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Abstract: 

This paper introduces a novel entity*relational model for incremental symbol processing. 
This model forms the basis for the generation of efficient symbol processing mechanisms 
from high-level declarative specifications and query expressions, using program 

transformation techniques such as data type refinement. 

The model is conceptually simple~ but powerful enough to model languages of the 
complexity of Ado. The new model is compared to earlier, more restricted, incremental 
hierarchical symbol table models. The differences between symbol processing in conventional 
compilers and incremental symbol processing are also discussed. 

1. I N T R O D U C T I O N  

Symbol processing and scope analysis is one of the tasks usually performed by the syntax 
and semantics analysis phases of compilers. As programs grow larger, containing more 
interfaces and declarative information, symbol processing operations such as definition and 
lookup tend to consume a large fraction of the total compilation time. Also, scope analysis 
and lookup of definitions can be quite complex for several languages in the ALGOL family, 
where ADA is one example. 

It is well known that interactive and incremental programming environments can enhance 

the programming process by preventing or quickly detecting errors, and by helping the 
programmer maintain and understand large programs. Thus it is essential that the 
programming environments use incremental methods for symbol processing. 

This paper introduces a high-level declarative entity-relational data model for incremental 
symbol processing and scope analysis. The new model, which also can be regarded as 
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object-oriented, gives several advantages: 

Language-independence 
The model contains a few simple, yet powerful, language-independent modelling 
primitives. Thus it serves well as the basis for generation of language-oriented 
incremental symbol processing mechanisms from compact specifications. 

Integration 
Since the model is entity-relational, it can be interfaced to existing relational 

database technology. Thus the symbol table can be viewed as a part of an 
integrated relational program database, which can hold both programmatic and 
documentation information. 

Query language 
The relational formalism provides a general query language. 

Efficient compilation of Queries 
The current model has been embedded into a very high level language which 
includes program transformation facilities [Refine-g7]. Using such transformations 

the current model can be compiled to lower level procedural code for in-core data 
bases, ultimately matching the efficiency of handwritten symbol table packages. 

The current model is aimed at languages such as Pascal, Modula-2, C, Ada, etc., but may 
well have wider applicability. An earlier incremental hierarchical symbol table model for 
Pascal is presented in this paper as a comparison. As mentioned, the model can be viewed 
either as entity-relational or object-oriented, it is largely a matter  of choice. Entities are 
objects. A disadvantage of a pure object-oriented view is the absence of a general query 
language. A disadvantage of a pure relational implementation is that the performance of 
current relational databases is not satisfactory for compiler symbol processing applications, 
see e.g. [Linton-84]. Therefore, the methods presented here more or less assume an in-core 
database, or a database with a high degree of clustering and in-core caching of relevant data. 

There are at least two alternatives of integrating this model into a compiler or editing 
environment. Through the fundamental operations Define and Lookup represented as 
procedures, the model can be interfaced to an incremental compiler [Fritzson-83] or to an 
editing environment based on action routines [Medina-Mora,Feiler-81]. Alternatively, Define 
and Lookup can be regarded as implicit relations, and the model interfaced to an editing 

environment based on relationally attributed grammars [Horwitz,Teitelbaum-86]. 

Attr ibute grammars are currently a popular means of specifying semantics for programming 
languages. Their strength is a declarative equational style notation, which enhances 
correctness and readability. Another advantage is the existence of general incremental 
attribute propagation methods for editing applications [Reps-83]. However, there are also 
disadvantages. The attribute grammar style of specification is somewhat low-level - each 
equation specifies a too small fraction of the total computation. This fragmentation can 
make the attribute grammar formulation of certain problems to be hard to understand. For 
example, the specification of syntax and semantics of Ada requires a 20000 line attribute 
grammar [Uhl, et.al-82]. Also, although advances have been made, efficiency still seems to be 
a problem. Difficulty in optimization is often due to information loss and constraints 
introduced when a problem is expressed in a too low-level formalism. For example, 
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optimizers of intermediate code often need to reconstruct control-flow and data-flow which 
may have been explicit in higher level formalisms. Another example is the copy bypass 

optimization [Hoover-86], which eliminates unnecessary copy operations introduced by the 

constraints of attribute grammar formalisms. 

We propose an alternative paradigm, based on program transformations, in the search for 
suitable specification languages. In this paradigm, the freedom in choosing transformations 

should create a greater chance of combining clarity of specification languages and efficient 
execution of target code. On the one hand, specialized high level notations can be devised for 

certain application areas. Certain notations are powerful precisely because they have a 

narrow applicability - more can be expressed with less. On the other hand, there are also 

general formalisms with powerful constructs. Examples are relational and set-theoretic 

operators, pattern-matching and logic. Such very high level notations can be compiled into 

lower level efficiently executable code by program transformation techniques such as 
automatic data structure refinement and control structure refinement, see 

[Goldberg,Kotik-83]. A special case of data structure refinement can be found in 
[Horwitz,Teitelbaum-86] where queries on implicit relations are transformed into queries on 
tree structures. The very high level specification-style notation implies greater freedom in 

applying various optimizations. Our symbol processing model is aimed at being a step in this 

direction, oriented towards the task of generating incremental programming environments 

from specifications. 

Since the transformations from specification to executable code are automatic, correctness of 

executable programs follows automatically if the transformations have been proved correct, 
and if the specification is correct with respect to intuitions. Correctness criteria for 

transformations are briefly described later in this paper. 

2. B A C K G R O U N D  

Programs define and use programming objects such as variables, types, and procedures. 

These objects are referred to in programs by means of symbols. The symbol processing 
component of a programming system supports all activities that define and use symbols 
referring to programming objects. These activities include the use of symbols by tools such 
as the compiler, linker, debugger, and librarian, and the browsing of symbols by users in 

cross reference queries. 

By a symbol table or symbol database we mean the totality of the state needed to manage 
the definition and use of the symbols required for producing a software object, e.g., an 
executable module, from source program units. This state can be described as a set of 
relations between a set of entities. For example, there may be a relation define that 
describes all definitions within a set of source modules. It would relate entities such as the 
symbols being defined, the modules in which they are defined, and the declaration objects 
the symbols represent. A symbol processing system provides a programmatic interface to the 
state described in the symbol table. 
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A symbol processing system is integrated if the same symbol table is used for all 

programmatic and user activities, e.g., compiling, linking, debugging, cross referencing, and 
browsing. An integrated symbol processing system has the advantage that information is not 
duplicated in several places with possibly inconsistent format. A change in a source program 

can be incorporated once into the symbol table, and used by all applications. The system 
provides a uniform interface to the symbol table information, so that applications using this 

information are easier to write and maintain. A symbol processing system is incremental if 

the symbol table is persistent, and if a change in the source code dynamically causes 
corresponding updates in the symbol table. An incremental symbol table is one important 
prerequisite to make it possible for small changes to source code to be incorporated at 

minimal cost into corresponding executable program, object code modules, and symbol table 

database. 

Before we continue our discussion on the role of incremental symbol processing in 
incremental compilation, let us briefly discuss the difference between separate compilation 

and incremental compilation. In both eases the goal is to decrease the turn-around time by 
re-using results from previous compilations. However, there is an order of magnitude time 

difference between these two technologies. In program development environments based on 
incremental compilation the time lag until execution can be resumed after a small program 

modification is usually a few seconds or less - even for big programs. By contrast, the 
recompilation and relink time in traditional separate compilation environments is usually 
measured in minutes or more, even though advanced change analysis [Tichy=86] has 

improved the situation. In addition the program need to be restarted from scratch after a 

rebuild. 

The better performance of incremental compilation technology depends on several factors. 

The unit of recompilation is smaller for incremental compilation - a procedure or statement - 
than for separate compilation where it is usually a file or module. Also, maintenance of 
dependencies between declaration objects is at a finer granularity in an incremental 
environment. Incremental system components such as compiler, debugger and linker are 

better integrated - sometimes they even do not exist as separate entities! For example, in 
traditional environments, the compiler, debugger and linker usually build their own symbol 
tables, whereas a true incremental environment uses the same symbol table for all these 
purposes. In addition, an incremental environment usually preserves the current execution 

state, which makes debugging more convenient by providing continued execution after most 

small program changes. 

3. INCREMENTAL SYMBOL PROCESSING IN INCREMENTAL COMPILATION 

Incremental symbol processing is one important part of the total incremental compilation 
transformation, which translates source code and old executable code to updated executable 
code. Symbol processing becomes increasingly important when compiling really big programs 
[Rational-85], [Conradi,Wanvik-85], since there is an increased amount of declarative context 
in the form of include files and module specifications. 
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The sub-transformations which comprise incremental compilation are shown very 

schematically below. Note that all input arguments are not explicitly shown. For example, 

incremental code generation takes both an old version of the object code and an abstract 
syntax tree as input, and produces a new version of the object code. This means ~hat the 

arrow ---> is not just a mapping, it is an update transformation. 

Note also that incremental parsing is not needed if the program is stored in tree-form, and 

that incremental optimization is optional. In some systems incremental semantic analysis 
also includes incremental symbol processing. 

Incremental Compilation: S o u r c e  code  - - - >  E x e c u t a b l e  code  

The total incremental compilation transformation above can be decomposed into: 

Incremental Code Generation: 
Incremental Symbol Processing: 
Incremental Linking: 
Incremental Execution: 

Incremental Parsing: 
Incremental Semantic Analysis 
Incremental Optimization: 

Abstract syntax tree 
Declarations 
Object code 
Execution state 

Source text 
Attributed tree 
Intermediate code 

---> Object code 
---> Symbol table 
---> Executable code 
---> Execution state 

---> Syntax tree 
---> Attributed tree 
---> Intermediate code 

In the rest of this paper will concentrate on incremental symbol processing, and not be 

concerned with other parts of incremental compilation. 

4. BASIC SYMBOL PROCESSING OPERATIONS 

There are two basic operations in symbol processing, definition and lookup. 

The definition operation adds a new definition of a symbol to the symbol table. This 

involves adding the symbol together with a description of the declaration object it will 
henceforth represent. Thus a mapping is established from a symbol in some context to a 
declaration object. Note that a declaration object is analogous to a symbol table entry in 

conventional compilers. 

The lookup operation. Given a symbol that is being used in a context somewhere in a 
program, find the declaration object which this symbol refers to. 

In addition to the two basic operations common to all symbol processing mechanisms, an 
incremental symbol processing mechanism must support insertion, deletion and update of 
declaration objects. It must also incrementally maintain dependencies between declarations, 
and support navigation operations which change the current context. 
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5. I N C R E M E N T A L  SYMBOL P R O C E S S I N G  

VERSUS CONVENTIONAL SYMBOL PROCESSING 

5.1 Dependency maintenance and update of declarations 

An incremental symbol processing system needs to support efficient access and updating of 
dependencies between declaration objects. This is especially important in order to 

incrementally support updating of global declarations. 

The definition of a declaration object can be incrementally inserted, changed or deleted from 

a program. For example, after a change to an existing declaration object, e.g. a global type 
declaration, the system has to re-elaborate all objects which are dependent on this 
declaration. Thus, the system needs efficient access to global dependencies in order to 
quickly find the dependent objects. If a new declaration object is inserted, the system also 
has to determine how this affects the visibility of existing objects, e.g. if it will hide 
declarations in enclosing blocks. 

5.2 Sequential versus Random Access 

The symbol processing unit of a conventional compiler usually makes a sequential pass over 
a source program unit, e.g. a file, and performs actions of defining or looking up symbols as 
they are encountered during this sequential pass. This means that  at any given point, the 
current state represented in the symbol table only reflects definitions which have so far been 
encountered before the current symbol. A conventional compiler also has schemes for 
remembering and updating the current block and the visibility of symbols as it progresses 

sequentially through a source program. 

An incremental symbol processing system, on the other hand, has to be able to make 

"random access" to just those parts of a source program unit that have been changed. It 
cannot rely on assumptions based on the sequential processing of source programs. Any such 
assumptions that affect scope and visibility have to be explicitly represented in the symbol 
table. The incremental symbol table needs a way of keeping track of the relative positions of 
symbols in a source program unit. Many programming languages are compiled by single-pass 
compilers and thus require that a definition occur before its use. For such languages this 
positional information is of critical importance for determining the meaning of a program. 

6. SYMBOL P R O C E S S I N G  MODELS 

In the following sections we will present three incremental symbol processing models - a 
hierarchical model~ an attributed abstract syntax tree model, and an entity-relational symbol 
processing model. The first two are just discussed briefly. The emphasis is on the 
entity-relational model, which is higher-level and and declarative. 



17 

7. A HIERARCHICAL SYMBOL PROCESSING MODEL 

We briefly present a simple hierarchical symbol processing mechanism for Pascal. The 

symbol table consists of a tree of local symbol tables, which allows both insertions and 

deletions of declarations. This incremental symbol table model has been implemented in the 

DICE system [Fritzson-83], [Fritzson-85], which is a programming environment based on 

incremental compilation. Note that the symbol processing mechanism presented here does 

not represent declaration position within a sequence of declarations. Thus, it allows forward 

referencing of declarations which is consistent with Modula-2, but without enforcing the 

Pascal define before use semantics. 

A simple program example about drawing boxes will illustrate symbol processing operations 

in several different models, and also the structure of these models. The concept of region, 

defined in the next section, is also exemplified. 

PROGRAM BoxProg; 

TYPE BoxType = RECORD 
Xl, Y1 : In teger ;  

END; 
Color = (Red, Green, Blue); 

VAa 
BoxVar : BoxType: 

X2, Y2 : In tege r ;  

PROCEDURE DrawBox(X1,Y1,X2,Y2 : I n t ege r ) ;  
VAR 

Dx, Dy : I n t e g e r ;  

PROCEDURE DrawLine(DeltaX, DeltaY : In t ege r ) ;  
BEGIN (* DrawLine *) 

~.NDI'~; of Dra,Line *) 

BEGIN (* DrawBox *) 
GotoXY(X1, YI) ; 
Dx := X2-X1; 
By := Y2-YI; 
Drawline(O, Dy) ; 
Drawline(Dx, O) ; 
Drawline(O, -Dy) ; 
Drawline (-Dx, O) 

END; (* of DrawBox *) 

BEGIN (* BoxProg) 
ClrScreen; 

WI~'Boxvar DO BEGIN 
DrawBox(X1, Y1, X2, Y2); 

END; 
END. (* Of }~ain program BoxProg *) 

Figure I. A program ezample BozProg. 
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Systemblock 
! 
] 

Program BoxProg . . . . . . . . . . . . .  

Procedure DrawBox Type BoxType Type Color Boxvar WITH-statement 
! 
! 

Procedure DrawLine 

Figure 2. Slightly simplified Region hierarchy. 

Level O: 

Level i: 

Level 2: 

Level 2: 

Level 2: 

Level 3: 

Localsymtsb [GotoXY, ClrScreen, BoxProg] 
Dependencies [(GotoXY -> BoxProg), (GotoXY -> DrawBox) 

(ClrScreen -> BoxProg)]; 

Program BoxProg: 
LocalSymtab [Boxtype, Boxvar, DrawBox, Color, Red, Blue, Green] 
Dependencies [(Boxtype -> Boxvar), (Boxvar.DrawBox -> 8oxProg)] 

Type Boxtype: 
LocalSymtab [XI,YI, X2, Y2] 
Dependencies [(XI -> BoxProg)~ (YI -> BoxProg), 

(X2 -> BoxProg), (Y2 -> BoxProg)] 
Type Color: 

LocalSymtab [Red, Blue, Green] 
Dependencies [ ] 

Procedure DrawBox 
LocalSymtab [Xl, YI, X2, Y2, Dx, Dy, Drawline] 
Dependencies [(Drawline -> DrawBox), 

(XI,YI,X2,Y2,Dx,Dy -> DrawBox)] 

Procedure Drawline 
LocaISymtab [DeltaX, DeltaY] 
Dependencies [ ] 

Figure 3. Contents of a hierarchical symbol table which includes dependencies. 

The hierarchy of local symbol tables and dependencies for the small BoxProg program is 

shown in Figure 3. Note that only dependencies between declarations and between 

declarations and procedures/functions are shown. For example, (GotoXY -> DrawBox) 

means that DrawBox depends on and uses GotoXY. Dependencies between a set of local 

declarations and the procedure/program body at the same level are represented using a 

special form~ e.g. (X1,Y1,X2,Y2~Dx,Dy -> Drawline). 

Note also that the WITH-statement in the body of program BoxProg is shown connected to 

the block/region hierarchy with a dotted line. This means that the local symbol table of field 
names associated with the record type Boxtype is temporarily associated with the block 

hierarchy when the current position is within the WITH- statement in the BoxProg 

program. 

8. THE N O T I ONS OF R E G I O N  AND S C O P E  

The term region, or more precisely declarative region [ADA-83] , is sometimes used 

interchangeably with the term block. However, the notion of region is more general - it 

denotes any syntactically defined portion of a program, such as e.g. a record declaration. 
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The notion of block is usually connected with objects which instantiate some kind of 

activation records, e.g. procedure blocks or program blocks. Each pair of regions are either 

disjoint portions of a program, or one region is completely enclosed within the other. 

The scope of a declaration object consists of the parts of a program where it is legal to 
reference the declaration [ADA-83]. Scope need not conform to the nice nesting structure of 
certain programming languages. For example, in the C language [Harbison,Steele-84], the 

scope of an identifier extends from its first occurrence - see example in Appendix A. Similar 
rules apply for Ada and Pascal. Scope can be complicated, since it depends on both position, 

region structure and the nesting rules of the languge. 

9. O P E R A T I O N S  ON THE HIERARCHICAL INCREMENTAL SYMBOL 

TABLE 

In addition to manipulating the contents of the symbol table, certain symbol processing 

operations support navigation operations, i.e. setting the current focus in the tree-structured 
symbol table. This focus can be represented by a cursor, which we call the symcursor in the 

context of symbol processing. In [Fritzson-85] two similar kinds of cursors are defined: the 

editcursor which denotes the context of editing and incremental compilation operations; the 
execursor which denotes the current context during debugging and execution. 

Navigational operations 

To enter a block or region, set the symcursor to the block which is to be entered. This has 

the effect that subsequent definition operations witl as a default be performed on the local 
symbol table of this block. Lookup operations will start searching in the current local symbol 

table. The block to be entered has to exist - it must have been previously created during 
some define operation. The leave block operation is a special case of enter block. It means 
that the symcursor should be reset from denoting the current block to instead denote the 
parent block, if such a block exists. 

Define symbol 

This operation associates a symbol in the current context with a new declaration object. 
First~ create a declaration object and elaborate type information specified by the declaration 
which defines the symbol. For certain declaration objects such as procedures or records; a 

block with a local symbol table is also created. Then do a partial lookup to check if the 
symbol is already defined in the current block, in which case the new definition is illegal. 
Finally, enter the symbol and its declaration object in the local symbol table. 

Lookup symbol 

Given a symbol used to reference an object, this operation finds the corresponding object. 
The lookup operation can be a complex function of scope and visibility rules together with 
current context, position and type information. However, in the special case of our 

hierarchical symbol table for Pascal it is simple: first perform a lookup in the local symbol 
table of the current block; while not found continue the lookup in subsequent parent blocks 
until the outermost system block has been searched. 
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Declaration Update 

The insert operation is essentially a define operation. However in an incremental symbol 
table more tasks need to be done. For example, it must be checked if the new definition 
partially hides an existing declaration which is referenced in the current context. In such a 
case, all objects in the current context which are dependent on the previous declaration have 

to be re-elaborated and recompiled. 

The delete declaration operation removes the symbol and its associated declaration object 

from the symbol table. Also mark all dependent objects for incremental recompilation. If the 

deleted symbol represents a variable, also free its associated target memory. 

Dependency Maintenance 

For each use of a declaration object, update the dependency structure to reflect this use. 
When a use of an object is deleted, then update the dependency structure to possibly 

remove a dependency. 

Dependency Query 

This query answers the question: Who depends on me? It returns the set of all declaration 

objects which are dependent on a certain object. 

10. AN A T T R I B U T E D  ABSTRACT SYNTAX T R E E  MODEL 

This symbol processing model is really a special case of the hierarchical incremental symbol 

table model described above. We note that the region hierarchy of the symbol table 
corresponds to the block hierarchy of the abstract syntax tree itself, so why not use the 

abstract syntax tree? We need not create a special local symbol table at each block level. 
Instead, it is possible to do lookup operations by searching declaration nodes in the current 
block in the tree. Elaborated declaration objects and dependencies can be attached to the 

tree as attributes. Insertions and deletions are performed on the attributed tree itself. This 

model is used e,g. by the Rational incremental Ada environment [Rational-85]. 

However, there are also disadvantages in representing the symbol table as an abstract 
syntax tree. It is less efficient to perform a lookup as a linear search through the tree instead 

of a single access to a hash table. Therefore the Rational incremental ADA environment has 
been augmented with hashed lookup at the global level [Rational-86]. Also, the 
implementation of symbol processing operations may become language dependent to a 
greater degree, since the tree structure of declarations is peculiar for each language. This 
model is of course not suitable for programming environments which do not use a tree 

structure as the primary program representation. 

11. THE ENTITY-RELATIONAL DATA MODEL 

The entity-relational data model was first introduced in [Chen-76]. It can be regarded as a 
thin layer on top of the relational database model [Codd-70]. It is convenient to think of a 
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relation as a table, or as a set of tuples <vl,  v2, . .  Vn> ' where each data  value v i belongs 

to a data  domain Di. The columns of the table are often called attributes. In the 

entity-relational model, there are two kinds of attributes: associations (between entities), 

and properties, see Figure 4. 

Concept Informal definition Examples 

ENTITY A distinguishable object 

(of some particular type) 

Declaration object, (= symbol table 

entry in conventional systems), 

a node an an abstract syntax tree 

PROPERTY A piece of information that 

describes an entity 

The name of a dec lared  objec t  

such as va r i ab le .  The memory 

s ize  occupied by a va r iab le .  

ASSOCIATION 

(ATTRIBUTE) 

A many-to-many or many-to-one 

relationship among entities. 

C0NTAINED-WITHIN: A var i ab le  

X is declared within the 

declarative region of procedure 

FO0. 

SUBTYPE 

(SUBCLASS) 

Entity type Y is a subtype of 

entity type X if and only if 

every Y is necessarily an X. 

Figure 4. The Entity-Relational data model 

The subtype EXPRESSION is a 

subtype of TREENODE. Subtype 

DECLOBJECT is a subtype of 

PROGRAMOBJECT. 

A query is an expression in the relational algebra in which relational operators are applied to 

argument relations to produce a relation as a result. The three special relational operators 

are JOIN,  SELECT and P R O J E C T .  P R O J E C T  is a unary operator that  forms a new 

relation consisting of a subset of the attr ibutes of a relation (or of the columns of a table). 

JOIN is a binary operator: it merges tuples from two argument relations together into bigger 

tuples, but  selecting only those merged tuples that  fulfil a given condition. SELECT is a 

unary operator that  selects the subset of tuples in its operand relations that  satisfy a given 

condition. 

A view relation is a relation which is computed from other relations when needed, using an 
expression consisting of relational operators. 

An implicit relation is never constructed. Instead it is implicitly represented by some other 

data  structure. An example is the A N C E S T O R  relation which can be implicitly defined by a 

tree, but  need not be constructed explicitly. Instead, the relational query operators are 

transformed into different query operators that  operate on this other  data structure. Such an 
example can be found in [Horwitz,Teitetbaum-86] where it is described how certain queries 

of implicit relations can be transformed into a equivalent queries on tree structures. This is a 

special case of data  structure refinement [Goldberg,Kotik-83]. The DEFINE and LOOKUP 

operations mentioned previously can be represented as implicit relations in our model. 
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12. AN E N T I T Y - R E L A T I O N A L  SYMBOL P R O C E S S I N G  M O D E L  

We have chosen to express our symbol processing model as an entity-relational data model 
[Chen-76]. This combines most advantages of the relational approach and the object oriented 
approach [Zdonik,Wegner-85], [Birtwistle,et.al-73]. The relational approach provides the 
powerful relational operators and a query language. The object-oriented approach provides 
subclassing with inheritanee~ in addition to association of attributes and operations with 

objects. 

There exist certain limitations of the relational model. The relational operators cannot 
handle (1) queries that require transitive closure, (2) queries that require order-dependent 
processing, and (3) arithmetic processing. Therefore our symbol processing model is 
augmented to allow such queries. Our model has been embedded in the Refine language 
[Refine-87]. This is a wide-spectrum very high level language, which provides arithmetic, 
set-theoretic operations, logic with universal and existential quantification, program 
transformation constructs, and object-oriented programming with single inheritance. Note 
however, that all explicit relations in our model are pure entity-relational. This added query 
power is convenient when defining the implicit LOOKUP relation. 

Our entity-relational symbol processing model is currently implemented as a set of mappings 
(associations) between objects. Since mappings can be defined between an object and a set 
of objects, or between a set of objects and another set of objects, many-to-many or 

one-to-many relations can readily be represented as mappings. 

ENTITIES 

Declobject: subtype-of Programobject 

Region: subtype-of Programobject 

Declaration: subtype-of Programobject 

Statement: subtype-of Programobject 

Figure 5. Entities in the entity-relational model. 

BINARY RELATIONS/ASSOCIATIONS 

Each binary relation is represented as a mapping together with its converse mapping. Since 
many-to-one mappings are not invertible~ we can instead form a converse mapping, where 
the range consists of sets of entities. The REGION OBJECT relation is sparse - not all 
declobjects have regions, and vice versa. 

Relation DEPENDENCY: 

USED_BY : map Declobject -> set(Programobject) 

USES : map Programobject -> set(Declobjec%) 

Comments 

USED_BY The set of program objects which depend on a declobject. 

USES The set of declobjects a program object is dependent on. 
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Relation REGION_NESTING: 

PARENT_REGION : map Region -> Region 

CHILD_REGIONS : map Region -> set(Region) 

Comments 

PARENT_REGION The innermost surrounding region, 

CHILD_REGIgNS The set of child regions of a region. 

Relation DEFINED_WITHIN: 

DECLS_IN_REGION : map Region -> seq(Declobject) 

REGION_AROUND_DECL : map Dec!object -> Region; 

Comments 

DRCLS_IN_REGION The sequence of declobjects defined in a region. 

REGION_AROUND_DECL The region within which a declobject is defined. 

Relation INHERIT: 

INHERITS : map Region -> Region 

INHERITED_BY : map Region -> set(Region) 

Comments 

INHERITS The region which exports declobjects into this region. 

INHERITED_BY The set of regions by whom this region is inherited. 

Relation PRINT_N&ME 

PRNAME : map Declobject -> Symbol 

PRNAME_0F : map Symbol -> set(Declobject) 

Comments 

PRNAME The printname of an object, 

PRNAME_OF The declobject of which this is a printname. 

Relation REGION_0BJECT 

0BJ_REGION : map Declobject -> Region 

DBJ_REGIDN_OF : map Region -> Declobject 

Comments 

0BJ_REGION h region which may be associated with a declobject. 

ODJ_REGION_0F The programobject which is associated with a region. 

Figure 6. Relations/associations in the entity-relational model. 

B O O L E A N  P R O P E R T I E S  O F  R E G I O N S  

TRANSPARENT 

Declobjects from within a transparent region are directly visible outside. 

QUALIFIED 

Declobjects from within a qualified region are visible by qualification, 

PARTIALLY_QUALIFIED 

Declobjects which are explicitly named as exported from within a region. 

0RDINAL_QUALIFIED 

Declobject are visible by their ordinal position - procedure parameters. 

PARTIALLY_NESTED 
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A partially nested region inside an outer region may introduce new 

declobjects, but their names may not collide. 

Figure 7. Boolean properties of regions. 

PROPERTIES OF DECLOBJECTS 

POSITION : ProgramPoint 

Position of a declaration or program object. It can be represented as 

line number, character position, or tree node address. 

TYPE_OF : Typespec 

Type of a declaration object. 

Figure 8. Properties of declobjects and certain programobjects. 

We currently identify five boolean properties of regions: transparent, qualified, 
partially_qualified, ordinal_qualified and partially_nested regions. An example of a 
transparent region is the definition of the enumeration type Color, where all components are 
externally visible. A record declaration is a typical example of a qualified region - 
components defined within the region are externally visible by qualified access. A procedure 

declaration which introduces a block of local declarations is an example of a partially_nested 
region. Finally, a region which inherits another region, can extend the visibility of 

declarations from this other region to itself. The Pascal WITH-statement is an example of a 
region which inherits other regions. Thus, it makes the fields from some record declaration 

visible within itself. 

For Pascal or Modula-2~ type analysis is not needed for lookup or definition of symbols. 
However, for the Ada language, type information is necessary in order to resolve overloaded 

symbols. 

The DEPENDENCY Relation. 

Dependenton: Used-by: 
<GotoXY, {BoxProg,DrawBox}> 
<ClrScreen, {BoxProg}> 

<BoxVar, {BoxProg}> 
<DrawBox, {BoxProg}> 
<BoxType, {BoxVar}> 

<XI, {BoxProg}> 
<Y1, {BoxProg}> 
<X2, {BoxProg}> 
<Y2, {BoxProg}> 

<Drawline, {DrawBox}> 
<X1, {DrawBox}> 
<YI, {DrawBox}> 
<](2, {DrawBox}> 
<Y2, {DrawBox}> 
<Dx, {DrawBox}> 
<Dy, {DrawBox}> 

The REGION_NESTING Relation: 
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parent_region: child_regions: 

<R-Systemblock, {R-BoxProg}> 
<R-BoxProg, Z~R-BoxType, R-Color, R-DrawBox, R-Boxvar_WITH}> 
<R-DrawBox, {R-Drawline}> 

The DEFINED_WITHIN Relation: 
parent_region: decl_objects: 

<R-Systemblock {GotoXY, ClrScreen}> 
<R-BoxProg, {Boxtype, Boxvar, DrawBox}> 
<R-BoxType, {Xl, YI, X2, Y2}> 
<R-Color, {Red, Green, Blue}> 
<R-DrawBox, {X1-2, YI-2, X2-2, Y2-2, Dx, Dy, Drawline}> 
<R-Drawline, {DeltaX, DeltaY}> 

The PRINT_NA~E Relation: 

Namestring: Object: 

<"BoxProg", BoxProg> 
<"BoxType", BoxType> 
<"DrawBox", DrawBox> 
<"XI", Xl> 
<"XI", Xl-2> 
<"YI", YI> 

The INHERIT relation: 
Donor: Inheritor: 

<Boxtype, Boxvar-WITH> ; 

Figure 9. An example of relations. The simplified vereion of the entity-relational model has 
been applied to the BozProg program example. Note that when two objects have the same 
name, e.g. the record field X1 and the formal parameter )[i, these objects are denoted )[1 

and X1-2 respectively. 

13. I N F O R M A L  D E S C R I P T I O N  OF O P E R A T I O N S  

This section provides an informal description of the incremental symbol processing 
operations with emphasis on the lookup operation, which later in this paper is expressed 

formally. 

A printname and a current region are input to most variants of the lookup operations. In 
addition, the current position need to be supplied for certain languages, and a typespec for 
overload resolution. The lookup will return a matching declaration object, or a special 

Undefined value. 

Qualified lookup 

A typical example of qualified lookup is the lookup of record field names which are qualified 
by a record variable using dot-notation, e.g. Recordvariable.Fieldname, or the lookup of 
procedures defined in some Modula-2 module, e.g. Modulename.Procname. It is conceptually 
simple: perform the lookup among declaration objects defined within the record region or the 
module region. This region is here denoted by the current region. 
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In relational terminology this can be expressed using our relations PRINT_NAME and 
DEFINED_WITHIN. Find all declaration objects obj, such that DEFINED_WITHIN(obj, 
current_region) and PRINT_NAME(printname, obj). This can be conceptually performed by 
first joining the relations PRINT_NAME and DEFINED_WITHIN, and then performing a 
selection using printname and current_region as a combined key. The search can be made 
more efficient by performing most of the selection operations before the join, or maintaining 
a precomputed joined relation. 

Visibility lookup 

This is a lookup operation where the given name directly implies some declaration object 
which is visible in the current context. The visibility of declaration objects is the primary 
criterium in this lookup. Typical examples are the lookup of a variable name, a procedure 

name, or a type name. 

However, several factors complicate ~he lookup operation. Declarative regions are usually 
nested, and declarations in inner regions may redefine symbols with the same name in outer 
regions. Certain regions inherit declarations from other regions. For example, the Pascal 
WITH-statement inherits field declarations from some record type region. Certain regions 
are transparent, e.g. Pascal enumeration type declarations, which makes their components 

visible in the parent region. 

A simple, but perhaps inefficient, way of performing the lookup is as follows. Use the current 
printname to index the PRINT_NAME relation in order to select all objects with that 
printname. Then use the DEFINED_WITHIN relation to find within which region each such 
object is defined. Now the second phase of the lookup starts. We must find_ the set of regions 
which have declarations that can be visible from the current region. This includes the parent 
region, the parent of the parent region etc., following the REGION_NESTING relation to 
the uppermost region. It also includes transparent child regions, and regions which are 

inherited by such regions. 

First example: 

Here the current printname is "XI" and the current region is DrawBox. Selections using 
"XI" as an index into PRINT_NAME, yield two objects: X1 and X1-2. The 
DEFINED_WITHIN relation further yields X1-2 which is defined within the DrawBox 
region and X1 which is defined within the Boxtype region. Then we look for the set of 
possibly relevant regions in addition to DrawBox. Using REGION_NESTING, we obtain the 
parent region BoxProg and Systemblock. The child region Color is transparent and should 
also be included. Thus, the set of possible regions becomes (I)rawl~ox. BoxProg, 
Systemblock, Color}. Finally we intersect with the regions of our two possible objects, 
eliminating X1 since it is defined within Boxtype. Thus the final result of our lookup is 

X1-2. 

Second example: 

The current printname is again "XI",  but we now perform the lookup from a position in the 
WITH-Boxvar statement region, which thus is the current region. As in the previous 
example, "Xl" first matches the two objects X1 and X1-2. Using the nesting hierarchy we 
then obtain {WlTH-Boxvar, BoxProg, SystemBlock} as possible defining regions. The Boxtype 
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region is added since it is inherited by :~he WITH-Boxvar region - see the INHERIT relation. 

The Color region is also added since it is transparent and is a child of BoxProg. This yields 

the set ~WITH-Boxvar, BoxProg, SystemBlock, Boxtype, Color],. Since X1 is defined within 

Boxtype, but X1-2 is defined within Drawline, the final result is X1. 

So far we have ignored the possibility that declarations in inner blocks redefine symbols 
which are declared in outer blocks. Such ambiguities can be resolved by introducing an 

auxiliary relation REDEFINED between declaration objects [Reiss-83]. However, the random 
access nature of incremental symbol processing makes REDEFINED somewhat unsuitable, 
since the contents of this relation is dependent of the current focus of processing. In the 

worst case REDEFINED would have to be rebuilt at each lookup. A more efficient solution 

is used in the precise formulation of the lookup algorihm further on in this paper. 

Define symbol 

This operation associates a symbol in the current context with a new declaration object. 
First, create a declaration object and elaborate type information specified by the declaration 

which defines the symbol. This means updating the PRINT_NAME relation with a tuple 

<printname, object> and some other object attributes. Then do a partial lookup of the 
symbol in the current region, and in regions which are transparent to or inherited into the 
current region. If the lookup succeeds, then there are multiple definitions of the symbol, in 

which case the new definition is illegal. 

Otherwise, enter the symbol and its declaration object into the current region in the symbol 

table. This means inserting a tuple <object, current_region> in the relation 
DEFINED_WITHIN. If the new declaration introduces a region, e.g. procedure, function, 
record- declarations, the object also belongs to the class of region objects. Then the relations 
REGION_NESTING and REGION_OBJECT should be updated. The INHERIT relation 

should be updated if the new region inherits declarations from some other region. If the new 

region object contains component declaration, then we first have to introduce this new 
region. For example, the symcursor denoting the current region should be set to this new 
region before the components are defined. 

Navigation operations 

Enter region will set the current region to be the region which is to be entered. Subsequent 

definition operations will insert definitions within the current region. Lookup operations 
start searching for object definitions within the current region. Leave region is really a 

special case of Enter region, since it means that we should enter the parent region of the 

current region. The parent region is found by indexing the REGION_NESTING relation 
using the current region object as a key. 

Declaration update 

As mentioned before, the insert operation is essentially a define operation. However, in an 
incremental symbol table we have to check if the inserted declaration will hide some existing 
declaration which is Mready used in the current context. This is done by performing a full 

lookup on the symbol at the definition point - not a partial lookup as in an ordinary define 
operation. Suppose the new definition partially hides an existing declaration which is 
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referenced in the current context. In such a case, all objects in the current context which are 

dependent on the previous declaration have to be re-elaborated and recompiled. The 
checking is performed by doing a lookup. 

To delete a declaration, remove the symbol and its associated declaration object from the 
symbol table, i.e. update the relations PRINT_NAME and DEFINED_WITHIN. If the 

removed object has a region, then also update REGION_NESTING and INHERIT. Use the 
removed object as a key to the DEPENDENCY relation to find all dependent objects, and 

mark those for incremental recompilation. Also mark transitively dependent objects in the 

same way. 

Dependency update 

For each new use of a declaration object, update the dependency structure to reflect this use 

by inserting a tuple <current_region, object> into the DEPENDENCY relation. If a use of 
a declaration object is removed, and there are no more uses of that object within the current 
region, then delete the tuple <current_region, obj ect> from the DEPENDENCY relation. 

Dependency Query 

This query answers the question: Who depends on me? Return the set of all declaration 

objects which are dependent on a certain object by making a selection from the 
DEPENDENCY relation, using this object as a key. Many other query variants can be 

expressed using the relational algebra. 

14. AN EXTENDED ENTITY-RELATIONAL MODEL 

Our simple incremental relational symbol processing model cannot exactly represent 
languages with single pass symbol processing semantics, where a symbol cannot be 

referenced before it has been defined. This problem can be solved by introducing the notion 

of Position for declaration objects. 

Another problem is that formal parameters can be accessed outside their defining procedures 
by qualification on their ordinal positions in parameter lists. In addition to ordinal 

qualification, languages such as Ada also support named qualification on parameter names. 
Thus, we need to extend our previous model, which for each procedure has a single 
declarative region for both parameters and local variables. In the extended model we 
introduce at least two declarative regions for each procedure: one qualified region enclosing 
the whole procedure including the formal parameters, and one or more additional regions 

nested within, for blocks with local declarations. 

This model suits Ada and C, where declarations in nested local blocks are allowed to hide 
parameter declarations. In Pascal however, local declarations are not allowed to hide 
parameter declarations - they are conceptually part of the same block. Our solution to this 
problem is to introduce another class of regions called partially nested regions. This kind of 
region is similar to nested regions except that declarations within partially nested regions 

are not allowed to hide declarations from outer regions. 
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Remember that  the scope of a declaration object consists of the parts of a program where it 
is legal to reference the declaration. It can be expressed as a function of simpler notions such 
as position, nesting of regions, visibility rules etc. This is expressible within our extended 
model. Scope need not conform to the nice nesting structure of programming languages. For 

example, in the C program example in Appendix A, the scope XX1 of the globM variable 
XX covers the initial part of the body of the function foofunc, whereas the scope XX2 of the 
local variable XX covers the rest of foofunc. 

15. P R E C I S E  F O R M U L A T I O N  OF T H E  L O O K U P  A L G O R I T H M  

There are two basic variants of the lookup operation, which define the implicit LOOKUP 
relation. Those two are lookup by direct visibility and lookup by qualification. Visibility 
lookup is the most common case, where an occurrence of a name in the current context 
should be associated with some declared program entity. This can be a complex function of 
nesting structure, local context, positions of declarations, import and export of declarations, 
and types when there is a possibility of overloading. Simple overload resolution with type 

comparison is included in the present lookup algorithm. A complete overload resolution 
algorithm for Ada is presented by [Baker-82]. 

The function Visibility_Lookup starts searching within the innermost region that includes 
the current program point. If there is no match, continue at the next outer level in the 
region nesting hierarchy. According to the nesting rules only the first match should be 
returned. Thus positional and type-checking predicates, when relevant, must be applied 
during the search. The Undefined value is returned when there is no match. Note that at 
each nesting level we consider both declarations from the current region, declarations from 
regions which are inherited into the current region (e.g. Pascal WITH), and declarations 
from transparent child-regions (e.g. Pascal Enumeration). PRNAME_OF(Name) returns the 
set of declaration objects with a certain print name. For single-pass compiled languages such 
as Pascal and C, which require that a definition occurs before its use, the Check_position 
predicate is relevant. 

Lookup by qualification is far simpler. Just lookup the qualified name within the region 
where it is defined. For example, in the common case of a record field reference, search for it 
within the declarative region of the record type. A special case is ordinal qualification, where 
instead of a name, an integer index denotes the declaration object. For certain languages 
[Refine-87] it  is possible to denote a fieldname in this way, e.g. xrec.2 would reference the 
second field in xrec. However, ordinal lookup is most commonly used for accessing procedure 
parameters to make type checking possible at call sites. 

FUNCTION Visibility_Lookup(Name : Symbol; 
Currentregion : Region; 
Currentposition: ProgramPoint; 
Currenttype : Typespec): Declobject 

(* Lookup of Name in the current context, which is denoted by Currentregion. 
Start Looking in the current region, and all regions (transparent or 
inherited) which are visible at the current nesting level. 
Continue searching outwards at each level in the nesting hierarchy, 
until a matching declara%ion object is found, or 
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the root, which has no parent, is encountered. 
*) 
BEGIN 

r := Currentreoion; 
REPEAT 

rset := {r} union {INHERITS(r)} union 
{x I x in CHILD_REGIONS(r) and TRANSPARENT(x) } 

F0R d:Declobject IN PRNAME_0F(Name) D0 
IF REGIDN_AROUND_DECL(d) in rset 

and Check_Type(d, Curren t type)  
and Check_Position(d, Currentposition) 

THEN 
RETURN d; 

END FOR; 

r := PARENT_REGION(r); 
UNTIL Undefined(r); 

RETURN Undefined; 
END; 

FUNCTION Check_Position(d: Declobject; p: Position): Boolean; 
(* Predicate to check if d is accessible before or at position p. 

For languages which require define before use *) 
BEGIN 

RETURN BEFORE(POSITION(d), p); 
END; 

FUNCTION Check_Type(d: Declobject; t: Typespec): Boolean; 
(* Predicate to check if d is compatible with typespec t. 

For languages which allow overloading with respect to type/signature *) 
BEGIN 

RETURN TypeCompatible(TYPEOF(d), t); 
END; 

FUNCTION qualified_Lookup(Name : Symbol; 
Currentregion : Region; 
Currenttype : Typespec): Declobject; 

(* Qualified lookup of Name, example: Qualifyname.Name 
Currentregion can be obtained by OBJ_REGION(qualifyobject), where 
Qualifyobject is the declaration object associated with qualifyname. 
Currenttype is useful when overloading is a possibility. 

*) 
BEGIN 

FOR d:Declobject in DECLS_IN_REGIDN(qualifyregion) DG 
IF PRNA~E(d) = Name; 

and Check_Type(d, Currenttype) 
THEN 

RETURN d; 
END FOR; 
RETURN Undefined; 

END; 

FUNCTION Ordinal_Lookup(Ordernumber : Integer; 
Qualifyregion : Region): Declobject; 

(* Lookup by ordinal qualification. Example: lookup of a procedure 
parameter for type checking at some call site. In this case 
Qualifyregion can be obtained by REGION-0F(Procedureobject). 

*) 
BEGIN 

RETURN the element extracted by 
indexing the Ordernumber:th element in the sequence 
DECLS_IN_REGION(qualifyregion); 

END; 

F{g~tre t0. 
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The lookup procedures for our incremental symbol processing model are shown in pseudo 
code in Figure 10. Note that the procedures are fairly short in this model, despite the 
apparent complexity of lookup. The Refine implementation of this pseudo code has 

approximately the same length. 

16. WHY IS THIS E N T I T Y - R E L A T I O N A L  MODEL INCREMENTAL?  

Incremental means that the work needed to introduce a change is more or less proportional 
to the size of the change. Thus it is essential that the datastructures of the model, in our 

case relations, permit efficient updating - both insertions and deletions. Also, the dependency 
relation permits the effects of changes to be propagated only to affected program entities, 
without affecting others. Direct access and order-independent processing: changes can be 

processed in any order anywhere in the program. The symbol table is independent of the 
current focus of processing. For example, if we introduced a relation REDEFINED - that 

represents which declarations have been redefined in the current nesting context - it would 

violate this rule, since it would need to change if the current focus changed. 

17. R E P R E S E N T A T I O N  OF CERTAIN LANGUAGE CONSTRUCTS 

In this section we show how some special language constructs can be represented in the 
entity-relational symbol processing model. The current list of examples are from Pascal, 

Modula-2 and Ada. Regions are marked in these examples. 

Pascal declaration of enumeration scalars 

This construct introduces a set of named entities within a small region of the 
program. This is easily modelled by a TRANSPARENT region, which causes 
entities from inside it to be directly visible in the surrounding region. 

Example: TYPE Color = (Red, Blue, Green); 

Pascal record type declaration 

A record type declaration introduces a number of field entities. If the body of the 
declaration is modelled by a QUALIFIED REGION, then the fields will be visible 
by qualification in the surrounding region. 

Example: TYPE Personrec = RECORD Age:Integer; Weight:Integer END; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Pascal WITH statement 

A Pascal WITH statement causes the fields of a record variable to be directly 
visible within its body. This is modelled by a region around its body. This regions 
INHERITS the region around the record type where the fields are declared. Thus 
the fields become directly visible. 
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Two nested regions are associated with this example WITH-statement. The xrec 
record type region is imported/inherited by the outer WITH-region, and the yrec 

region by the inner region. 

Example:  WITH x r e c , y r e c  DO . . . .  ; 

.............. Outer region 

......... Inner region 

Modula-2 IMPORT declaration, Ada WITH-declaration 

Even though it sounds strange, we introduce a small QUALIFIED REGION for 
each module identifier. Each such region covers only the identifier itself, and 
INHERITS the region around the module/package specification part. Thus all 
declaration objects from within the module/package are available within this small 
region. Since it is a QUALIFIED REGION, declarations are also visible outside it 

by qualified access. 

In this example there are two small qualified regions, where each only covers the 
relevant module/package identifier. Xmodule is inherited by the first region, and 

ymodule by the second. 

Example s : 
Modula-2 : IMPORT xmodule, ymodule; 

Ada : WITH xmodule, ymodule ; 

region I region 2 

Modular2: Selective import statement 
Here, a PARTIALLY TRANSPARENT region is introduced around the list of 
identifiers. The xmodule region is inherited by this underlined partially transparent 
region. Thus only these explicitly mentioned identifiers are made directly visible 

outside this region. 

Example : 

Modula-2: FROM xmodule IMPORT fool,foo2,foo3; 

Ada USE declaration 
This case is similar to the Ada WITH-declaration, but here a TRANSPARENT 
region is introduced around each identifier. Thus declarations from inherited regions 

are made directly visible. 

In our example we introduce a sequence of two transparent regions, where the first 
inherits xmodule and the second inherits ymodule. All definitions from these 
modules are made directly visible outside the transparent regions. 

Example : 

Ada : USE xmodule, ymodule, 
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18. C O R R E C T N E S S  

In this section we discuss correctness of queries and very high level specifications, where 

queries on our symbol processing model is one special case. Since the transformations from 

specification to executable code are automatic, correctness of executable programs follows 
automatically if the transformations have been proved correct, and if the specification is 

correct with respect to intuitions. In the following, we will use the normal definition of 

correctness which only requires that  the implementation has the same semantics as the 

specification, without taking intuitions into account. 

Data  type refinement is an especially important  program transformation from our point of 

view, since it allows transformation of relational queries to query operations on other data 
structures which may be more efficient in certain respects. A special case of such data 

structure refinement is described in [Horwitz,Teitelbaum-86] where queries on implicit 

relations are transformed into queries on tree structures. In the rest of this section we wilt 
focus on how to define correctness of data type refinements, which follows the t reatment  in 

[Goldberg,Kotik-83]. 

High-Level: 

Low-Level: 

H-Terms ..... H-Eval ..... > H-DataValues 
! F 
! ! 

! Translates ! Abstracts 
! ! 

U ! 
L-Terms ..... L-Eval ..... > L-DataValues 

Figure 11. Correctness of a data-type refinement, expressed through 
a cemmutating diagram. 
A refinement is a pair I = <Translates, Abstracts>. It is correct 

iff: ferall tl in H-Terms, forall t2 in L-Terms 
[(tl --> t2) => (H-Eval(tl) = Abstracts(L-Eval(t2))) ] 

Informally, we can define a data type D as a pair <OperationsD. DataValuesD>" We also 
assume the existence of a function EvaI, which maps terms into terms, where a term is an 

expression involving only the operations of some data  type. A refinement I of a type H = 

<0perationsH, DataValuesH> to a type L = <0perationsL, DataValuesL> ' is a pair 
<Translates ,  Abstracts>. Translates is a relation between H-Terms and L-Terms. It 
specifies the possible translations from expressions in H-Terms to expressions in L-Terms. 

Abstracts is an abstraction map, that  maps each value in DataValues L to the unique value in 
DataValuesH, which it represents in the refinement, and is the identity function for all other 
values. Remember that  there are usually several lower level concrete representations for each 
higher level abstract data type. 

I t  is then natural  to define a data type refinement as correct, if translated expressions 
always preserve the semantics of the original expressions. This is the same as requiring that  
the diagram in Figure 11 commutes. More formally, a refinement I - <Translates ,  
Abstracts> is correct if 

forall tl in H-Terms, forall t2 in L-Terms 

[(tl --> t2) => (H-Eval(tl) = Abstracts(L-Eval(t2))) ] 

Refinements can be composed under certain conditions. By the above definition it is easy to 
realize that  the composition of two correct refinements is itself correct. 
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19. C O M P A R I S O N  W I T H  PREVIOUS W O R K  

The DICE hierarchical incremental symbol processing model [Fritzson-85], is too specialized, 
and lacks a general declarative query language. A more general incremental model is clearly 

needed. 

The [Reiss-83] paper presents a general model for the generation of non-incremental symbol 
processing mechanisms from ad-hoc declarative specifications. In addition, that paper 
contains a separate formal relational symbol processing model. However, that relational 
model is not suitable as a basis for generation of efficient symbol processing mechanisms. 
Also, that  relational model is not incremental, and it does not correctly model the fact that 
for many languages the scope of a declaration extends forward from the actual point of 
declaration. However, its non-relational implementation still works correctly because of the 
sequential processing nature of non-incremental symbol processing. 

The present entity-relational model is an improvement in several respects. It is incremental 
and it can be used to generate efficient symbol processing mechanisms from high-level 
declarative specifications through transformations. It is also conceptually simplified, e.g. the 
complex notion of scope group [Reiss-83] is eliminated. Our model uses the more precise 
notion of declarative region as a basis for expressing scope. We also include the notion of 
position, which is needed in an incremental context. 

The PSG system [Bahlke,Snelting-86], has the possibility of generating simple scope analysis. 
However~ PSG context relations are primarily designed for use on type analysis, which 
includes the reconstruction of types from unification on incomplete program fragments. 

Attributed-relational grammars [Horwitz,Teitelbaum-86] appears useful as a possible means 
of communication between a language-based editor and our entity-relational model. 
However, only very simple scope analysis for a Pascal subset is mentioned in that paper. It 
could clearly be extended by integrating the entity-relational model presented in. this paper. 

20. F U T U R E  W O R K  

We are currently planning to use similar transformational techniques to generate other parts 
of compilers than the symbol processing module. 

Finite differencing techniques [Paige,Koenig-82] have so far been used to transform powerful 
set-theoretic operations to cheap incremental counterparts. We are considering the 
investigation of finite differencing techniques in order to compile code that will cheaply and 
incrementally update relational expressions and maintain invariants, after small updates to 
basic input relations. 

Another interesting area concerns the extension of our current incremental model to support 
programming-in-the-large: version handling and configuration control. A design for a 
distributed network version of our relational program database is desirable. Solve the 
efficiency problems of current relational databases, for example by relaxing the consistency 
requirement at the single tuple level, and use invisible caching techniques. There is the 
question if clustering, caching, query-optimization and relaxed consistency requirements are 
enough to achieve good performance? 
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A P P E N D I X  A - C LANGUAGE EXAMPLE OF SCOPE, REGION,  POSITION 

The scope of a declaration object consists of the parts of a program where it is legal to 

reference the declaration. Scope need not conform to the nice nesting structure of 

programming languages. For example, in the C program example below the scope XX1 of 
the global variable XX covers the initial part of the body of the function foofunc, whereas 

the scope XX2 of the local variable XX covers the rest of fcofunc. 

The example below contains six declarative regions: R-File for the whole file, R-foofunc for 
the function foofunc, and R-block for the body of foofunc. R-foofunc is a qualified region to 
provide positional access to parameters from the rest of the program; R-block is a nested 

region for the body of the function. 

R-File region 
! 

! R-foofunc 
! 

! ! R-block { 
! ! ! 

! ! ! 

! ! ~ } 

! R-XI: 

! R-X2: 

! ! 

! R-X3: 

int XX = 3; -! 

void foofunc(ch) ! 
char ch; ! 

! 
int ZZ = XX; -! 

double XX; -! 
! 

.... ! 

-! 

define X 3 -! 
.... ! 

.... -! 

under X -! 

define X 10 -! 
.... ! 

Scope XXI for XX (int) 

<-- Position PI 

<-- Position P2 
Scope XX2 for XX (double) 

Scope X1 for X 

Scope X2 for X 

Scope X3 for X 

Figure 12: C language program example 

The DEPENDENCY Relation: 

Dependenton: Used-by: 
<XX, {foofunc}> 

The REGION_NESTINa Relation: 

parent_region: child_regions: 

<R-Systemblock, {R-File}> 
<R-File, {R-foofunc}> 
<R-foofunc, {R-block}> 
<R-file, {R-XI, R-X2, R-X3}> 

The DEFINED_WITHIN Relation: 
parent_region: decl_objects: 
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<R-File, 
<R-foofunc, 
<R-block. 
<R-File, 

{XX, foofunc}> 
{ch}> 
{ZZ, XX-2}> 
(X, X-2, X-3}> 

The PRINT_NAME Relation: 

printname : object: 

<"XX" XX> 
<"XX" XX-2> 
<"ch" oh> 
<"ZZ" ZZ> 
<" foofunc" foofunc> 
< "X" X> 
<"X" X-2> 
<"X" X-3> 

The INHERIT relation: 
Donor: Inheritor: 

.... empty .... 

; the second XX declaration 
; the second X = under 
; the third X = 10 

Figure 13. Relational symbol table for the C language program of figure i~. 
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