
Describing a Signal Analyzer
Process Algebra P M C

- A Case Study

in the

Henr ik Reif Ande r sen and Michael Mendle r

Technical University of Denmark, Department of Computer Science, Building 344,
DK-2800 Lyngby, Denmark. E-mail: {hra,mvm}Oid. d tu . dk

A b s t r a c t . In this paper we take a look at real-time systems from an
implementation-oriented perspective. We are interested in the formal de-
scription of genuinely distr ibuted systems whose correct functional be-
haviour depends on real-time constraints. The question of how to com-
bine real-time with distr ibuted processing in a clean and satisfactory way
is the object of our investigation.
The approach we wish to advance is based on PMC, an asynchronous
process algebra with multiple clocks. The keywords here are 'asynchrony'
as the essential feature of distr ibuted computat ion and the notion of a
'clock' as an elementary real-time mechanism. We base the discussion
on an actual industrial product: The Briiel & Kj~er 2145 Vehicle Signal
Analyzer, an instrument for measuring and analyzing noise generated by
cars and other machines with rotat ing objects. We present an extension of
P M C by ML-style value passing and demonstrate its use on a simplified
version of the Brfiel & Kjmr Signal Analyzer.

1 Introduction

The initial motivation for the work reported in this paper stems from an indus-
trial case study pursued by the authors in the context of the CoDesign project
at the Department of Computer Science of the Technical University of Denmark,
Lyngby. The task of this case study is the formal description and rational recon-
struction of a commercial real-time measurement instrument, the Briiel & IKj~er
2145 Vehicle Signal Analyzer [9]. Briiel & Kj~er, an industrial partner associ-
ated with the CoDesign project, is a big Danish manufacturer for measurement
equipment and the 2145 is one of the most sophisticated of their products. The
instrument -- in its portable version -- looks roughly as shown in Fig. 1. Its
main purpose is to measure and analyze the noise produced by rotating me-
chanical objects such as car engines or turbines. It is applied in quality check
and trouble shooting. As indicated in the figure basically two kinds of data are

0 The first author has been supported by the Danish Technical Research Council and
the second author by the Human Capital and Mobility Network EuROFORM.

621

~ i DD~176

DOODO ODOOD DDDDD DDDDD DDDDD

Fig. 1. The Brfiel &: Kj~er 2145 Vehicle Signal Analyzer

processed. The first is tacho information relating to the position, velocity, and
acceleration of the rotating object. The second type of information is the sound
produced, which is picked up by a number of microphones. The input signals are
digitized and undergo fairly involved data processing to extract what is essen-
tially frequency information, but linked up with the rotational data in one way
or another.

When one studies the instrument 's implementation one recognizes two salient
features that must be accounted for by any a t tempt on a formal description of
the instrument. The first is the fact that one is dealing with a truly distributed
system, distributed both in terms of hardware as well as in terms of software.
Depending on how one counts, one identifies at least four separate and dedicated
hardware processors which are independently clocked and which communicate
asynchronously. One of these processors runs a real-time operating system which
in turn schedules three basic software functions in a quasi-parallel fashion.

The second insight one arrives at rather quickly is that it would be a hopeless
undertaking to a t tempt a precise and complete specification of the instrument 's
internal timing behaviour. All one can reasonably expect is to capture a few
and essential real-time aspects. But what are the essential real-time aspects? Of
course, there is the obvious 'What-You-See-Is-What-You-Hear' response t ime
constraint that says that the instrument must be fast enough for the test en-
gineer to be able to relate the display output directly to the noise she or he is
hearing. From the users point of view this is certainly a relevant real-time re-
quirement. But there are more subtle and more important real-time constraints
relating to the functional correctness of the measurement. In fact, when one
talks to the engineers they insist that the main problem they are struggling with
is to guarantee internal t ime consistency: to maintain the original exact t ime
synchrony of the input data within the system, despite the fact that the signals
are sampled independently and processed in a distributed fashion, despite the
fact that the data split up into different submodules and reconverge later in
yet another independently clocked subcomponent; and above all the instrument
must be able to measure absolute time with high precision in order to com-
pure the current rotation speed, and relate it to the various signal data for later
t ime-domain processing.

From this discussion we derive two central requirements for a prospective lan-

622

guage to describe and program real-time systems such as the Briiel & Kjmr 2145
Vehicle Signal Analyzer: Firstly, we are looking for an abstract approach that

�9 faithfully represents asynchronous and distributed computations.

In other words, our language must not, by illegitimate synchrony assumptions,
mask out actual real-time synchronization prohlems in the implementation. Sec-
ondly, in order to master the complexity of the instrument the language

�9 must not mix up function-and quantitative timing unnecessarily.

In other words, we must be able to focus on the essential real-time behaviour and
purely functional aspects, and wherever appropriate ignore quantitative timing
altogether.

In this paper we wish to put forward the real-time process language PMC [5]
which has been conceived to comply with the two requirements above. It is in
fact an extreme solution in the sense that in PMC all concurrent computations
are asynchronous so that any global synchronization must be specified explicitly
by the programmer. Also, PMC takes an extreme stand as regards the second
requirement: it focuses on the qualitative aspects of real-time programming and
does not attempt to capture quantitative timing, though this could be introduced
as a derived concept.

PMC (Processes with Multiple Clocks) is an extension of Robin Milner's Calculus
of Communicating Systems (CCS) by the notion of multiple clocks. Processes
in PMC are described by their ability to communicate locally in a handshake
fashion and synchronize globally on clocks. Clocks in this context are an elemen-
tary mechanism for achieving real-time constraints. They embody an abstract,
qualitative, and local notion of time which can be interpreted as referring not
only to real hardware clocks as in synchronous circuits, but also to time-out
interrupts, global synchronization signals as in MODULA, the ticking of real pro-
cess time, or the completion signal of a distributed initialization or termination
protocol. PMC has a mathematical theory along the lines of CCS; the results
obtained concern the formal calculus of PMC, its operational semantics, and
complete equational axiomatizations for bisimulation equivalence and observa-
tion congruence [4, 3]. In this paper we extend PMC by value-passing using
Standard ML [17] and illustrate its application as a programming language on
a simplified version of the Briiel & Kjaer 2145 Vehicle Signal Analyzer.

As mentioned before PMC is designed for describing truly distributed real-time
systems with few but essential real-time constraints. This goal distinguishes it
from the usual approaches in the area.

On the one side, PMC does not build in any global synchrony assumption as
in the real-time programming languages ESTEREL [7] and LUSTRE [12]. Global
synchrony is implicit also in timed process algebras with the so-called maxi-
mal progress property, which essentially amounts to a globally synchronous, lo-
cally asynchronous model of computation. Examples are TPL [14] and TIMED
CCS [25]. PMC, in contrast, can deal not only with globally synchronous, lo-

623

calty asynchronous behaviour but also with the more general class of globally
asynchronous, locally synchronous behaviour. (A recent proposal for extending
ESTEREL to achieve a similar effect can be found in [8].)

On the other side, whereas PMC concentrates on qualitative real-time con-
straints, the standard pattern of introducing time into process algebras aims
at a precise and complete description of a real-time system's quantitative tim-
ing. Examples are ATP [21], TIMED CsP [24], BPApS, and many others [22, 25,
20, 16, 15, 23]. These approaches use a global notion of time and describe the
global real-time behaviour of the system quite precisely by inserting explicit de-
lays. This may be necessary in many safety-critical applications, however, for
real-time systems such as the Vehicle Signal Analyzer, it is overly realistic, for it
implies that rather precise knowledge of the timing behaviour of the implemen-
tation is known or assumed; not only for the time-critical parts, but also for the
remaining time-irrelevant aspects, which, so we believe, constitute the majori ty
in practice. For instance, in a simple process like

P = a; bl; " -b~; P,

which performs an infinite sequence of a actions separated by a sequence of b~
actions, we might want to limit the time between any two a-actions without
specifying anything about the intermediate b~'s. The usual formalisms typically
require a fixed delay or an interval of delays (as in [16]) to be assigned to each
b~, which means we are imposing unnecessary restrictions on them. In general,
this will not be the most helpful solution as it might require almost clairvoyant
skills: We must foresee the effects of our compiler and code optimization, have
precise knowledge about the properties of our real-time operating system, and
finally also of our hardware on which the program eventually is going to run.

2 P M C

In P M C concurrent systems are described by their ability to perform actions
and synchronize with clocks. This dichotomy leads to a notion of transition sys-
tern which distinguishes between pure action and pure clock transitions. One
difference between action and clock transitions is that -actions embody local
handshake communication whereas clocks embody global broadcast synchroniza-
tion. Another is that action transitions are nondeterministic in general since
they arise from parallel and distributed computations. Clock transitions, in con-
trast, are deterministic since they model the global passage of time. The idea
that time passes deterministically is natural and appears to be common in timed
process algebras, where it is known as the property of time determinism [22].
P M C was introduced in [5] and its mathematical theory was developed in [4, 3].
In this section we extend P M C by value-passing and ME-style local declarations,
and present a simple operational semantics for late binding (see [19]).

As in value-passing CCS [18] we assume a set of process names Proc, channel
names Chan and sets of values]2 and value variables Vat. The semantics we

624

present will be akin to symbolic transition systems [13]. We assume the existence
of a silent action ~- and take the set of actions to be Act =do~ {c? I c E Chan} U
{c!v I c E Chan, v E P} U {7}. Actions of the form c? are input actions and
c!v are output actions. Note, input actions c? do not carry a concrete value
like output actions, they simply represent a commitment to communicate on
channel c. This a symmet ry between input and output captures the late binding
semantics. Finally, in addition to the ordinary actions, P M C assumes a set of
clocks Clk the elements of which are ranged over by o.

The syntax of value expressions is taken from a subset of Standard ML - roughly
the subset characterised by removing exceptions and references leaving us with
a side-effect-free functional language. We will not describe this in detail, nor
do we get involved with the type system for P M C and the semantics of value
expressions. For the purpose of this paper it will be enough simply to refer to
a (partial) evaluation relation for expressions. The syntax, type system, and
evaluation semantics for expressions may be thought of as being taken over
wholesale from Standard ML.

Process terms t are generated by the following grammar:

t :: = stop

cq t
i f e t h e n to e l s e tl
to + tl
to II tl
r e s t r i c t cseq t o t
timeout t o on ~ as tl

t allowing ~8eq

p(~seq)
let dint end

Roughly, the meaning of the operators, in terms of their ability to perform actions
or to take par t in clock ticks, is as follows. The process s t o p can do nothing,
neither an action nor does it admit any clock to tick. The process a; t performs
the prefix a and then behaves as t; it prevents all clocks from ticking, whence it
is called ' insistent ' prefix. The prefix ~ is either an input, an output or a silent
prefix:

a : : = c ? z I c ! e I 7.

The conditional process i f e t h e n to e l s e tl behaves like to or tl depending
on the value of the (boolean) expression e. The process to + tl behaves either
as to or tl , the choice being made by the first action (but not by a clock-tick).
The concurrent composition to I] tl behaves like to and tl executing concurrently,
with possible communications. The process r e s t r i c t cseq t o t behaves like t but
does not allow input and output actions on any of the channels in cseq E Chart*.
Each one of the processes to + t l , to]] tl , and r e s t r i c t cseq to t takes par t
in a clock tick by having all of its components to, tl , t take par t in it. Finally,
t i m e o u t to on a as tl behaves like to if an initial action of to is performed or a

625

clock tick different from a occurs in to, however, if a occurs it behaves like tl .
This t imeout operator is inspired by the t imeout operator of Nicollin and Sifakis
[21] which can be seen as a special case of ours where there is only one clock. The
process t a l l o w i n g aseq behaves like t but will take par t in any tick from a clock
in aseq E Clk* without changing state. Process constants can be instant iated as
p(eseq) by applying the process name p to a sequence eseq of channel or clock
names, or value expressions. The l e t construct introduces local declarations like
in ML, i.e. l e t d in t end behaves like t in an environment with the binding
of identifiers to values, functions and processes as declared by d. We extend the
declarations in ML to allow process declarations

p r o c p(aseq) = t,

where aseq is any sequence of channel or clock names, or value variables. Like in
Standard ML we use the keyword and to connect mutually recursive declarations.

Two syntactic abbreviations will turn out to be useful:

await a; t ~-~-def timeout stop on a as t

ct allowing 6; t :def let proc X = timeout (~; t on g as X

in X end

The first process waits for the clock (r to tick, whereupon it continues as t. The
second process is a relaxed prefix, which admits clock a to tick freely until it
performs action a whereupon it continues as t. The l e t construct applies a
recursive definition with a fresh process name X, which must not occur free in
t.

The semantics of P M C is given as a labelled transition relation 4 . Labels are
taken from the set s = Act U Clk. Like in P M C without value-passing [5],
a transit ion with label 1 C s is either a pure action transition, if 1 E Act, or
a pure clock transitions, if l E Clk. The difference is tha t now actions carry
value-passing information, and further that the transitions relates configura-
tions instead of just process terms like in P M C . Configurations are introduced
essentially to deal with local declarations l e t d in t end, i.e. with the situation
where the processes of a t e rm have different local environments. A configuration
is either a pair (D, t) consisting of a sequence D of declarations and a t e rm t
(process or expression), or any of the process operators op E {i f_ then_e lse_ ,
+ , II , r e s t r i c t ~' to_, t imeout_on a as_,_al lowing ~} applied to configura-
tions. For example, (Do, to)I I (D l , t l) and i f (D, e) t h e n (Do, to) e l s e (D1, t l)
are configurations. As usual a configuration will be closed if it contains no free
identifiers. We denote the set of configurations by C and the set of closed configu-
rations by Cd. A declaration sequence is a sequence of sets of mutual ly recursive
declarations. In order to handle the late binding of values in input actions we
use a special variable name # as a place holder. Let C # denote the set of config-
urations tha t has at most the free identifier # . Using this notat ion the transit ion
relation -~ is a subset of g d x s x C #.

626

We" will need to assume that every well-formed syntactic declaration d can be
mapped to a sequence of sets of bindings by the map as indicated by the
following example: If d is

proc pl(:~l) ---- tl
p roc P2(X2) ---- t2
and p3(X3) = t3

then d is
{P2(~z) = t2, P3(/3) = t3}{pl(~l) = tl},

where a sequence is simply constructed by juxtapositioning the elements (using
for the empty sequence). Hence the first element of the above sequence contains
the bindings for P2 and P3, the second and last element contains the binding
for Pl. Note, in general a declaration sequence D will also contain ordinary
ML declarations for constants, functions, etc. but since we wish to focus on
the PMC-re la ted part, we shall not be bothered by how ^ works on pure ML
declarations.

For a declaration sequence D we define the partial function of looking up and
instantiating the process named p with arguments g, denoted D(p)(g), by in-
duction on the length of D: If D = s, then D(p)(g) is undefined, otherwise if
D = d D' we distinguish two cases; if d = {P1(~1) = t l , . . . ,Pk(~k) = tk} and
p = p~ for some 1 < i < k, then D(p)(g) = {D,t~[g/~]); otherwise, i f p # p~
for all 1 < i < k then D(p)(V) = D'(p)(V). Hence, D(p)(g) gives a configuration
consisting of the body of p, where the arguments have been instantiated to
and a declaration sequence in which to execute the process.

Our operational semantics is parameterized in the ML evaluation relation 0 ,
where (D, e) ~ v means that in the enviromnent of declaration sequence D,
e evaluates to v. Since expressions do not depend on processes the evaluation
may safely ignore any process bindings in D. It will be convenient to extend this
relation to channel and clock names by stipulating

(D, c) ~ c (D, a) ~ a.

The transition relation is given by the inductive set of rules shown in Fig. 2.

3 A S i g n a l A n a l y z e r i n P M C

We are now going to describe a simplified version of the Briiel &: Kj~er 2145 in
P M C where we focus on some of the essential features of the actual instrument
illustrating the use of clocks fox the distributed programming of a real-time
measurement problem. The main simplification consists in picking out only one
measurement mode and trigger condition from the many possibilities available
in the Briiel &= Kjaer 2145.

The simplified 2145 measures the noise produced by a large turbine in the run-up
phase and at a certain critical rotation angle. The total result of the measurement

627

shall be the peak value in three pre-defined frequency bands together with the
velocities at which the peaks occurred. To solve our measurement problem we
use the three basic components, Filter, Evaluation, Tacho, shown in Fig. 3. All
three modules correspond to hardware components in the Briiel & Kjmr 2145%
implementation, and the formal description to follow is a (simplified) abstract
view of the actual components' functionality.

(D, c ? x; t) ~? (D, t[#/~]>

B =~true Co 4 C'

if B then Co else C1 J+C '

Co-%C' C1--%C'

(D, e) =* v

<b, ~ ! ~; t) ~ <D, t>

B ~ f a l s e C I - ~ C '

i f B then Co e l s e CI-~C'

co-%c; Cl-%C~
C0 + C1 -% C' C0 + Cl -% C' C0 + C1 ~+ C~ + C~

Co 2+ c~ ci -% c~
c~ II c~ -% c~ I L c~ Co I L c, -% Co t l ci

co ~+ c; ci -% cl
Co I I c, :+ c~ll cl

c? ; I ! c? I !
Co --+ (Do,to> C1 ~ C, Co ~ C; C1 ~ (D1,L1 >

Co II c, 4 <D;,t~,[v/#]> II q Co II C, ~ C; 11 <Di,~i[~/#]>

C/+ C'
(l = c?, c!v implies c ~

" C ' r e s t r i c t c ' to C -+ r e s t r i c t c ' to

Colic '
(l # o)

timeout Co on G as C1 ~ C'

C~C' (~ r ~)
C allowing J ~ C' allowing

C -~ C' (<D, ~,> ~ ~,~, D(p)(,J) = C)
(U,p(e> 4 c '

<liD, t} 4 C op(<D,t,>,..., <D,t,~>) 4 C
<D, l e t d in t end> l} C (N, op(tl,...,tn)> 4 C

timeout C0 on a as CI-Z-}C1

C allowing 6~Callowing

Fig . 2. Action and Clock Progress Rules. RecMl that ~ ranges over actions,
over clocks, 1 over both, and finally op over {if_then_else_, +, II, r e s t r i c t 6" to_,
t imeout_on a as_, _al lowing J} in the last rule.

628

s~g
(7 s

: f req

O'v.

p w r

(7

pwr 1 pwr 2 pwr 3 vel

m a x

L
. i

O'p

Fig. 3. A Filter, Evaluation, and Tacho Component

O't

vel

The f i l t e r extracts the average energy of the incoming signal sig in a well-
defined frequency band, and delivers the square root of this mean value on
output pwr. There are two clocks associated with the filter characterizing its
real-t ime behaviour. The first one, as is the sampling rate which determines the
frequency resolution and the filter's maximal cut-off frequency. In the 2145 this
is set at a fixed rate of 65kHz. The second clock, a~, is the update rate on the
output side. It is the rate with which the accumulated averaged signal energy is
updated on the output to be picked up and evaluated by the system. In general,
a~ may be variable and smaller than the sampling rate depending on the speed of
the successive computat ions or on how fast the frequency information of interest
changes over time.

A description of the filter in P M C syntax reads as follows:

p r o c Filter(ffeq, sig, pwr, as, a~) =
r e s t r i c t r t o

l e t p r o c F -- awa i t ~ ; sig ? x; r ? s; r ! filter(freq, x ,s) ; F
p r o c R(s ,p , o) = t i m e o u t

t imeout
r ? s; R (s ,p ,o)
+ r ! s; R (s ,p ,o)
+ pwr ! o; R (s ,p ,o)

on a (s , s, o)
on a~ as R(s ,p , p)

in R(O, O, O) If F end

The unspecified function filter, parametr ized by a frequency ffeq, a sample x,
and a filter-state s, implements the filtering algorithm. The filter consists of two
processes running in parallel and communicating on the internal channel r. The
process R(s ,p , o) is a register with three state variables, s, p and o. The first
component can be set and read along the channel r. The last component holds
the current value of the output line of the filter and it can always be read off
by the output action pwr ! o. At every tick of as the value of s is copied to the

629

second component, and at every tick of a~ the value of p is copied to the third
component becoming the new output of the filter. The register is used by the
process F for storing the accumulated mean square of the signal energy. At the
beginning of each iteration the process F waits for the next tick of as, reads in
the new sample x and retrieves the current value of s from the register. From x
and s it computes the new state filter(freq, x, s) and updates the register.

The two-phase shifting of states in the register ensures that if a bank of filters is
connected to the same as and a~, values read from the output lines of different
filters between consecutive ticks of a~ will be consistent. L e. they will be the
result of computing the signal energy of the same number of samples. The reader
is encouraged to t ry out a simplified version where the register only contains the
state variables s and o and at every tick of a~ the value of s is copied to o while
as is given free by a l lowing . With such filters unsynchronized values can occur:
If some of the filters have performed the update of their registers and others not,
the values read off are inconsistent.

The t a c h o m e a s u r e m e n t (the right-hand flow-graph in Fig. 3) computes the
current rotation speed from the tacho pulse, which we may view as a variable
clock ap. To get the velocity from this tacho clock we need to know the amount
of t ime that has passed between any two pulses. This real-time information is
implemented by another clock, at, ticking off global system time. In the Briiel

Kjaer 2145 this is done by a high-precision free-running timer oscillating at
1 M H z , yielding a l#s time resolution. A description of the tacho as a P M C
process is as follows:

proc Tacho(vel, ap, at) ---
l e t p roc T(c,e) = t imeou t

timeout
vel ! I /e ; T(c,e)

on ap a s T (0 , c)
on at a s T(c + 1, e)

in T(O, oo) end

The state of the tacho T(c, e) is specified by two parameters. The first one, c,
counts the time between pulses, ue. it is incremented with every at and reset
with every ~p tick. The second parameter, e, holds the result count between two
pulses; it is updated with ap. The current velocity, which is indirectly propor-
tional to the result count can be read at any time with output action vel ! i/e.

The last module to be specified is the evaluation module. A flow-graph for this
module is found in Fig. 3. The task of the evaluation is to find the maximum
peak energies supplied at its inputs pwr~, i = I, 2, 3 in the run-up phase of the
rotation. The run-up phase is a period of increasing velocity vel, beginning with
a start value start and ending with a pre-defined stop value stop. The clock a
serves to separate successive input vectors of synchronous frequency and velocity
data. The evaluation module cycles through the states E~t, Ecomp (m), and
Eready. In state Eready it is ready to start the next run-up measurement. When

630

the velocity falls below the start margin it passes to state Ewa~t where it waits for
the velocity to enter the run-up interval [start, stop]. Then the actual computa-
tion state Ecomp (m) is entered. In this s tate the component reads in consecutive
triples of frequency energies from pwq, pwr2, pwr 3 and for each frequency chan-
nel memorizes the maximum value found so far along with the corresponding
velocity. This computat ion is done on the state, parameter m, a triple of pairs of
maximal energies and corresponding speeds, using an appropriate ML function
max. We use m0 for the initial .value of the state parameter . In concrete terms
the P M C description of this process can be given as follows:

proc Eval(pwrl, pwr2, pwr3,
let p r o c Ewa~t. =

and E~omp (m) =

and Eready =

in Eready end

max, vel, 0) =
await (7;

pwrl ? Pl; pwr2 ? P2; pwr3 ? P3; vel ? x;
i f X < start t h e n Ewa~t
e l s e Ecomp (max (mo,Pl,P2,p3, x))
await o;

pwq ? Pl; pwr2 ? P2; pwr3 ? P3; vel ? x;
i f x > stop t h e n

max ! rn allowing a;

Eready
e l s e

Ecomp (max (m, pl,p2,p3,x))
await o;

vel ? x;
i f x < start t h e n Ewa,t
e l s e Eready

A few explanations are in order here. The fact that the sequence of input prefixes
pwq ?Pl; pwr2?p2; pwr3 ?Pa; vel?x; blocks clocks is essential for it makes sure tha t
no tick of o~ can intercept with the reading of the input lines, so that Eval obtains
a t ime consistent view of the input. On the other hand, when the velocity has
passed the upper margin, x > stop, we may safely allow the environment to run
on freely until the results of the previous measurement have been picked up at
output max. When this happens we prepare ourselves for a new measurement
in s tate Er~aau. This explains the relaxed prefix rnax!m a l l o w i n g 0; Er~aay. The
final observation made use of in the above formulation is tha t in state Eready,
where we wait for the velocity to fall below the s tar t margin, we do not need to
read in the frequency information, therefore the input action vel?x suffices.

With the three components at hand we may now assemble our instrument as
shown in Fig. 4. We take a bank of three filters each one tuned at a specific
center frequency and have all filters sample the incoming sound signal by the
same sampling rate. This ensures that all filters get a consistent view of the
signal's shape. This is important as any imprecision in the synchronization of
the sampling would result in a distortion of the measured results. Fur ther , we

631

signal

freql freq2 freq~
i l :

m a x

time

. i

velocity

Fig. 4. Mini2155 - A Simple Version of the 2145 Signal Analyzer

connect the filters' output update rate with the tacho pulse, to obtain a vector
of time-synchronous frequency energies and rotation speed relating to a fixed
position of the rotating turbine. The evaluation module finally uses the velocity
to pick out the frequency spectra corresponding to a predefined speed-interval
in the run-up phase of the turbine. The P M C description of the overall system
is now easily given:

p ro c Mini21~5(signal, max, sample_rate, data_collect, time) =
r e s t r i c t mean_power 1, mean_power 2, mean_power 3, velocity t o

(Filter(freql , signal, mean_poweq, sample_rate, data_collect)
[I Filter(freq2, signal, mean_power2, sample_rate, data_collect)
II Filter(freq3, signal, mean_power3, sample_rate, data_collect)
) a l l o w i n g time

II Tacho(velocity, data_collect, time)
a l l o w i n g sample_rate

II Eval(mean_poweq, mean_power2, mean_power3, max, velocity, data_collect)
allowing sample_rate, time

Although this description contains no explicit timing constraints, it does contain
all the information necessary to ensure proper functional real-time behaviour

632

of the system. What remains is to decide on the realization and the speed of
clocks. The Mini2145 features three clearly independent clocks modelling three
different real-time aspects of the Brfiel ~ Kj~er 2145. Two of these clocks, the
sampling rate and real time base are fixed rate, while the data collect rate is
flexible. The point is that no mat ter how the three clocks are implemented all
the constraints imposed on the system can be found in the above description. For
instance, selecting the sampling rate to be a fixed clock running at 65kHz requires
the Mini2145 be ready to synchronize on sample_rate at every 1/65000 second,
which in turn requires the three filter processes to be able to each complete the
t reatment of one sample within this limit.

A more involved constraint occurs for the pulse detecting clock data_collect. Any
external requirement given in the form of an acceptable range of pulse speeds
(e.g. 0.01Hz-30kHz) will require the Filters, the Tacho and the Eval process
all to get ready to synchronize on data_collect when the pulse comes. Since the
processes must communicate on various channels before this happens we are
faced with constraints not only on the speed of actions internal to the processes
but also on the communications between them.

4 C l o c k s a n d R e a l - T i m e C o n s t r a i n t s

Given that the notion of 'clock' features prominently in our approach it is ap-
propriate to be rigorous about our use of the term, and for that matter, about
our view of real-time programming.

In fact, to get the right picture of our approach it is important to realize tha t the
term 'clock' in its strict sense does not refer to the chronometer or an absolute
notion of time but to the bell, i.e. the audible signal by which we tell the hour.
The point we wish to make, of course, is that our use of clocks does not formalize
the quantitative aspect of real time but rather the qualitative aspect of real-
time, viz. that of a global synchronization event. There is indeed some risk of
confusion as in the literature on timed semantics 'clocks' sometimes are used as
a mechanism for measuring absolute quantitative time in order to t ime-stamp
observations. Examples of such uses are the process algebra CIPA [1] and the
timed automata of Alur and Dill [2].

Although, at first glance our approach is somewhat akin to having a discrete
time-domain, viz. using a single clock to tick off intervals of a global and abso-
lute time, the intended interpretation here is more abstract: In general, PMC
processes would use a set of unrelated clocks which a priori proceed indepen-
dently. As mentioned in the beginning, in any actual implementation these clocks
may have a variety of different realizations: They coulc~ be chosen to be real hard-
ware clocks running at fixed speed, or more relaxed clocks with an allowed range
of time-intervals between successive ticks. The fixed clocks sample_rate and time
in the Briiel ~: Kj~er 2145 are examples of the first kind, whereas as the pulse
data_collect is an example of the second kind. However, some clocks may even

633

run entirely independent while others are derived multiples of a distinguished
master clock. But not only may the hardware interpretation apply, also software
realizations are adequate: a clock may represent a time-out interrupt, a global
synchronization signal, or the completion signal of a distributed initialization or
termination protocol.

When we say that clocks are a primitive real-time mechanism then we do suggest
that they capture certain properties of real time. There is, however, one crucial
property not captured by clocks, and this is the ceaseless progress of time. Real
time, as it is usually perceived, is an independent physical parameter that cannot
be prevented from continuously proceeding towards infinity. This progress of t ime
cannot be modelled by clocks. A clock in P M C is an internal signal which all
components of a system are free to block or synchronize on. In other words, a
process may produce a time-lock preventing a particular clock from ticking ever
again. In P M C time-locks indicate the violation of a real-time constraint. If for
example the Mini2145 is put in parallel with a process tha t occassionally gets
into a state where it stops sending new samples on the channel s~gnal, the filters
will stop the clocks sample_rate and data_collect indefinitely. Another example
occurs in synchronous circuits where a time-lock is produced by feed-back loops
that do not contain a clocked register [4].

5 C o n c l u s i o n and Future Work

The ideas put forward in this paper aim at a qualitative approach to real-time
programming that focuses on functional correctness and factors out issues like
response time, measurement resolution, and calibration. The approach, which is
based on PMC and emphasizes the importance of clocks, was illustrated on the
Briiel & Kj3er 2145 Vehicle Signal Analyzer.

It is worth to be stressed that we do not propose to ignore quantitative timing
altogether. As a matter of fact, in our example analyzer we do have, implicitly,
constraints on the implementation of clocks. For instance, the time base clock
must be a high-precision fixed-frequency oscillator, for otherwise, the actual rota-
tion speed cannot be computed correctly. Also, the sampling rate must be higher
than the update rate, etc. Clearly, nothing prevents us from specifying timing
properties initially as requirements on the clocks and actions of a design but - so
is our thesis - ultimately their satisfaction cannot be determined until the final
implementation is developed. For instance, determining the actual frequency of
the Mini2145's time-base clock and its precision is an issue of calibration not of
programming.

Thus, the approach we follow with PMC is to provide a powerful, high-level
operational description language for which satisfaction of timing constraints will
be determined from the final machine-executable code. It is our hope that by
being very careful in the way the compilation is carried out, we shall be able to
lift this information to a higher-level to guide the design by providing analysis

634

information. For instance, by compiling parts of the description and estimating
the execution time of this partial code information on clocks may be obtained.
Hence, the emphasis is on providing information to the programmer and not to
require him to perform detailed calculations on timing requirements. Of course,
timed automata [2] and temporal logics such as the Duration Calculus [10] are
good candidates for expressing timing requirements but we do not want this
information to enter the process description.

The timing of code ultimately depends on the choice of the target machine(s);
any attempt to estimate the execution times early in the design must rely on a
very carefully designed compilation strategy. We believe that any such strategy
should be based on a clear operational semantics of the language that reveals in
detail the steps that have to be performed and where choices must be made.

For expressing dynamic behaviour PMC uses the basic constructions of Milner's
CCS and for computations on values fragments of Standard ML. Of course, there
is a tension between having a rich language and being able to derive real-time
faithful implementations. We handle this by allowing a rich language that can
be useful for initial high-level descriptions and to run simulations, and only give
time-respecting implementations for some reasonable subsets of the language -
any future advances in compilation technology could then extend these subsets.
The design goal in such a framework is to refine a high-level description into
one within one of the executable subsets. All this takes place within the same

language, which makes possible the co-existence and debugging of descriptions
containing both low-level and high-level components.

A c k n o w l e d g e m e n t s

Thanks to A.P. Ravn for his many inspiring comments, to Ole Wahtgreen, Klans
Gram Hansen and Ole Roth at Brtiel & Kjaer for spending their time explaining
the 2145 to the authors, to the Backing Group at ID, and to Manfred Broy.
Thanks are due to Rocco De Nicola for inviting Michael Mendler to the Univer-
sity of Rome, La Sapienza where part of this work was carried out.

R e f e r e n c e s

1. L. Aceto and D. Murphy. On the ill-timed but well-caused. In E. Best, editor,
Proc. Concur'93, pages 97-111. Springer LNCS 715, 1993.

2. R. Alur and D. Dill. The theory of timed automata. In de Bakker et ul. [11], pages
45-73.

3. H. R. Andersen and M. Mendler. A complete axiomatization of observation con-
gruence in PMC. Technical Report ID-TR:1993-126, Department of Computer
Science, Technical University of Denmark, December 1993.

4. H. R. Andersen and M. Mendler. A process algebra with multiple clocks. Technical
Report ID-TR:1993-122, Department of Computer Science, Technical University
of Denmark, August 1993.

635

5. H. R. Andersen and M. Mendler. An asynchronous process algebra with multiple
clocks. In D. Sannella, editor, Programming Languages and Systems - ESOP'9~,
pages 58-73. Springer, LNCS 788, 1994.

6. J.C.M. Baeten and J.W. Klop, editors. Proceedings of CONCUR '90, volume 458
of LNCS. Springer-Verlag, 1990.

7. G. Berry and L. Cosserat. The ESTEREL synchronous programming language and
its mathematical semantics. In S. D. Brookes, A. W. Roscoe, and G. Winskel,
editors, Seminar on Concurrency, pages 389-448. Springer LNCS 197, 1984.
G. Berry, S. Ramesh, and R.K. Shyamasundar. Communicating reactive processes.
In Principles of Programmzng Languages POPL ~93, pages 85-98. ACM, 1993.
Brfiel ~ Kj~er. Vehicle Signal Analyzer Type 2145, User Manual Vol. I, April 1994.
Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269 276, 1991.
J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-
Time: Theory in Practice, volume 600 of LNCS. Springer-Verlag, 1991.
N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.-C. Glory. Specifying, program-
ming and verifying real-time systems using a synchronous declarative language. In
Workshop on automatic verification methods for finite state systems, Grenoble,
France, June 12-14 1989. Springer LNCS 407.
M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92, Univer-
sity of Sussex, April 1992.
M. Hennessy and T. Regan. A process algebra for timed systems. Computer
Science Technical Report 91:05, Department of Computer Science, University of
Sussex: April 1991. To appear in Information and Computation.
Jozef Hooman. Specification and Compositional Verification of Real-T~me Systems.
Number 558 in Lecture Notes in Computer Science. Springer-Verlag, 1991.
Chen Liang. An interleaving model for real-time systems. Technical Report ECS-
LFCS-91-184, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, November 1991.
R. Milner, M. Torte, and R. Harper. The Definztion of Standard ML. MIT press,
1990.
Robin Milner. Communicatzon and Concurrency. Prentice Hall, 1989.
Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile pro-
cesses. Technical Report SICS/R-91/03-SE, Swedish Institute of Computer Sci-
ence, 1991.
Faron Moller and Chris Torts. A temporal calculus of communicating systems. In
Baeten and Klop [6], pages 401-415.
X. Nicollin and J. Sifakis. The algebra of timed processes'ATP: theory and appli-
cation. Technical Report RT-C26, LGI-IMAG, Grenoble, France, December 1990.
X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In de Bakker et al. [11], pages 526-548.
G. Reed and A. Roscoe. A timed model for communicating sequential processes.
In Laurent Kott, editor, Proceedings of the 13'th ICALP, pages 314-323. Springer,
LNCS 226, 1986.
S. Schneider, J. Davies, D.M. Jackson, G.M. Reed, J.N. Reed, and A.W. Roscoe.
Timed CSP: Theory and practice. In de Bakker et al. [11], pages 526-548.
Yi Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop [6].

8.

9.
10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

