
A Preprocessor Based Module System for Prolog

Roland Dietrich

GMD Forschungsstelle an der Universir~t Karlsmhe
(German National Research Center for Computer Science)

Haid-und-Neu-Stml]e 7, D-7500 Karlsruhe

Abstract

In this paper, we propose a simple module system for Prolog. A minimal set of simple concepts real-
ize the most important objectives of a module system: structuring of a larger piece of software into
smaller logical units, information hiding, and abstract data types. It can be completely implemented
by a preprocessor which maps modularized Prolog programs onto ordinary Prolog programs. The
preprocessor itself can be written in Prolog and thus the module system can be integrated in any exist-
ing Prolog environment. It can easily be integrated with other preprocessor based software engineer-
ing aids, for example static mode and type checkers.

1 Introduction

For developing and maintaining large software systems, a modularization principle is essential for any
real programming language. Module systems comprise an important feature of modern imperative pro-
gramming languages like Modula-2 [Wirth 83] or Ada [Ada 83], and also for high level declarative
languages (e.g. [Goguen & Meseguer 84, MacQueen 84]). (For a general overview on module systems
for programming languages see [Drosopoulou 88].) As efficient implementations of Prolog, for exam-
ple based on the Warren Abstract Machine (WAM) [Warren 83] or on special hardware, become more
and more available, and Prolog is more and more used even in industrial environments, the develop-
ment of powerful module systems for this language is an important task for every prolog implementor.
A module system is also planned to be a part of a forthcoming international Prolog standard [Scowen
881.

But until now, there is no common agreement within the Prolog community about how such a sys-
tem should look, especially how certain problems arising from some dynamic facilities of Prolog, e.g.
meta call and program modification, should be solved.

In this paper, we propose a very simple, but nevertheless powerful enough module system for Pro-
log. It can be competely implemented by a preprocessor which maps modularized Prolog programs
onto ordinary Prolog programs. The preprocessor itself can be written in Prolog and thus the module
system can be integrated in any existing Prolog environment.

127

In our module system the interface of a module identifies global names, which can be predicate or
function names, and which are visible and usable in any environment importing the module. All other

names are local to the module and invisible and unusable to other modules. That is, the only informa-

tion a programmer of a module has to give are the predicates and functions which the module imple-

ments and provides to an external user, and the modules whose exported predicates he wants to use.
Explicit hierarchical structuring of modules is not possible (and not neccesary, because one can model

hierarchical structures by means of import dependencies in a flat module system). These simple and
minimal concepts realize the most important objectives of a module system: structuring of a larger

piece of software into smaller logical units, information hiding, and abstract data types in the sense

that the interface of a module declares a collection of data (global functions for building terms) and a

collection of operations on these data (global predicates). The operations are defined or implemented
by the respective clauses of the module's program. 1 Furthermore, the module system can be a basis for

a library of Prolog programs.

The main principle of our implementation is that all local names of a module will be internally re-

named and made anonymous to all other modules, and all global names of a module, i.e. exported and

imported names, will be automatically qualified. This also restricts the often cumbersome need for ex-
plicit qualification of names imported from other modules to the case, when a name is imported more

than once from different modules.

Our module system can easily be integrated with other preprocessor based software engineering

aids, for example static mode and type checkers [Mycroft & O'Keefe 84, Dietrich 88, Dietrich & Hagl
88]. Especially, the integration with a static type system will improve the facilities to define abstract

data types, because it enables data types and operations to be explicitely related by signatures.

In the next section we first describe the module system from the programmer's point of view, that is

we describe the syntax and (informally) the semantics of a module. In section 3 we outline the imple-
mentation principles of the system and present the algorithm the preprocessor is based upon. In section
4, we summarize our results, give some references to related work and identify some future work. We

assume familiarity of the reader with the Prolog language and concepts as described in [Clocksin &
Mellish 81].

2. The Module System

In this section we show the concepts of our module system from a programmer's point of view. That is

we define the abstract structure of a module, show a possible syntax, and explain the semantics. We

suppose that there is "some Prolog system", which implements the language described in [Clocksin
& Mellish 81]. But the module system can be adapted to an arbitrary Prolog system.

2.1 Modules

Definition 1 (Structure of Modules).

• A module M consists of a module name, an interface and a program.

1 In algebraically defined abstract data types the operations are also functions and specified by equations.

128

• The interface of M consists of an import list, a set of operator definitions, a predicate list, and a

function list. All of them may also be empty.

- The import list of the interface of a module M contains module names. These are the

modules whose exported predicates and functions are intended to be used within M.

- An operator definition defines dynamically a new operator for constructing terms of prolog

programs. The definition identifies the name of the operator, how it is to be used (infix, post-

fix, prefix), and its precedence. For example, in [Clocksin & Mellish 81] the system predi-

cate op(.) is for that purpose. All operators defined in the interface of M should also be

contained in the function or predicate list. (Otherwise they are local and should be defined in

the program of M)

- The function list of a module interface contains all function names with arity wich are ex-

ported and made usable in modules importing this module.

- The predicate list of a module interface contains all predicate names with arity wich are ex-

ported and made usable in modules importing this module.

• The program of a module is a set of Prolog-clauses (facts, rules, and goals).

Figure 1 schows the structure of a module in a BNF-li.ke form. The nonterminal <clause> denotes

a prolog clause, <atom> a Prolog atom (i.e. a name which is not further decomposable). We also

adapt a special way of specifying the arity of a function or predicate symbol: for example the 3-ary

funct ionf is denoted f (_ ). This notation has the advantage that implicitly the usage of an operator

is also specified, e.g " + "

Figure 2 schows a module lists specifying some list processing functions 1, and the interface of

module arithmetic, specifying some part of the integer arithmetic which usually is built-in in Prolog

implementations. Note that the implementation of the reverse predicate uses difference lists. The

predicate dl_rev and the operator " & " are local. The functions and predicates exported from arith-
metic are supposed to be "buil t - in". Besides the names in the function and predicate lists, we assume

that ail numbers are implicitly member of the function list of arithmetic. The operator definitions are

those of CProlog [Pereira 84].

2.2 Name Classes

Within a module one can distinguish different kind of (predicate, function or operator) names, depend-

ing whether they occur in the interface of the module or not, or in the interface of an imported module.

Definition 2 (Name Classes).
Let n be a function or predicate name (i.e. a Prolog atom including an arity) occuring in a module M.

• n is a exported name of M iff n occurs in the function list or in the predicate list of M.

• n is an imported name iff there is a module M' occuring in the import list of M such that n oc-

curs in the function or predicate list of M ' .

1 We use here the somewhat awkward notation with explicit "cons" function. In practice, of course, the system would
provide the more convenient [... I ...] - notation.

129

<module> ::= "module" <atom> "."

<interface>

<clause>*

"end" <atom> " ".

<interface> ::= "import" <atom_list> "."

<operator_def>*

"functions" <arity list> "."

"predicates" <arity_list> ".".

<atom_list> ::= "[]".

<atom_list> ::= "[" <atom> 'T' <atom list> "]".

<arity_list> ::= "[]".

<arity_list> ::= "[" <arity_spec> 'T' <arity_list> "]".

<arity_spec> ::= "_" <atom> "_" % infix-operator

<arity_spec> ::= <atom> "_". % prefix-operator

<arity_spec> ::= "_" <atom>. % postfix-operator

<arity_spec> ::-- <atom>. % constant

<arity_spec> ::= <atom> "C <arity> ")". % n-ary functor

<arity> ::= "_".

<arity> ::= "_" "," <arity>.

<atom>, <operator def>, and <clause> are defined by the Prolog system.

F i g u r e 1: Syntax o f a module.

130

module lists.

import [arithmetic].

predicates [append(, ,) , reverse(,), length(_,_), member(_e_)].

functions [nil , cons(,)].

append(nil,L,L).

append(cons(X, Ll),L2,cons(X, L3)) :- append(LltL2,L3).

:- op(500,yfx,&) % local operator for difference lists

reverse(L,R) :- dl_rev(L,R & []).

dl_rev([X[L],R & S) :- dl_rev(L,R & [X I S]).

dl_rev([],L & L).

length([],0).

length([X[L]eN)

member(X, [XIL]).

member(X,[XrL])

end lists.

module arithmetic.

"- op(500,yfx, [+,-]).

:- op(500,fx, [+,-]).

:- op(400,yfx,[*,/]).

functions [+ ,

:- length(L,Nl), N is N1 + i.

:- member (X, L) .

% binary +,-

% unary +,-

- , + _ , , * , / , exp(_), log(_) 3.

% and 0, Ig 2, 3, 4, ...

predicates [_ is _ , integer(_)].

% program is built in

end arithmetic.

Figure 2: Modules for list processing and integer arithmetic.

• n is a local name i ff it is neither an exported nor an imported name.

• n is a defined name of M , iff n is a predicate name and there is a clause in the program of M

such that n is the principal functor o f the clause's head (i.e. the clause has the form p(...) :-
body.).

N o w let n be any function or predicate name, not necessarily occuring in M .

• n is a transported name or indirectly imported name of M if f there is a module M' occuring in

the import list o f M such that n is either an imported name of M' or a transported name of M ' .

Let in the fo l lowing exported(M), imported(M), local(M), transported(M), and defined(M) denote the
set of exported, imported, local, transported, and defined names of M , respectively.

[]

131

The transported names of a module are not important from the programmers point of view, but the
implementation must take care, that transported names cause no name confusions when binding
several modules (c.f. section 3.).

Figure 3 shows a module hierarchy. It can be implemented by means of our flat module system as
schown in Figure 4. Besides the import lists, which define the hierarchy, the interfaces contain some

I I
J

I J
Figure 3: A module hierarchy

example function and predicate lists, the programs some example clauses. With respect to the pro-
grams of Figure 4 we have the following name classes:

a b c d

exported fa, pa fb, pb, q fc, pc q
imported fc, pc fc, pc, r q
local q

transported q q
defined pa, q pb,q pc q

2.3 Name Conflicts

Because we want to avoid extensive qualification of names with their module membership as far as
possible, to some extent the programmer of a module has to take care, that every name belongs to a
unique module. Especially, that the definition of every predicate can be associated with a unique
module. That is, for example, the programmer has to chose the exported and local names of his
module different from all imported names. This is expressed in the following conditions for modules:

132

module a.

import [c].

functions [fa(_)].

predicates [pa(_)].

pa(fa(X)) :- q, pc(X).

q.

end a.

module d.

import [].

functions [].

predicates [q].

q.

end a.

module b.

import [c

functions

predicates

pb (fb (X))

q.

, e].

[fb(_)].

[pb(), q].

:- q, pc (X) , r.

end b.

module e.

import [].

functions [].

predicates [r].

r.

end b.

module c.

import [d].

functions [fc()].

predicates [pc(_)].

pc(fc(z)) :- q.

e n d c .

Figure 4: Implementation of the module hierarchy of Figure 3

Definition 3 (Conflict Freeness of Modules).
Let M be a module.

M is said to be basically conflict free iff for any two modules M 1 and M2 occuring in the import list of
M the following conditions hold:

(CF1) exported(M) n imported(M)= 0

(CF2) exported (M i) n exported (M 2) = 0

M is said to be conflict free iff it is basically conflict free and in addition for any two modules M 1 and
M 2 occufing in the import list of M the following conditions hold:

(CF3) transported (M) n exported (M) = 0

(CF4) transported (M 1) n transported (M 2) = 0

Basic conflict freeness expresses, that the names of the direct environment of a module cause no
name conflicts. General conflict freeness also regards names of indirectly imported modules (that is it
takes into account the transitive closure of the import relation.)

Perhaps one would expect also a condition like exported(M)nlocal(M)= O or
imported (M) n local (M) = 0 . But note that by definition any exported or imported name definitively
cannot be local (cf. Definition 2). That is, these conditions are trivially true.

Because a programmer has to determine the exported names of a module and he knows the imported
names (by inspection of the interfaces of imported modules), it is reasonable to expect that he is able
to ensure the basic conflict freeness of modules (conditions (CF1) and (CF2)). (CF1) can easily be
avoided by choosing the fight names. If there are name conflicts with respect to (CF2), the program-

133

mer must resolve them by appropriate qualification. On the other hand, he does not necessarily know
the transported names. Therefore, if (CF3) and (CF4) are violated, uniqueness of names must be en-

sured by the implementation of the module system.

The correct qualification of ambiguous names is expressed by the following

Definition 4 (Qualification rule).
Let M be a module. Let M 1 and M 2 be modules occuring in the import list of M, and

n e exported(M1) c~ exported(M2). Within M, the atoms Ml:n and Me:n are called qualified names
and denote the name n which is exported from M1 and Me, respectively 1. It is not allowed to use the

name n unqualified within M.

Besides name conflicts, there are three other important properties which must be kept by a module,

namely that every exported predicate is defined, that no imported predicate is redefined, and that an
operator defined in the interface of a module is to be exported:

Definition 5 (Well Defined Interface).
Let M be a module and operators (M) the set of operators defined in the interface of M. We say that

the interface of M is well defined iff the following conditions hold:

(WD 1) exported (M) c_ defined (M)

(WD2) imported (M) n defined (M)= O

(WD3) operators (M) c_ exported (M)= O

2.4 Built-in Modules

In order to deal with buil-in predicates and data (like numbers), there are principally two different ap-

proaches: we can treat every built-in predicate and function symbol (e.g. 1,2,3 or "[_L]") as global
names, which need not to be imported explicitly, and which are not allowed to be redefined in other
modules. That is, we have one virtual system module which is implicitly imported by all other

modules. Or, as suggested in Figure 2 for arithmetic, we can identify several groups of built-in

features which belong to different virtual system modules which must explicitly be imported if needed.
Again, names imported from system modules are not allowed to be redefined and built-in names can-

not be used qualified, because the implementation of these modules is part of the underlying Prolog

implemetation and does not recognize qualified names.

3. The Implementation

In this section we describe the implementation of the module system by means of a preprocessor
which maps modules onto ordinary Prolog programs.

1 Note that this rule needs an appropriate modification of the syntax of programs, specifying a syntactic object "qualified
n a m e ' ~.

134

The principle of our implementation is very simple and can be summarized as follows: every ex-
ported and imported name of a module is qualified by the corresponding module name, and every lo-

cal name obtains a prefix which is unknown to every other module. Qualification is done automatical-

ly in a consistent way in the modules where a name is defined and expo~xt, and in the modules where
it is imported and used.

3.1 Processing Modules

The following algorithm process(M,E) describes the global behaviour of the preprocessor for modules.

The input to this algorithm is a module M. The output is the set E of exported nm~aes of M. As a side

effect, the algorithm outputs the modified program of M to a well defined file. The modification of the
program is according to the above explained principle. The algorithm is called recursively with all

modules occuring in the import list of the interface of M. That is, after the algorithm has temtinated,

the output file containes the modified programs of M and all modules which are directly or indirectly
imported by M.

The algorithm uses the following elementary functions and notations, whose implementation is not
further detailed here:

M.i and M.p denote the interface and the program of a module M, respectively.

operators(l), imports(l), and exports(l), denote the set of operator definitions, imported

modules, and exported names specified in the interface I.

qualified (n,M) is true, if n a is a name qualified with module M, i.e. n is of the Form n :M.

qualify (n,M) adds a pref'~ "M:" to the name n.

rename (n,M) adds a preftx to the name n. The prefix is well defined with respect to the module

name M, but anonymous to the "outside world" ofM.

output (T) outputs a term T (e.g. a Prolog clause or operator definition) to a well defined File.

preprocess(M,E) ;

Input: a module M.
Output: the set E of exported names of M, associated with the module name M ((n,M) e E).

% G is the set of names which are global in M, associated with a module name.

G : = O ;

% CS is the "conflict set", the set of names which are imported more than once.
CS := ~ ;

% first preprocess imported modules and detect (CF2) conflicts
fOX each M' e imports (M.i) do

preprocess(M',E") ;
fo__xr each (n,M) e E" d_p_o

if there is M" such that (n,M') e G
then CS := CS ~ {n}

fi
od
G : = G u E '

t35

oA;

% compute exported names and operators and detect (CF1) conflicts

E : = ~ ;

fo._Ar each n e exports (M) do
if there is M' such that (n,M') ~ G then CS :-- CS u {n } fi;
G := G u{(n,M)}; E :=E u{(n,M)}

od.
Ops :-- operators (M.i);
P := Ops uM.p ;

transform(P,G, CS)

end preprocess.

transform(P,G,CS) ;

Input: A program P, a set of names G associated with modules (global names), and a set of names CS
(conflict set);

fo_rr each clause c e P d__oo

fo__xr each name n occuring in c do

if qualified(n,M) % conflict resolved by the programmer

then

if (n,M) G
then error(" illegal qualification",M:n) % else n is left unchanged
f_l

else

fi
od
output(c)

if n e CS % (CF1) or (CF2) conflict
then error(" ambiguous name",n)
else

if (n,M)s G
then qualify(ned) % ensure (CF3) and (CF4)

else rename(n,M) % hide a local name
fi

fi

% output the transformed clause
od;

end transform.

The algorithm preprocess also determines the order in which the programs of dependend modules

are output. For example preprocessing the module a of Figure 3, the respective programs are output in
order d,c,a.

Figure 5 shows the result of preproeessing the module a of Figure 4 and Figure 6 shows the result
of preprocessing module b of Figure 4 (cf. section 2). The renaming function for local names takes as
prefix 'xy' followed by the module name and '#' for readability reasons. In the final implementation
of the system, the prefix will be anonymous and not directly related to the module names in order to

136

% clauses from module d

d:q.

% clauses from module e

c:pc(c:fc(z)) :- d:q.

% clauses from module a

a:pa(a:fa(X)) :- xya#q,

xya#q.

c :pc (X) .

% clauses from module d

d:q.

% clauses from module c

c:pc(c:fc(z)) :- d:q.

% clauses from module e

e:r.

% clauses from module b

b:pb(b:fb(X)) :- b:q, c:pc(X),

b:q.

d:r (X) .

Figure 5: Preprocessing module a. Figure 6: Preprocessing module b.

prevent illegal use of local names at runtime.

The algorithm preprocess ensures conflict freeness of modules in the following way:

(CF1) and (CF2) should be guaranteed by the programmer. If one of them is hurt, an error mes-

sage is produced.

(CF3) and (CF4) is enforced by qualification of exported and imported names with their module

name. This is done at every oecurenee of a name within the program.

It is easy to extend the algorithm to check also the well-definedness of interfaces (cf. Definition 5,

section 2), to deal with built-in predicates and modules (cf. section 2.4), and to detect cyclic dependen-

cies between modules.

3.2 Processing Goals

Now suppose that we have preprocessed one or several modules (and thus all directly and indirectly
imported modules). This has resulted in one ordinary Prolog program P implementing the collection

and interaction of these modules. In order to execute goals with respect to this program, one must

identify a module context M, wherein it is to be executed (e.g. via a built-in predicate

execute(Goal,M)). Then the the clause Goal is transformed with respect to this module context like an

ordinary clause by the algorithm preprocess. That is, names occuring in the goal are qualified with the

respective module name if they are exported from M or imported from an other module, and otherwise
they are renamed like local names of M. Finally the transformed goal is executed with respect to the

program P. For this purpose, it is necessary to keep the information about all modules' interfaces

which have been preproeessed before.

An other possibility is to write goals directly into the program of a module (which is possible in
Prolog, anyway). This module (and all imported modules) can be preprocessed as described in section
3.1. The goals usually are automatically executed when loading the preprocesed program into an in-

terpreter ("consuh"), or when executing the compiled version. The exact procedure depends on the

underlying Prolog implementation.

137

3.3 Behaviour at Runtime

Prolog has several dynamic features which may cause some problems for module concepts. Especially

the analogy between data and programs, which allow dynamic construction of calls and even program
modification. Some module systems, e.g. the one of KA-Prolog [Goos et. al. 87, Lindenberg et. al. 87]

simply forbid some of the critical features, e. g. modification of the program database, and allow meta
calls only within an explicitly defined module context. But this restricts some of these features which
have proven to be useful in many typical applications of Prolog. Imposing restrictions on the use of

Prolog features would always decrease the excellent rapid prototyping qualities of Prolog, which we
want to preserve also within a module system.

Therefore, we do not impose any restrictions on the use of Prolog within modules, and argue that

the semantics of every piece of program or goal is uniquely defined by our preprocessing algorithm.
We demonstrate this by means of an example (it is taken from [Ultsch et al. 88]). Figure 7 shows two

modules a and b and their preprocessed version.

module a. module b. % module a preprocessd:

export [f(_)]. import [a]. xya#g :- true.

a:f(X) :- call(X).

g :- true. g :- fail.

f(X) :- call(X). % module b preprocessed:

xyb#g :- fail.

Figure 7: Metacall and Modules.

The question now is whether the goal

"- execute (f (g) ,b) .

succeeds or falls. Or, in other words, does the argument " g " of the call o f " f ' belong to module a or
module b, when called in the context of b ? The goal is transformed as outlined in section 3.2 into the
following goal

"- a:f(xyb#g)

and this goal fails with respect to the preprocessed program.

138

4. Conclusions

We have presented a simple module system for Protog which allows structuring of large software sys-
tems, information hiding and the implementation of abstract data types. Within a module interface one
can (1) declare operators, (2) specify predicates and functions which are exported, and (3) modules,
which are imported and whose exported predicates can be used. Our module system is thus name

based like those of MProlog and Micm-Prolog [Szeredi 82]. Other module systems are only predicate
based, that is only predicate names can be exported and all function names are considered to be global,

e.g. ECRC-Prolog [Chan& Poterie 87] and KA-Prolog [Goos et. al. 87, Lindenberg et. aL 87]. It is
easy to realize a predicate based module system in the same manner as shown here, if we leave out
function lists from the syntax of interfaces and change the preprocessing algorithm in an obvious way.

Most module concepts require that every imported name is explicitly imported and do not allow one
to import the same name from different modules. Our minimal export/import and qualification concept
alows the import of complete modules, i.e. every exported name of this module is available. The need
for qualification is restricted to the cases where a name is imported twice. Thus gaining more flexibili-
ty (no restriction on imports) without introducing too much notational overhead (no explicit import of
names, only minimal need for qualification). The uniqueness of the names of a module can be decided

at preprocessing time.

Modularized programs can be transformed in a systematic way onto ordinary Prolog programs,
maintaining the module structure by means of appropriate prefixing of names. This transformation
process defines a unique behaviour of modules at runtime, also for the dynamic features of Prolog like
meta call and program modification. Therefore, in contrast to other module systems, we do not need
to restrict the use of any of these features within modules. It is our philosophy to provide the means for
safer programming of larger software by several people, but on the other hand not to restrict other

qualities of Prolog which, for example, support rapid prototyping.

A major advantage of our preprocessing approach is that it is independent from a certain Prolog im-
plementation and can be adapted to any Prolog system, whether compiler or interpreter based. Further-
more, modules can be implemented in other languages than Prolog, as soon as the underlying Prolog

system provides an interface to these languages. Because all global names are prefixed by the module
name after transformation, one can use an ordinary Prolog debugger for debugging transformed
modules. In order to enable separate transformation of modules and goals and oinding of transformed
modules, the implementation must be extended by some kind of module management system, which
stores, besides the transformed programs, information about the original interface of the modules.

It is planned that the module system wilt be integrated with a mode and type system for Prolog

[Dietrich 88, Dietrich & Hagl 88], which is also realized as a preprocessor. Then the interface of a
module will also allow the specification of types, and the declaration of types and input/output modes
for arguments of predicates (i.e. signatures). This will further improve the facilities to specify and

implement abstract data types, and the programming security.

Acknowledgements. I would like to thank my colleagues from GMD Karlsruhe, especially H.
Lock, P. Kursawe, and F.-W. Schr6~, for many fruitful discussions and useful comments on earlier

versions of this paper.

139

References

The Programming Language Ada, Reference Manual, American National Standards Institute, Inc.,
ANSI/MIL-STD-1815A-1983, Springer LNCS 155, 1983.

Y. C. Chart, B. Poterie, Modules in Prolog, British Standards Institution - IST/5/15 Prolog, Document
PS/185, February 1987.

W. F. Clocksin, C. S. Mellish, Programming in Prolog, Springer Verlag Heidelberg, 1981.

R. Dietrich, Modes and Types for Prolog, Arbeitspapiere der GMD Nr. 185, February 1988.

R. Dietrich, F. Hagl, A Polymorphic Type System with Subtypes for Prolog, Proc. 2nd European Sym-
posium on Programming (ESOP '88), Nancy, March 1988, Springer LNCS 300, 79-93.

S. Drosopoulou, Module and Type Systems - a Tour, Imperial College, London, Report
IC/FPR/PROG/2.2/12, issue 2, March 1988.

J. A. Goguen, J. Meseguer, Equality, Types, Modules, and Generics for Logic Programming, Proc. 2nd
International Conference on Logic Programming, Uppsala, Sweden, 1984, 115-126.

G. Goos, R. Dietrich, P. Kursawe, Prolog Arbeiten in Karlsruhe, in: W. Brauer, W. Wahlster (Eds.),
Wissensbasierte Systeme, Springer Informatik Fachberichte 155, September 1987, pp 89 - 104.

N. Lindenberg, A. Bockmayr, R. Dietrich, P. Kursawe, B. Neidecker, C. Scharnhorst, I. Varsek, KA-
Prolog: Sprachdefinition, Universit~it Karlsruhe, Interner Bericht 5/87 und Arbeitspapiere der GMD
Nr. 249, May 1987.

D. MacQueen, Modules for Standard ML, ACM Symposium on LISP and Functional Programming,
Austin, Texas, 1984.

A. Mycroft, R. A. O'Keefe, A Polymorphic Type System for Prolog, Artificial Intelligence 23, 1984,
295-307.

F. Pereira (Ed.), C-Prolog User's Manual, Version 1.5, EdCAAD, University of Edinburgh, February
1984.

R. S. Scowen (Ed.), Modules in Prolog - A Discussion Paper, ISO/IEC JTC1 SC22 WG12, Document
N14, July 1988.

P. Szeredi, Module Concepts for Prolog, Proc. Workshop on Prolog Programming Environments,
Linkrping, 1982, pp. 69-80.

A. Ultsch, M. P. J. Fromherz, H.-P. Schmid, Modules in Prolog. In: R. Scowen (Ed.), PROLOG - Ox-
ford 1988 papers, ISO]IEC JTC1 SC22 WG17, Document N12, April 1988.

D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, Artificial Intelligence
Center, SRI International, 1983.

N. Wirth, Programming in Modula-2, Springer Verlag, 1983.

