradi,Wanvik-85], since there is an increased amount of declarative context
in the form of include files and module specifications.

15

The sub-transformations which comprise incremental compilation are shown very

schematically below. Note that all input arguments are not explicitly shown. For example,

incremental code generation takes both an old version of the object code and an abstract
syntax tree as input, and produces a new version of the object code. This means ~hat the

arrow ---> is not just a mapping, it is an update transformation.

Note also that incremental parsing is not needed if the program is stored in tree-form, and

that incremental optimization is optional. In some systems incremental semantic analysis
also includes incremental symbol processing.

Incremental Compilation: S o u r c e code - - - > E x e c u t a b l e code

The total incremental compilation transformation above can be decomposed into:

Incremental Code Generation:
Incremental Symbol Processing:
Incremental Linking:
Incremental Execution:

Incremental Parsing:
Incremental Semantic Analysis
Incremental Optimization:

Abstract syntax tree
Declarations
Object code
Execution state

Source text
Attributed tree
Intermediate code

---> Object code
---> Symbol table
---> Executable code
---> Execution state

---> Syntax tree
---> Attributed tree
---> Intermediate code

In the rest of this paper will concentrate on incremental symbol processing, and not be

concerned with other parts of incremental compilation.

4. BASIC SYMBOL PROCESSING OPERATIONS

There are two basic operations in symbol processing, definition and lookup.

The definition operation adds a new definition of a symbol to the symbol table. This

involves adding the symbol together with a description of the declaration object it will
henceforth represent. Thus a mapping is established from a symbol in some context to a
declaration object. Note that a declaration object is analogous to a symbol table entry in

conventional compilers.

The lookup operation. Given a symbol that is being used in a context somewhere in a
program, find the declaration object which this symbol refers to.

In addition to the two basic operations common to all symbol processing mechanisms, an
incremental symbol processing mechanism must support insertion, deletion and update of
declaration objects. It must also incrementally maintain dependencies between declarations,
and support navigation operations which change the current context.

~6

5. I N C R E M E N T A L SYMBOL P R O C E S S I N G

VERSUS CONVENTIONAL SYMBOL PROCESSING

5.1 Dependency maintenance and update of declarations

An incremental symbol processing system needs to support efficient access and updating of
dependencies between declaration objects. This is especially important in order to

incrementally support updating of global declarations.

The definition of a declaration object can be incrementally inserted, changed or deleted from

a program. For example, after a change to an existing declaration object, e.g. a global type
declaration, the system has to re-elaborate all objects which are dependent on this
declaration. Thus, the system needs efficient access to global dependencies in order to
quickly find the dependent objects. If a new declaration object is inserted, the system also
has to determine how this affects the visibility of existing objects, e.g. if it will hide
declarations in enclosing blocks.

5.2 Sequential versus Random Access

The symbol processing unit of a conventional compiler usually makes a sequential pass over
a source program unit, e.g. a file, and performs actions of defining or looking up symbols as
they are encountered during this sequential pass. This means that at any given point, the
current state represented in the symbol table only reflects definitions which have so far been
encountered before the current symbol. A conventional compiler also has schemes for
remembering and updating the current block and the visibility of symbols as it progresses

sequentially through a source program.

An incremental symbol processing system, on the other hand, has to be able to make

"random access" to just those parts of a source program unit that have been changed. It
cannot rely on assumptions based on the sequential processing of source programs. Any such
assumptions that affect scope and visibility have to be explicitly represented in the symbol
table. The incremental symbol table needs a way of keeping track of the relative positions of
symbols in a source program unit. Many programming languages are compiled by single-pass
compilers and thus require that a definition occur before its use. For such languages this
positional information is of critical importance for determining the meaning of a program.

6. SYMBOL P R O C E S S I N G MODELS

In the following sections we will present three incremental symbol processing models - a
hierarchical model~ an attributed abstract syntax tree model, and an entity-relational symbol
processing model. The first two are just discussed briefly. The emphasis is on the
entity-relational model, which is higher-level and and declarative.

17

7. A HIERARCHICAL SYMBOL PROCESSING MODEL

We briefly present a simple hierarchical symbol processing mechanism for Pascal. The

symbol table consists of a tree of local symbol tables, which allows both insertions and

deletions of declarations. This incremental symbol table model has been implemented in the

DICE system [Fritzson-83], [Fritzson-85], which is a programming environment based on

incremental compilation. Note that the symbol processing mechanism presented here does

not represent declaration position within a sequence of declarations. Thus, it allows forward

referencing of declarations which is consistent with Modula-2, but without enforcing the

Pascal define before use semantics.

A simple program example about drawing boxes will illustrate symbol processing operations

in several different models, and also the structure of these models. The concept of region,

defined in the next section, is also exemplified.

PROGRAM BoxProg;

TYPE BoxType = RECORD
Xl, Y1 : In teger ;

END;
Color = (Red, Green, Blue);

VAa
BoxVar : BoxType:

X2, Y2 : In tege r ;

PROCEDURE DrawBox(X1,Y1,X2,Y2 : I n t ege r) ;
VAR

Dx, Dy : I n t e g e r ;

PROCEDURE DrawLine(DeltaX, DeltaY : In t ege r) ;
BEGIN (* DrawLine *)

~.NDI'~; of Dra,Line *)

BEGIN (* DrawBox *)
GotoXY(X1, YI) ;
Dx := X2-X1;
By := Y2-YI;
Drawline(O, Dy) ;
Drawline(Dx, O) ;
Drawline(O, -Dy) ;
Drawline (-Dx, O)

END; (* of DrawBox *)

BEGIN (* BoxProg)
ClrScreen;

WI~'Boxvar DO BEGIN
DrawBox(X1, Y1, X2, Y2);

END;
END. (* Of }~ain program BoxProg *)

Figure I. A program ezample BozProg.

18

Systemblock
!
]

Program BoxProg

Procedure DrawBox Type BoxType Type Color Boxvar WITH-statement
!
!

Procedure DrawLine

Figure 2. Slightly simplified Region hierarchy.

Level O:

Level i:

Level 2:

Level 2:

Level 2:

Level 3:

Localsymtsb [GotoXY, ClrScreen, BoxProg]
Dependencies [(GotoXY -> BoxProg), (GotoXY -> DrawBox)

(ClrScreen -> BoxProg)];

Program BoxProg:
LocalSymtab [Boxtype, Boxvar, DrawBox, Color, Red, Blue, Green]
Dependencies [(Boxtype -> Boxvar), (Boxvar.DrawBox -> 8oxProg)]

Type Boxtype:
LocalSymtab [XI,YI, X2, Y2]
Dependencies [(XI -> BoxProg)~ (YI -> BoxProg),

(X2 -> BoxProg), (Y2 -> BoxProg)]
Type Color:

LocalSymtab [Red, Blue, Green]
Dependencies []

Procedure DrawBox
LocalSymtab [Xl, YI, X2, Y2, Dx, Dy, Drawline]
Dependencies [(Drawline -> DrawBox),

(XI,YI,X2,Y2,Dx,Dy -> DrawBox)]

Procedure Drawline
LocaISymtab [DeltaX, DeltaY]
Dependencies []

Figure 3. Contents of a hierarchical symbol table which includes dependencies.

The hierarchy of local symbol tables and dependencies for the small BoxProg program is

shown in Figure 3. Note that only dependencies between declarations and between

declarations and procedures/functions are shown. For example, (GotoXY -> DrawBox)

means that DrawBox depends on and uses GotoXY. Dependencies between a set of local

declarations and the procedure/program body at the same level are represented using a

special form~ e.g. (X1,Y1,X2,Y2~Dx,Dy -> Drawline).

Note also that the WITH-statement in the body of program BoxProg is shown connected to

the block/region hierarchy with a dotted line. This means that the local symbol table of field
names associated with the record type Boxtype is temporarily associated with the block

hierarchy when the current position is within the WITH- statement in the BoxProg

program.

8. THE N O T I ONS OF R E G I O N AND S C O P E

The term region, or more precisely declarative region [ADA-83] , is sometimes used

interchangeably with the term block. However, the notion of region is more general - it

denotes any syntactically defined portion of a program, such as e.g. a record declaration.

I9

The notion of block is usually connected with objects which instantiate some kind of

activation records, e.g. procedure blocks or program blocks. Each pair of regions are either

disjoint portions of a program, or one region is completely enclosed within the other.

The scope of a declaration object consists of the parts of a program where it is legal to
reference the declaration [ADA-83]. Scope need not conform to the nice nesting structure of
certain programming languages. For example, in the C language [Harbison,Steele-84], the

scope of an identifier extends from its first occurrence - see example in Appendix A. Similar
rules apply for Ada and Pascal. Scope can be complicated, since it depends on both position,

region structure and the nesting rules of the languge.

9. O P E R A T I O N S ON THE HIERARCHICAL INCREMENTAL SYMBOL

TABLE

In addition to manipulating the contents of the symbol table, certain symbol processing

operations support navigation operations, i.e. setting the current focus in the tree-structured
symbol table. This focus can be represented by a cursor, which we call the symcursor in the

context of symbol processing. In [Fritzson-85] two similar kinds of cursors are defined: the

editcursor which denotes the context of editing and incremental compilation operations; the
execursor which denotes the current context during debugging and execution.

Navigational operations

To enter a block or region, set the symcursor to the block which is to be entered. This has

the effect that subsequent definition operations witl as a default be performed on the local
symbol table of this block. Lookup operations will start searching in the current local symbol

table. The block to be entered has to exist - it must have been previously created during
some define operation. The leave block operation is a special case of enter block. It means
that the symcursor should be reset from denoting the current block to instead denote the
parent block, if such a block exists.

Define symbol

This operation associates a symbol in the current context with a new declaration object.
First~ create a declaration object and elaborate type information specified by the declaration
which defines the symbol. For certain declaration objects such as procedures or records; a

block with a local symbol table is also created. Then do a partial lookup to check if the
symbol is already defined in the current block, in which case the new definition is illegal.
Finally, enter the symbol and its declaration object in the local symbol table.

Lookup symbol

Given a symbol used to reference an object, this operation finds the corresponding object.
The lookup operation can be a complex function of scope and visibility rules together with
current context, position and type information. However, in the special case of our

hierarchical symbol table for Pascal it is simple: first perform a lookup in the local symbol
table of the current block; while not found continue the lookup in subsequent parent blocks
until the outermost system block has been searched.

20

Declaration Update

The insert operation is essentially a define operation. However in an incremental symbol
table more tasks need to be done. For example, it must be checked if the new definition
partially hides an existing declaration which is referenced in the current context. In such a
case, all objects in the current context which are dependent on the previous declaration have

to be re-elaborated and recompiled.

The delete declaration operation removes the symbol and its associated declaration object

from the symbol table. Also mark all dependent objects for incremental recompilation. If the

deleted symbol represents a variable, also free its associated target memory.

Dependency Maintenance

For each use of a declaration object, update the dependency structure to reflect this use.
When a use of an object is deleted, then update the dependency structure to possibly

remove a dependency.

Dependency Query

This query answers the question: Who depends on me? It returns the set of all declaration

objects which are dependent on a certain object.

10. AN A T T R I B U T E D ABSTRACT SYNTAX T R E E MODEL

This symbol processing model is really a special case of the hierarchical incremental symbol

table model described above. We note that the region hierarchy of the symbol table
corresponds to the block hierarchy of the abstract syntax tree itself, so why not use the

abstract syntax tree? We need not create a special local symbol table at each block level.
Instead, it is possible to do lookup operations by searching declaration nodes in the current
block in the tree. Elaborated declaration objects and dependencies can be attached to the

tree as attributes. Insertions and deletions are performed on the attributed tree itself. This

model is used e,g. by the Rational incremental Ada environment [Rational-85].

However, there are also disadvantages in representing the symbol table as an abstract
syntax tree. It is less efficient to perform a lookup as a linear search through the tree instead

of a single access to a hash table. Therefore the Rational incremental ADA environment has
been augmented with hashed lookup at the global level [Rational-86]. Also, the
implementation of symbol processing operations may become language dependent to a
greater degree, since the tree structure of declarations is peculiar for each language. This
model is of course not suitable for programming environments which do not use a tree

structure as the primary program representation.

11. THE ENTITY-RELATIONAL DATA MODEL

The entity-relational data model was first introduced in [Chen-76]. It can be regarded as a
thin layer on top of the relational database model [Codd-70]. It is convenient to think of a

21

relation as a table, or as a set of tuples <vl, v2, . . Vn> ' where each data value v i belongs

to a data domain Di. The columns of the table are often called attributes. In the

entity-relational model, there are two kinds of attributes: associations (between entities),

and properties, see Figure 4.

Concept Informal definition Examples

ENTITY A distinguishable object

(of some particular type)

Declaration object, (= symbol table

entry in conventional systems),

a node an an abstract syntax tree

PROPERTY A piece of information that

describes an entity

The name of a dec lared objec t

such as va r i ab le . The memory

s ize occupied by a va r iab le .

ASSOCIATION

(ATTRIBUTE)

A many-to-many or many-to-one

relationship among entities.

C0NTAINED-WITHIN: A var i ab le

X is declared within the

declarative region of procedure

FO0.

SUBTYPE

(SUBCLASS)

Entity type Y is a subtype of

entity type X if and only if

every Y is necessarily an X.

Figure 4. The Entity-Relational data model

The subtype EXPRESSION is a

subtype of TREENODE. Subtype

DECLOBJECT is a subtype of

PROGRAMOBJECT.

A query is an expression in the relational algebra in which relational operators are applied to

argument relations to produce a relation as a result. The three special relational operators

are JOIN, SELECT and P R O J E C T . P R O J E C T is a unary operator that forms a new

relation consisting of a subset of the attr ibutes of a relation (or of the columns of a table).

JOIN is a binary operator: it merges tuples from two argument relations together into bigger

tuples, but selecting only those merged tuples that fulfil a given condition. SELECT is a

unary operator that selects the subset of tuples in its operand relations that satisfy a given

condition.

A view relation is a relation which is computed from other relations when needed, using an
expression consisting of relational operators.

An implicit relation is never constructed. Instead it is implicitly represented by some other

data structure. An example is the A N C E S T O R relation which can be implicitly defined by a

tree, but need not be constructed explicitly. Instead, the relational query operators are

transformed into different query operators that operate on this other data structure. Such an
example can be found in [Horwitz,Teitetbaum-86] where it is described how certain queries

of implicit relations can be transformed into a equivalent queries on tree structures. This is a

special case of data structure refinement [Goldberg,Kotik-83]. The DEFINE and LOOKUP

operations mentioned previously can be represented as implicit relations in our model.

22

12. AN E N T I T Y - R E L A T I O N A L SYMBOL P R O C E S S I N G M O D E L

We have chosen to express our symbol processing model as an entity-relational data model
[Chen-76]. This combines most advantages of the relational approach and the object oriented
approach [Zdonik,Wegner-85], [Birtwistle,et.al-73]. The relational approach provides the
powerful relational operators and a query language. The object-oriented approach provides
subclassing with inheritanee~ in addition to association of attributes and operations with

objects.

There exist certain limitations of the relational model. The relational operators cannot
handle (1) queries that require transitive closure, (2) queries that require order-dependent
processing, and (3) arithmetic processing. Therefore our symbol processing model is
augmented to allow such queries. Our model has been embedded in the Refine language
[Refine-87]. This is a wide-spectrum very high level language, which provides arithmetic,
set-theoretic operations, logic with universal and existential quantification, program
transformation constructs, and object-oriented programming with single inheritance. Note
however, that all explicit relations in our model are pure entity-relational. This added query
power is convenient when defining the implicit LOOKUP relation.

Our entity-relational symbol processing model is currently implemented as a set of mappings
(associations) between objects. Since mappings can be defined between an object and a set
of objects, or between a set of objects and another set of objects, many-to-many or

one-to-many relations can readily be represented as mappings.

ENTITIES

Declobject: subtype-of Programobject

Region: subtype-of Programobject

Declaration: subtype-of Programobject

Statement: subtype-of Programobject

Figure 5. Entities in the entity-relational model.

BINARY RELATIONS/ASSOCIATIONS

Each binary relation is represented as a mapping together with its converse mapping. Since
many-to-one mappings are not invertible~ we can instead form a converse mapping, where
the range consists of sets of entities. The REGION OBJECT relation is sparse - not all
declobjects have regions, and vice versa.

Relation DEPENDENCY:

USED_BY : map Declobject -> set(Programobject)

USES : map Programobject -> set(Declobjec%)

Comments

USED_BY The set of program objects which depend on a declobject.

USES The set of declobjects a program object is dependent on.

23

Relation REGION_NESTING:

PARENT_REGION : map Region -> Region

CHILD_REGIONS : map Region -> set(Region)

Comments

PARENT_REGION The innermost surrounding region,

CHILD_REGIgNS The set of child regions of a region.

Relation DEFINED_WITHIN:

DECLS_IN_REGION : map Region -> seq(Declobject)

REGION_AROUND_DECL : map Dec!object -> Region;

Comments

DRCLS_IN_REGION The sequence of declobjects defined in a region.

REGION_AROUND_DECL The region within which a declobject is defined.

Relation INHERIT:

INHERITS : map Region -> Region

INHERITED_BY : map Region -> set(Region)

Comments

INHERITS The region which exports declobjects into this region.

INHERITED_BY The set of regions by whom this region is inherited.

Relation PRINT_N&ME

PRNAME : map Declobject -> Symbol

PRNAME_0F : map Symbol -> set(Declobject)

Comments

PRNAME The printname of an object,

PRNAME_OF The declobject of which this is a printname.

Relation REGION_0BJECT

0BJ_REGION : map Declobject -> Region

DBJ_REGIDN_OF : map Region -> Declobject

Comments

0BJ_REGION h region which may be associated with a declobject.

ODJ_REGION_0F The programobject which is associated with a region.

Figure 6. Relations/associations in the entity-relational model.

B O O L E A N P R O P E R T I E S O F R E G I O N S

TRANSPARENT

Declobjects from within a transparent region are directly visible outside.

QUALIFIED

Declobjects from within a qualified region are visible by qualification,

PARTIALLY_QUALIFIED

Declobjects which are explicitly named as exported from within a region.

0RDINAL_QUALIFIED

Declobject are visible by their ordinal position - procedure parameters.

PARTIALLY_NESTED

24

A partially nested region inside an outer region may introduce new

declobjects, but their names may not collide.

Figure 7. Boolean properties of regions.

PROPERTIES OF DECLOBJECTS

POSITION : ProgramPoint

Position of a declaration or program object. It can be represented as

line number, character position, or tree node address.

TYPE_OF : Typespec

Type of a declaration object.

Figure 8. Properties of declobjects and certain programobjects.

We currently identify five boolean properties of regions: transparent, qualified,
partially_qualified, ordinal_qualified and partially_nested regions. An example of a
transparent region is the definition of the enumeration type Color, where all components are
externally visible. A record declaration is a typical example of a qualified region -
components defined within the region are externally visible by qualified access. A procedure

declaration which introduces a block of local declarations is an example of a partially_nested
region. Finally, a region which inherits another region, can extend the visibility of

declarations from this other region to itself. The Pascal WITH-statement is an example of a
region which inherits other regions. Thus, it makes the fields from some record declaration

visible within itself.

For Pascal or Modula-2~ type analysis is not needed for lookup or definition of symbols.
However, for the Ada language, type information is necessary in order to resolve overloaded

symbols.

The DEPENDENCY Relation.

Dependenton: Used-by:
<GotoXY, {BoxProg,DrawBox}>
<ClrScreen, {BoxProg}>

<BoxVar, {BoxProg}>
<DrawBox, {BoxProg}>
<BoxType, {BoxVar}>

<XI, {BoxProg}>
<Y1, {BoxProg}>
<X2, {BoxProg}>
<Y2, {BoxProg}>

<Drawline, {DrawBox}>
<X1, {DrawBox}>
<YI, {DrawBox}>
<](2, {DrawBox}>
<Y2, {DrawBox}>
<Dx, {DrawBox}>
<Dy, {DrawBox}>

The REGION_NESTING Relation:

25

parent_region: child_regions:

<R-Systemblock, {R-BoxProg}>
<R-BoxProg, Z~R-BoxType, R-Color, R-DrawBox, R-Boxvar_WITH}>
<R-DrawBox, {R-Drawline}>

The DEFINED_WITHIN Relation:
parent_region: decl_objects:

<R-Systemblock {GotoXY, ClrScreen}>
<R-BoxProg, {Boxtype, Boxvar, DrawBox}>
<R-BoxType, {Xl, YI, X2, Y2}>
<R-Color, {Red, Green, Blue}>
<R-DrawBox, {X1-2, YI-2, X2-2, Y2-2, Dx, Dy, Drawline}>
<R-Drawline, {DeltaX, DeltaY}>

The PRINT_NA~E Relation:

Namestring: Object:

<"BoxProg", BoxProg>
<"BoxType", BoxType>
<"DrawBox", DrawBox>
<"XI", Xl>
<"XI", Xl-2>
<"YI", YI>

The INHERIT relation:
Donor: Inheritor:

<Boxtype, Boxvar-WITH> ;

Figure 9. An example of relations. The simplified vereion of the entity-relational model has
been applied to the BozProg program example. Note that when two objects have the same
name, e.g. the record field X1 and the formal parameter)[i, these objects are denoted)[1

and X1-2 respectively.

13. I N F O R M A L D E S C R I P T I O N OF O P E R A T I O N S

This section provides an informal description of the incremental symbol processing
operations with emphasis on the lookup operation, which later in this paper is expressed

formally.

A printname and a current region are input to most variants of the lookup operations. In
addition, the current position need to be supplied for certain languages, and a typespec for
overload resolution. The lookup will return a matching declaration object, or a special

Undefined value.

Qualified lookup

A typical example of qualified lookup is the lookup of record field names which are qualified
by a record variable using dot-notation, e.g. Recordvariable.Fieldname, or the lookup of
procedures defined in some Modula-2 module, e.g. Modulename.Procname. It is conceptually
simple: perform the lookup among declaration objects defined within the record region or the
module region. This region is here denoted by the current region.

26

In relational terminology this can be expressed using our relations PRINT_NAME and
DEFINED_WITHIN. Find all declaration objects obj, such that DEFINED_WITHIN(obj,
current_region) and PRINT_NAME(printname, obj). This can be conceptually performed by
first joining the relations PRINT_NAME and DEFINED_WITHIN, and then performing a
selection using printname and current_region as a combined key. The search can be made
more efficient by performing most of the selection operations before the join, or maintaining
a precomputed joined relation.

Visibility lookup

This is a lookup operation where the given name directly implies some declaration object
which is visible in the current context. The visibility of declaration objects is the primary
criterium in this lookup. Typical examples are the lookup of a variable name, a procedure

name, or a type name.

However, several factors complicate ~he lookup operation. Declarative regions are usually
nested, and declarations in inner regions may redefine symbols with the same name in outer
regions. Certain regions inherit declarations from other regions. For example, the Pascal
WITH-statement inherits field declarations from some record type region. Certain regions
are transparent, e.g. Pascal enumeration type declarations, which makes their components

visible in the parent region.

A simple, but perhaps inefficient, way of performing the lookup is as follows. Use the current
printname to index the PRINT_NAME relation in order to select all objects with that
printname. Then use the DEFINED_WITHIN relation to find within which region each such
object is defined. Now the second phase of the lookup starts. We must find_ the set of regions
which have declarations that can be visible from the current region. This includes the parent
region, the parent of the parent region etc., following the REGION_NESTING relation to
the uppermost region. It also includes transparent child regions, and regions which are

inherited by such regions.

First example:

Here the current printname is "XI" and the current region is DrawBox. Selections using
"XI" as an index into PRINT_NAME, yield two objects: X1 and X1-2. The
DEFINED_WITHIN relation further yields X1-2 which is defined within the DrawBox
region and X1 which is defined within the Boxtype region. Then we look for the set of
possibly relevant regions in addition to DrawBox. Using REGION_NESTING, we obtain the
parent region BoxProg and Systemblock. The child region Color is transparent and should
also be included. Thus, the set of possible regions becomes (I)rawl~ox. BoxProg,
Systemblock, Color}. Finally we intersect with the regions of our two possible objects,
eliminating X1 since it is defined within Boxtype. Thus the final result of our lookup is

X1-2.

Second example:

The current printname is again "XI", but we now perform the lookup from a position in the
WITH-Boxvar statement region, which thus is the current region. As in the previous
example, "Xl" first matches the two objects X1 and X1-2. Using the nesting hierarchy we
then obtain {WlTH-Boxvar, BoxProg, SystemBlock} as possible defining regions. The Boxtype

27

region is added since it is inherited by :~he WITH-Boxvar region - see the INHERIT relation.

The Color region is also added since it is transparent and is a child of BoxProg. This yields

the set ~WITH-Boxvar, BoxProg, SystemBlock, Boxtype, Color],. Since X1 is defined within

Boxtype, but X1-2 is defined within Drawline, the final result is X1.

So far we have ignored the possibility that declarations in inner blocks redefine symbols
which are declared in outer blocks. Such ambiguities can be resolved by introducing an

auxiliary relation REDEFINED between declaration objects [Reiss-83]. However, the random
access nature of incremental symbol processing makes REDEFINED somewhat unsuitable,
since the contents of this relation is dependent of the current focus of processing. In the

worst case REDEFINED would have to be rebuilt at each lookup. A more efficient solution

is used in the precise formulation of the lookup algorihm further on in this paper.

Define symbol

This operation associates a symbol in the current context with a new declaration object.
First, create a declaration object and elaborate type information specified by the declaration

which defines the symbol. This means updating the PRINT_NAME relation with a tuple

<printname, object> and some other object attributes. Then do a partial lookup of the
symbol in the current region, and in regions which are transparent to or inherited into the
current region. If the lookup succeeds, then there are multiple definitions of the symbol, in

which case the new definition is illegal.

Otherwise, enter the symbol and its declaration object into the current region in the symbol

table. This means inserting a tuple <object, current_region> in the relation
DEFINED_WITHIN. If the new declaration introduces a region, e.g. procedure, function,
record- declarations, the object also belongs to the class of region objects. Then the relations
REGION_NESTING and REGION_OBJECT should be updated. The INHERIT relation

should be updated if the new region inherits declarations from some other region. If the new

region object contains component declaration, then we first have to introduce this new
region. For example, the symcursor denoting the current region should be set to this new
region before the components are defined.

Navigation operations

Enter region will set the current region to be the region which is to be entered. Subsequent

definition operations will insert definitions within the current region. Lookup operations
start searching for object definitions within the current region. Leave region is really a

special case of Enter region, since it means that we should enter the parent region of the

current region. The parent region is found by indexing the REGION_NESTING relation
using the current region object as a key.

Declaration update

As mentioned before, the insert operation is essentially a define operation. However, in an
incremental symbol table we have to check if the inserted declaration will hide some existing
declaration which is Mready used in the current context. This is done by performing a full

lookup on the symbol at the definition point - not a partial lookup as in an ordinary define
operation. Suppose the new definition partially hides an existing declaration which is

28

referenced in the current context. In such a case, all objects in the current context which are

dependent on the previous declaration have to be re-elaborated and recompiled. The
checking is performed by doing a lookup.

To delete a declaration, remove the symbol and its associated declaration object from the
symbol table, i.e. update the relations PRINT_NAME and DEFINED_WITHIN. If the

removed object has a region, then also update REGION_NESTING and INHERIT. Use the
removed object as a key to the DEPENDENCY relation to find all dependent objects, and

mark those for incremental recompilation. Also mark transitively dependent objects in the

same way.

Dependency update

For each new use of a declaration object, update the dependency structure to reflect this use

by inserting a tuple <current_region, object> into the DEPENDENCY relation. If a use of
a declaration object is removed, and there are no more uses of that object within the current
region, then delete the tuple <current_region, obj ect> from the DEPENDENCY relation.

Dependency Query

This query answers the question: Who depends on me? Return the set of all declaration

objects which are dependent on a certain object by making a selection from the
DEPENDENCY relation, using this object as a key. Many other query variants can be

expressed using the relational algebra.

14. AN EXTENDED ENTITY-RELATIONAL MODEL

Our simple incremental relational symbol processing model cannot exactly represent
languages with single pass symbol processing semantics, where a symbol cannot be

referenced before it has been defined. This problem can be solved by introducing the notion

of Position for declaration objects.

Another problem is that formal parameters can be accessed outside their defining procedures
by qualification on their ordinal positions in parameter lists. In addition to ordinal

qualification, languages such as Ada also support named qualification on parameter names.
Thus, we need to extend our previous model, which for each procedure has a single
declarative region for both parameters and local variables. In the extended model we
introduce at least two declarative regions for each procedure: one qualified region enclosing
the whole procedure including the formal parameters, and one or more additional regions

nested within, for blocks with local declarations.

This model suits Ada and C, where declarations in nested local blocks are allowed to hide
parameter declarations. In Pascal however, local declarations are not allowed to hide
parameter declarations - they are conceptually part of the same block. Our solution to this
problem is to introduce another class of regions called partially nested regions. This kind of
region is similar to nested regions except that declarations within partially nested regions

are not allowed to hide declarations from outer regions.

29

Remember that the scope of a declaration object consists of the parts of a program where it
is legal to reference the declaration. It can be expressed as a function of simpler notions such
as position, nesting of regions, visibility rules etc. This is expressible within our extended
model. Scope need not conform to the nice nesting structure of programming languages. For

example, in the C program example in Appendix A, the scope XX1 of the globM variable
XX covers the initial part of the body of the function foofunc, whereas the scope XX2 of the
local variable XX covers the rest of foofunc.

15. P R E C I S E F O R M U L A T I O N OF T H E L O O K U P A L G O R I T H M

There are two basic variants of the lookup operation, which define the implicit LOOKUP
relation. Those two are lookup by direct visibility and lookup by qualification. Visibility
lookup is the most common case, where an occurrence of a name in the current context
should be associated with some declared program entity. This can be a complex function of
nesting structure, local context, positions of declarations, import and export of declarations,
and types when there is a possibility of overloading. Simple overload resolution with type

comparison is included in the present lookup algorithm. A complete overload resolution
algorithm for Ada is presented by [Baker-82].

The function Visibility_Lookup starts searching within the innermost region that includes
the current program point. If there is no match, continue at the next outer level in the
region nesting hierarchy. According to the nesting rules only the first match should be
returned. Thus positional and type-checking predicates, when relevant, must be applied
during the search. The Undefined value is returned when there is no match. Note that at
each nesting level we consider both declarations from the current region, declarations from
regions which are inherited into the current region (e.g. Pascal WITH), and declarations
from transparent child-regions (e.g. Pascal Enumeration). PRNAME_OF(Name) returns the
set of declaration objects with a certain print name. For single-pass compiled languages such
as Pascal and C, which require that a definition occurs before its use, the Check_position
predicate is relevant.

Lookup by qualification is far simpler. Just lookup the qualified name within the region
where it is defined. For example, in the common case of a record field reference, search for it
within the declarative region of the record type. A special case is ordinal qualification, where
instead of a name, an integer index denotes the declaration object. For certain languages
[Refine-87] it is possible to denote a fieldname in this way, e.g. xrec.2 would reference the
second field in xrec. However, ordinal lookup is most commonly used for accessing procedure
parameters to make type checking possible at call sites.

FUNCTION Visibility_Lookup(Name : Symbol;
Currentregion : Region;
Currentposition: ProgramPoint;
Currenttype : Typespec): Declobject

(* Lookup of Name in the current context, which is denoted by Currentregion.
Start Looking in the current region, and all regions (transparent or
inherited) which are visible at the current nesting level.
Continue searching outwards at each level in the nesting hierarchy,
until a matching declara%ion object is found, or

30

the root, which has no parent, is encountered.
*)
BEGIN

r := Currentreoion;
REPEAT

rset := {r} union {INHERITS(r)} union
{x I x in CHILD_REGIONS(r) and TRANSPARENT(x) }

F0R d:Declobject IN PRNAME_0F(Name) D0
IF REGIDN_AROUND_DECL(d) in rset

and Check_Type(d, Curren t type)
and Check_Position(d, Currentposition)

THEN
RETURN d;

END FOR;

r := PARENT_REGION(r);
UNTIL Undefined(r);

RETURN Undefined;
END;

FUNCTION Check_Position(d: Declobject; p: Position): Boolean;
(* Predicate to check if d is accessible before or at position p.

For languages which require define before use *)
BEGIN

RETURN BEFORE(POSITION(d), p);
END;

FUNCTION Check_Type(d: Declobject; t: Typespec): Boolean;
(* Predicate to check if d is compatible with typespec t.

For languages which allow overloading with respect to type/signature *)
BEGIN

RETURN TypeCompatible(TYPEOF(d), t);
END;

FUNCTION qualified_Lookup(Name : Symbol;
Currentregion : Region;
Currenttype : Typespec): Declobject;

(* Qualified lookup of Name, example: Qualifyname.Name
Currentregion can be obtained by OBJ_REGION(qualifyobject), where
Qualifyobject is the declaration object associated with qualifyname.
Currenttype is useful when overloading is a possibility.

*)
BEGIN

FOR d:Declobject in DECLS_IN_REGIDN(qualifyregion) DG
IF PRNA~E(d) = Name;

and Check_Type(d, Currenttype)
THEN

RETURN d;
END FOR;
RETURN Undefined;

END;

FUNCTION Ordinal_Lookup(Ordernumber : Integer;
Qualifyregion : Region): Declobject;

(* Lookup by ordinal qualification. Example: lookup of a procedure
parameter for type checking at some call site. In this case
Qualifyregion can be obtained by REGION-0F(Procedureobject).

*)
BEGIN

RETURN the element extracted by
indexing the Ordernumber:th element in the sequence
DECLS_IN_REGION(qualifyregion);

END;

F{g~tre t0.

3]

The lookup procedures for our incremental symbol processing model are shown in pseudo
code in Figure 10. Note that the procedures are fairly short in this model, despite the
apparent complexity of lookup. The Refine implementation of this pseudo code has

approximately the same length.

16. WHY IS THIS E N T I T Y - R E L A T I O N A L MODEL INCREMENTAL?

Incremental means that the work needed to introduce a change is more or less proportional
to the size of the change. Thus it is essential that the datastructures of the model, in our

case relations, permit efficient updating - both insertions and deletions. Also, the dependency
relation permits the effects of changes to be propagated only to affected program entities,
without affecting others. Direct access and order-independent processing: changes can be

processed in any order anywhere in the program. The symbol table is independent of the
current focus of processing. For example, if we introduced a relation REDEFINED - that

represents which declarations have been redefined in the current nesting context - it would

violate this rule, since it would need to change if the current focus changed.

17. R E P R E S E N T A T I O N OF CERTAIN LANGUAGE CONSTRUCTS

In this section we show how some special language constructs can be represented in the
entity-relational symbol processing model. The current list of examples are from Pascal,

Modula-2 and Ada. Regions are marked in these examples.

Pascal declaration of enumeration scalars

This construct introduces a set of named entities within a small region of the
program. This is easily modelled by a TRANSPARENT region, which causes
entities from inside it to be directly visible in the surrounding region.

Example: TYPE Color = (Red, Blue, Green);

Pascal record type declaration

A record type declaration introduces a number of field entities. If the body of the
declaration is modelled by a QUALIFIED REGION, then the fields will be visible
by qualification in the surrounding region.

Example: TYPE Personrec = RECORD Age:Integer; Weight:Integer END;

.

Pascal WITH statement

A Pascal WITH statement causes the fields of a record variable to be directly
visible within its body. This is modelled by a region around its body. This regions
INHERITS the region around the record type where the fields are declared. Thus
the fields become directly visible.

32

Two nested regions are associated with this example WITH-statement. The xrec
record type region is imported/inherited by the outer WITH-region, and the yrec

region by the inner region.

Example: WITH x r e c , y r e c DO ;

.............. Outer region

......... Inner region

Modula-2 IMPORT declaration, Ada WITH-declaration

Even though it sounds strange, we introduce a small QUALIFIED REGION for
each module identifier. Each such region covers only the identifier itself, and
INHERITS the region around the module/package specification part. Thus all
declaration objects from within the module/package are available within this small
region. Since it is a QUALIFIED REGION, declarations are also visible outside it

by qualified access.

In this example there are two small qualified regions, where each only covers the
relevant module/package identifier. Xmodule is inherited by the first region, and

ymodule by the second.

Example s :
Modula-2 : IMPORT xmodule, ymodule;

Ada : WITH xmodule, ymodule ;

region I region 2

Modular2: Selective import statement
Here, a PARTIALLY TRANSPARENT region is introduced around the list of
identifiers. The xmodule region is inherited by this underlined partially transparent
region. Thus only these explicitly mentioned identifiers are made directly visible

outside this region.

Example :

Modula-2: FROM xmodule IMPORT fool,foo2,foo3;

Ada USE declaration
This case is similar to the Ada WITH-declaration, but here a TRANSPARENT
region is introduced around each identifier. Thus declarations from inherited regions

are made directly visible.

In our example we introduce a sequence of two transparent regions, where the first
inherits xmodule and the second inherits ymodule. All definitions from these
modules are made directly visible outside the transparent regions.

Example :

Ada : USE xmodule, ymodule,

33

18. C O R R E C T N E S S

In this section we discuss correctness of queries and very high level specifications, where

queries on our symbol processing model is one special case. Since the transformations from

specification to executable code are automatic, correctness of executable programs follows
automatically if the transformations have been proved correct, and if the specification is

correct with respect to intuitions. In the following, we will use the normal definition of

correctness which only requires that the implementation has the same semantics as the

specification, without taking intuitions into account.

Data type refinement is an especially important program transformation from our point of

view, since it allows transformation of relational queries to query operations on other data
structures which may be more efficient in certain respects. A special case of such data

structure refinement is described in [Horwitz,Teitelbaum-86] where queries on implicit

relations are transformed into queries on tree structures. In the rest of this section we wilt
focus on how to define correctness of data type refinements, which follows the t reatment in

[Goldberg,Kotik-83].

High-Level:

Low-Level:

H-Terms H-Eval > H-DataValues
! F
! !

! Translates ! Abstracts
! !

U !
L-Terms L-Eval > L-DataValues

Figure 11. Correctness of a data-type refinement, expressed through
a cemmutating diagram.
A refinement is a pair I = <Translates, Abstracts>. It is correct

iff: ferall tl in H-Terms, forall t2 in L-Terms
[(tl --> t2) => (H-Eval(tl) = Abstracts(L-Eval(t2)))]

Informally, we can define a data type D as a pair <OperationsD. DataValuesD>" We also
assume the existence of a function EvaI, which maps terms into terms, where a term is an

expression involving only the operations of some data type. A refinement I of a type H =

<0perationsH, DataValuesH> to a type L = <0perationsL, DataValuesL> ' is a pair
<Translates , Abstracts>. Translates is a relation between H-Terms and L-Terms. It
specifies the possible translations from expressions in H-Terms to expressions in L-Terms.

Abstracts is an abstraction map, that maps each value in DataValues L to the unique value in
DataValuesH, which it represents in the refinement, and is the identity function for all other
values. Remember that there are usually several lower level concrete representations for each
higher level abstract data type.

I t is then natural to define a data type refinement as correct, if translated expressions
always preserve the semantics of the original expressions. This is the same as requiring that
the diagram in Figure 11 commutes. More formally, a refinement I - <Translates ,
Abstracts> is correct if

forall tl in H-Terms, forall t2 in L-Terms

[(tl --> t2) => (H-Eval(tl) = Abstracts(L-Eval(t2)))]

Refinements can be composed under certain conditions. By the above definition it is easy to
realize that the composition of two correct refinements is itself correct.

34

19. C O M P A R I S O N W I T H PREVIOUS W O R K

The DICE hierarchical incremental symbol processing model [Fritzson-85], is too specialized,
and lacks a general declarative query language. A more general incremental model is clearly

needed.

The [Reiss-83] paper presents a general model for the generation of non-incremental symbol
processing mechanisms from ad-hoc declarative specifications. In addition, that paper
contains a separate formal relational symbol processing model. However, that relational
model is not suitable as a basis for generation of efficient symbol processing mechanisms.
Also, that relational model is not incremental, and it does not correctly model the fact that
for many languages the scope of a declaration extends forward from the actual point of
declaration. However, its non-relational implementation still works correctly because of the
sequential processing nature of non-incremental symbol processing.

The present entity-relational model is an improvement in several respects. It is incremental
and it can be used to generate efficient symbol processing mechanisms from high-level
declarative specifications through transformations. It is also conceptually simplified, e.g. the
complex notion of scope group [Reiss-83] is eliminated. Our model uses the more precise
notion of declarative region as a basis for expressing scope. We also include the notion of
position, which is needed in an incremental context.

The PSG system [Bahlke,Snelting-86], has the possibility of generating simple scope analysis.
However~ PSG context relations are primarily designed for use on type analysis, which
includes the reconstruction of types from unification on incomplete program fragments.

Attributed-relational grammars [Horwitz,Teitelbaum-86] appears useful as a possible means
of communication between a language-based editor and our entity-relational model.
However, only very simple scope analysis for a Pascal subset is mentioned in that paper. It
could clearly be extended by integrating the entity-relational model presented in. this paper.

20. F U T U R E W O R K

We are currently planning to use similar transformational techniques to generate other parts
of compilers than the symbol processing module.

Finite differencing techniques [Paige,Koenig-82] have so far been used to transform powerful
set-theoretic operations to cheap incremental counterparts. We are considering the
investigation of finite differencing techniques in order to compile code that will cheaply and
incrementally update relational expressions and maintain invariants, after small updates to
basic input relations.

Another interesting area concerns the extension of our current incremental model to support
programming-in-the-large: version handling and configuration control. A design for a
distributed network version of our relational program database is desirable. Solve the
efficiency problems of current relational databases, for example by relaxing the consistency
requirement at the single tuple level, and use invisible caching techniques. There is the
question if clustering, caching, query-optimization and relaxed consistency requirements are
enough to achieve good performance?

35

A P P E N D I X A - C LANGUAGE EXAMPLE OF SCOPE, REGION, POSITION

The scope of a declaration object consists of the parts of a program where it is legal to

reference the declaration. Scope need not conform to the nice nesting structure of

programming languages. For example, in the C program example below the scope XX1 of
the global variable XX covers the initial part of the body of the function foofunc, whereas

the scope XX2 of the local variable XX covers the rest of fcofunc.

The example below contains six declarative regions: R-File for the whole file, R-foofunc for
the function foofunc, and R-block for the body of foofunc. R-foofunc is a qualified region to
provide positional access to parameters from the rest of the program; R-block is a nested

region for the body of the function.

R-File region
!

! R-foofunc
!

! ! R-block {
! ! !

! ! !

! ! ~ }

! R-XI:

! R-X2:

! !

! R-X3:

int XX = 3; -!

void foofunc(ch) !
char ch; !

!
int ZZ = XX; -!

double XX; -!
!

.... !

-!

define X 3 -!
.... !

.... -!

under X -!

define X 10 -!
.... !

Scope XXI for XX (int)

<-- Position PI

<-- Position P2
Scope XX2 for XX (double)

Scope X1 for X

Scope X2 for X

Scope X3 for X

Figure 12: C language program example

The DEPENDENCY Relation:

Dependenton: Used-by:
<XX, {foofunc}>

The REGION_NESTINa Relation:

parent_region: child_regions:

<R-Systemblock, {R-File}>
<R-File, {R-foofunc}>
<R-foofunc, {R-block}>
<R-file, {R-XI, R-X2, R-X3}>

The DEFINED_WITHIN Relation:
parent_region: decl_objects:

36

<R-File,
<R-foofunc,
<R-block.
<R-File,

{XX, foofunc}>
{ch}>
{ZZ, XX-2}>
(X, X-2, X-3}>

The PRINT_NAME Relation:

printname : object:

<"XX" XX>
<"XX" XX-2>
<"ch" oh>
<"ZZ" ZZ>
<" foofunc" foofunc>
< "X" X>
<"X" X-2>
<"X" X-3>

The INHERIT relation:
Donor: Inheritor:

.... empty

; the second XX declaration
; the second X = under
; the third X = 10

Figure 13. Relational symbol table for the C language program of figure i~.

37

REFERENCES

[ADA-83] United States Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD-1815A/1983, February 17, 1983.

[Bahlke,Snelting-86] Rolf Bahlke, Gregor Snelting: "The PSG System: From Formal
Language Definitions to Interactive Programming Environments", TOPLAS Vol 8, No 4,
October 1986.

[Baker-82] T. P. Baker: "A One-Pass Algorithm for Overload Resolution in Ada", ACM
TRansactions on Programming Languages and Systems, Vol. 4, No 4, Oct. 1982, pp 601-614.

[Birtwistle,et.al-73] G M Birtwistle, O-J DaM, B Myhrhaug, K Nygaard: "SIMULA
BEGIN", 391 pp, AUERBACH Publishers Inc, Philadelpia, Pa., 1973.

[Chen-76] Peter Pin-Shan Chen" "The Entity-Relationship Model - Towards a Unified View
of Data", ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976.

[Conradi,Wanvik-85] Reidar Conradi and Dag Wanvik, "Mechanisms and Tools for Separate
Compilation", Technical Report No 25/85, Nov 1985, The University of Trondheim,
Division of Computer Science, N-7034 Trondheim-NTH.

[Fritzson-83] Peter Fritzson, "Symbolic Debugging Through Incremental Compilation in an
Integrated Environment", The Journal of Systems and Software 3,285-294 (1983).

[Fritzson-85] "The Architecture of an Incremental Programming Environment and some
Notions of Consistency" Workshop on Software Engineering Environments for
Programming-in-the-Large, Harwichport, Massachusetts, June 9-12, 1985.

[Goldberg,Kotik-83] Allen Goldberg and Gordon Kotik: "Knowledge-Based Programming:
An Overview of Data Structure Selection and Control Structure Refinement", KES.U.83.7,
November 1983, Kestrel Institute, 180I Page Mill Road, Palo Alto, CA 94304. Also in:
Software Validation, H.L. Hausen, Ed.~ North-Holland, 1984.

[Harbison,Steeleo84] Samuel P. Harbison and Guy L. Steele Jr., "C - A Reference Manual",
Prentice-Hall, 1984.

IHoover-86] Roger Hoover: "Dynamically Bypassing Copy Rule Chains in Attribute
Grammars", 13:th Annual ACM Symposium on the Principles of Programming Languages,
St. Petersburg, Florida, Jan 1986.

[Horwitz,Teitelbaum] Susan Horwitz, Tim Teitelbaum: "Generating Editing Environments
Based on Relations and Attributes", ACM Transactions on Programming Languages and
Systems, Voh 8, No. 4, October 1986.

[Linton-84] M. A. Linton: "Implementing Relational Views of Programs" In Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments (Pittsburgh, Pa., April 1984), ACM New York, 132-140.

38

[Paige,Koenig-82] Robert Paige, Shaye Koenig: "Finite Differencing of Computable
Expressions", TOPLAS 4.3, July 1982, pp 402-454.

[Rational-86] "Private communication on the Rational Incremental Ada Compiler" Rational,
1501 Salado Drive, Mountain View, California 94043.

[Rational-85] James E. Archer, Michael T. Devlin: "Rationals Experience Using Ada for
Very Large Systems", Proc of the First International Conference on Ada Programming
Language Applications for the NASA Space Station, Houston, Texas, June 2-5, 1986.

[Refine-87] Reasoning Systems: "Refine TM User's Guide", Version 2.0, September 1987.
Reasoning Systems Inc., 1801 Page Mill Rd.~ Palo Alto, CA 94304.

[Reiss-83] Steven P. Reiss, "Generation of Compiler Symbol Processing Mechanisms from
Specifications", ACM TOPLAS 5.2 April 1983.

[Reps-83] Thomas W. Reps: "Generating Language-Based Environments", The MIT Press,
Massachusetts Institute of Technology, Cambridge, Massachusets 02142

[Smith,et.al] Douglas Smith, Gordon Kotik, Stephen Westfold: "Research on
Knowledge-Based Software Environments at Kestrel Institute '~, IEEE Trans. on Software
Engineering, Vol SE-11, No 11, Nov 1985.

[Uhl,et.al-82] J. Uhl, S. Drossopoulou, G. Persch, G. Goos, M. Dausmann~ G. Winterstein,
W. Kirchg~ssner: "An Attribute Grammar for the Semantic Analysis of Ada", IX, 511
pages, Lecture Notes in Computer Science, Springer Verlag, t982.

[Zdonik,Wegner-85] Stanley B. Zdonik and Peter Wegner, "A Database Approach to
Languages, Libraries and Environments", Workshop on Software Engineering Environments
for Programming-in-the-Large, Harwichport, Massachusetts, June 9-12, 1985.

