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A b s t r a c t .  In this paper we take a look at real-time systems from an 
implementation-oriented perspective. We are interested in the formal de- 
scription of genuinely distr ibuted systems whose correct functional be- 
haviour depends on real-time constraints. The question of how to com- 
bine real-time with distr ibuted processing in a clean and satisfactory way 
is the object of our investigation. 
The approach we wish to advance is based on PMC,  an asynchronous 
process algebra with multiple clocks. The keywords here are 'asynchrony'  
as the essential feature of distr ibuted computat ion and the notion of a 
'clock' as an elementary real-time mechanism. We base the discussion 
on an actual industrial  product:  The Briiel & Kj~er 2145 Vehicle Signal 
Analyzer, an instrument for measuring and analyzing noise generated by 
cars and other machines with rotat ing objects. We present an extension of 
P M C  by ML-style value passing and demonstrate its use on a simplified 
version of the Brfiel & Kjmr Signal Analyzer. 

1 Introduction 

The initial motivation for the work reported in this paper stems from an indus- 
trial case study pursued by the authors in the context of the CoDesign project 
at the Department of Computer Science of the Technical University of Denmark, 
Lyngby. The task of this case study is the formal description and rational recon- 
struction of a commercial real-time measurement instrument, the Briiel & IKj~er 
2145 Vehicle Signal Analyzer [9]. Briiel & Kj~er, an industrial partner associ- 
ated with the CoDesign project, is a big Danish manufacturer for measurement 
equipment and the 2145 is one of the most sophisticated of their products. The 
instrument -- in its portable version -- looks roughly as shown in Fig. 1. Its 
main purpose is to measure and analyze the noise produced by rotating me- 
chanical objects such as car engines or turbines. It is applied in quality check 
and trouble shooting. As indicated in the figure basically two kinds of data are 

0 The first author has been supported by the Danish Technical Research Council and 
the second author by the Human Capital and Mobility Network EuROFORM. 
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Fig. 1. The Brfiel &: Kj~er 2145 Vehicle Signal Analyzer 

processed. The first is tacho information relating to the position, velocity, and 
acceleration of the rotating object. The second type of information is the sound 
produced, which is picked up by a number of microphones. The input signals are 
digitized and undergo fairly involved data processing to extract  what is essen- 
tially frequency information, but  linked up with the rotational data  in one way 
or another. 

When one studies the instrument 's implementation one recognizes two salient 
features that  must be accounted for by any a t tempt  on a formal description of 
the instrument. The first is the fact that  one is dealing with a truly distributed 
system, distributed both in terms of hardware as well as in terms of software. 
Depending on how one counts, one identifies at least four separate and dedicated 
hardware processors which are independently clocked and which communicate 
asynchronously. One of these processors runs a real-time operating system which 
in turn schedules three basic software functions in a quasi-parallel fashion. 

The second insight one arrives at rather quickly is that  it would be a hopeless 
undertaking to a t tempt  a precise and complete specification of the instrument 's  
internal timing behaviour. All one can reasonably expect is to capture a few 
and essential real-time aspects. But what are the essential real-time aspects? Of 
course, there is the obvious 'What-You-See-Is-What-You-Hear' response t ime 
constraint that  says that  the instrument must be fast enough for the test en- 
gineer to be able to relate the display output  directly to the noise she or he is 
hearing. From the users point of view this is certainly a relevant real-time re- 
quirement. But there are more subtle and more important  real-time constraints 
relating to the functional correctness of the measurement. In fact, when one 
talks to the engineers they insist that  the main problem they are struggling with 
is to guarantee internal t ime consistency: to maintain the original exact t ime 
synchrony of the input data  within the system, despite the fact that  the signals 
are sampled independently and processed in a distributed fashion, despite the 
fact that  the data  split up into different submodules and reconverge later in 
yet another independently clocked subcomponent; and above all the instrument 
must be able to measure absolute time with high precision in order to com- 
pure the current rotation speed, and relate it to the various signal data  for later 
t ime-domain processing. 

From this discussion we derive two central requirements for a prospective lan- 
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guage to describe and program real-time systems such as the Briiel & Kjmr 2145 
Vehicle Signal Analyzer: Firstly, we are looking for an abstract approach that 

�9 faithfully represents asynchronous and distributed computations. 

In other words, our language must not, by illegitimate synchrony assumptions, 
mask out actual real-time synchronization prohlems in the implementation. Sec- 
ondly, in order to master the complexity of the instrument the language 

�9 must not mix up function-and quantitative timing unnecessarily. 

In other words, we must be able to focus on the essential real-time behaviour and 
purely functional aspects, and wherever appropriate ignore quantitative timing 
altogether. 

In this paper we wish to put forward the real-time process language PMC [5] 
which has been conceived to comply with the two requirements above. It is in 
fact an extreme solution in the sense that in PMC all concurrent computations 
are asynchronous so that any global synchronization must be specified explicitly 
by the programmer. Also, PMC takes an extreme stand as regards the second 
requirement: it focuses on the qualitative aspects of real-time programming and 
does not attempt to capture quantitative timing, though this could be introduced 
as a derived concept. 

PMC (Processes with Multiple Clocks) is an extension of Robin Milner's Calculus 
of Communicating Systems (CCS) by the notion of multiple clocks. Processes 
in PMC are described by their ability to communicate locally in a handshake 
fashion and synchronize globally on clocks. Clocks in this context are an elemen- 
tary mechanism for achieving real-time constraints. They embody an abstract, 
qualitative, and local notion of time which can be interpreted as referring not 
only to real hardware clocks as in synchronous circuits, but also to time-out 
interrupts, global synchronization signals as in MODULA, the ticking of real pro- 
cess time, or the completion signal of a distributed initialization or termination 
protocol. PMC has a mathematical theory along the lines of CCS; the results 
obtained concern the formal calculus of PMC, its operational semantics, and 
complete equational axiomatizations for bisimulation equivalence and observa- 
tion congruence [4, 3]. In this paper we extend PMC by value-passing using 
Standard ML [17] and illustrate its application as a programming language on 
a simplified version of the Briiel & Kjaer 2145 Vehicle Signal Analyzer. 

As mentioned before PMC is designed for describing truly distributed real-time 
systems with few but essential real-time constraints. This goal distinguishes it 
from the usual approaches in the area. 

On the one side, PMC does not build in any global synchrony assumption as 
in the real-time programming languages ESTEREL [7] and LUSTRE [12]. Global 
synchrony is implicit also in timed process algebras with the so-called maxi- 
mal progress property, which essentially amounts to a globally synchronous, lo- 
cally asynchronous model of computation. Examples are TPL [14] and TIMED 
CCS [25]. PMC, in contrast, can deal not only with globally synchronous, lo- 
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calty asynchronous behaviour but also with the more general class of globally 
asynchronous, locally synchronous behaviour. (A recent proposal for extending 
ESTEREL to achieve a similar effect can be found in [8].) 

On the other side, whereas PMC concentrates on qualitative real-time con- 
straints, the standard pattern of introducing time into process algebras aims 
at a precise and complete description of a real-time system's quantitative tim- 
ing. Examples are ATP [21], TIMED CsP [24], BPApS, and many others [22, 25, 
20, 16, 15, 23]. These approaches use a global notion of time and describe the 
global real-time behaviour of the system quite precisely by inserting explicit de- 
lays. This may be necessary in many safety-critical applications, however, for 
real-time systems such as the Vehicle Signal Analyzer, it is overly realistic, for it 
implies that  rather precise knowledge of the timing behaviour of the implemen- 
tation is known or assumed; not only for the time-critical parts, but also for the 
remaining time-irrelevant aspects, which, so we believe, constitute the majori ty 
in practice. For instance, in a simple process like 

P = a; bl; " -b~;  P, 

which performs an infinite sequence of a actions separated by a sequence of b~ 
actions, we might want to limit the time between any two a-actions without 
specifying anything about the intermediate b~'s. The usual formalisms typically 
require a fixed delay or an interval of delays (as in [16]) to be assigned to each 
b~, which means we are imposing unnecessary restrictions on them. In general, 
this will not be the most helpful solution as it might require almost clairvoyant 
skills: We must foresee the effects of our compiler and code optimization, have 
precise knowledge about the properties of our real-time operating system, and 
finally also of our hardware on which the program eventually is going to run. 

2 P M C  

In P M C  concurrent systems are described by their ability to perform actions 
and synchronize with clocks. This dichotomy leads to a notion of transition sys- 
tern which distinguishes between pure action and pure clock transitions. One 
difference between action and clock transitions is that  -actions embody local 
handshake communication whereas clocks embody global broadcast synchroniza- 
tion. Another is that  action transitions are nondeterministic in general since 
they arise from parallel and distributed computations. Clock transitions, in con- 
trast, are deterministic since they model the global passage of time. The idea 
that  time passes deterministically is natural and appears to be common in timed 
process algebras, where it is known as the property of time determinism [22]. 
P M C  was introduced in [5] and its mathematical theory was developed in [4, 3]. 
In this section we extend P M C  by value-passing and ME-style local declarations, 
and present a simple operational semantics for late binding (see [19]). 

As in value-passing CCS [18] we assume a set of process names Proc, channel 
names Chan and sets of values ]2 and value variables Vat. The semantics we 
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present will be akin to symbolic transition systems [13]. We assume the existence 
of a silent action ~- and take the set of actions to be Act =do~ {c? I c E Chan} U 
{c!v I c E Chan, v E P} U {7}. Actions of the form c? are input actions and 
c!v are output actions. Note, input actions c? do not carry a concrete value 
like output  actions, they simply represent a commitment  to communicate  on 
channel c. This a symmet ry  between input and output  captures the late binding 
semantics. Finally, in addition to the ordinary actions, P M C  assumes a set of 
clocks Clk the elements of which are ranged over by o. 

The syntax of value expressions is taken from a subset of Standard ML - roughly 
the subset characterised by removing exceptions and references leaving us with 
a side-effect-free functional language. We will not describe this in detail, nor 
do we get involved with the type system for P M C  and the semantics of value 
expressions. For the purpose of this paper  it will be enough simply to refer to 
a (partial) evaluation relation for expressions. The syntax, type system, and 
evaluation semantics for expressions may be thought of as being taken over 
wholesale from Standard ML. 

Process terms t are generated by the following grammar:  

t :: = stop 

cq t 
i f  e t h e n  to e l s e  tl 
to + tl 
to II tl 
r e s t r i c t  cseq t o  t 
timeout t o on ~ as tl 

t allowing ~8eq 

p(~seq) 
let dint end 

Roughly, the meaning of the operators,  in terms of their ability to perform actions 
or to take par t  in clock ticks, is as follows. The process s t o p  can do nothing, 
neither an action nor does it admit  any clock to tick. The process a; t performs 
the prefix a and then behaves as t; it prevents all clocks from ticking, whence it 
is called ' insistent '  prefix. The prefix ~ is either an input, an output  or a silent 
prefix: 

a : : =  c ? z  I c ! e  I 7. 

The conditional process i f  e t h e n  to e l s e  tl behaves like to or tl depending 
on the value of the (boolean) expression e. The process to + tl behaves either 
as to or tl ,  the choice being made by the first action (but not by a clock-tick). 
The concurrent composition to I] tl behaves like to and tl executing concurrently, 
with possible communications. The process r e s t r i c t  cseq t o  t behaves like t but  
does not allow input and output  actions on any of the channels in cseq E Chart*. 
Each one of the processes to + t l ,  to ]] tl ,  and r e s t r i c t  cseq to  t takes par t  
in a clock tick by having all of its components to, tl ,  t take par t  in it. Finally, 
t i m e o u t  to on a as tl behaves like to if an initial action of to is performed or a 
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clock tick different from a occurs in to, however, if a occurs it behaves like tl .  
This t imeout  operator  is inspired by the t imeout  operator  of Nicollin and Sifakis 
[21] which can be seen as a special case of ours where there is only one clock. The  
process t a l l o w i n g  aseq behaves like t but  will take par t  in any tick from a clock 
in aseq E Clk* without changing state. Process constants can be instant iated as 
p(eseq) by applying the process name p to a sequence eseq of channel or clock 
names, or value expressions. The l e t  construct introduces local declarations like 
in ML, i.e. l e t  d in  t end behaves like t in an environment with the binding 
of identifiers to values, functions and processes as declared by d. We extend the 
declarations in ML to allow process declarations 

p r o c  p( aseq) = t, 

where aseq is any sequence of channel or clock names, or value variables. Like in 
Standard ML we use the keyword and to connect mutually recursive declarations. 

Two syntactic abbreviations will turn out to be useful: 

await a; t ~-~-def timeout stop on a as t 

ct allowing 6; t :def let proc X = timeout (~; t on g as X 

in X end 

The first process waits for the clock (r to tick, whereupon it continues as t. The 
second process is a relaxed prefix, which admits clock a to tick freely until it 
performs action a whereupon it continues as t. The l e t  construct applies a 
recursive definition with a fresh process name X,  which must  not occur free in 
t. 

The semantics of P M C  is given as a labelled transition relation 4 .  Labels are 
taken from the set s = Act  U Clk. Like in P M C  without value-passing [5], 
a transit ion with label 1 C s is either a pure action transition, if 1 E Act, or 
a pure clock transitions, if l E Clk. The difference is tha t  now actions carry 
value-passing information, and further that  the transitions relates configura- 
tions instead of just process terms like in P M C .  Configurations are introduced 
essentially to deal with local declarations l e t  d in  t end, i.e. with the situation 
where the processes of a t e rm have different local environments.  A configuration 
is either a pair (D, t) consisting of a sequence D of declarations and a t e rm t 
(process or expression), or any of the process operators op E {i f_ then_e lse_ ,  
+ , II , r e s t r i c t  ~' to_, t imeout_on a as_,_al lowing ~} applied to configura- 
tions. For example, (Do, to)I I  ( D l , t l )  and i f  (D, e) t h e n  (Do, to) e l s e  (D1, t l)  
are configurations. As usual a configuration will be closed if it contains no free 
identifiers. We denote the set of configurations by C and the set of closed configu- 
rations by Cd. A declaration sequence is a sequence of sets of mutual ly  recursive 
declarations. In order to handle the late binding of values in input actions we 
use a special variable name # as a place holder. Let C # denote the set of config- 
urations tha t  has at most  the free identifier # .  Using this notat ion the transit ion 
relation -~ is a subset of g d x s x C #. 
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We" will need to assume that  every well-formed syntactic declaration d can be 
mapped to a sequence of sets of bindings by the map as indicated by the 
following example: If d is 

proc pl(:~l) ---- tl 
p roc  P2(X2) ---- t2 
and p3(X3) = t3 

then d is 
{P2(~z) = t2, P3(/3) = t3}{pl(~l) = tl}, 

where a sequence is simply constructed by juxtapositioning the elements (using 
for the empty sequence). Hence the first element of the above sequence contains 
the bindings for P2 and P3, the second and last element contains the binding 
for Pl. Note, in general a declaration sequence D will also contain ordinary 
ML declarations for constants, functions, etc. but since we wish to focus on 
the PMC-re la ted  part,  we shall not be bothered by how ^ works on pure ML 
declarations. 

For a declaration sequence D we define the partial function of looking up and 
instantiating the process named p with arguments g, denoted D(p)(g), by in- 
duction on the length of D: If D = s, then D(p)(g) is undefined, otherwise if 
D = d D'  we distinguish two cases; if d = {P1(~1) = t l , . . .  ,Pk(~k) = tk} and 
p = p~ for some 1 < i < k, then D(p)(g) = {D,t~[g/~]); otherwise, i f p  # p~ 
for all 1 < i < k then D(p)(V) = D'(p)(V). Hence, D(p)(g) gives a configuration 
consisting of the body of p, where the arguments have been instantiated to 
and a declaration sequence in which to execute the process. 

Our operational semantics is parameterized in the ML evaluation relation 0 ,  
where (D, e) ~ v means that  in the enviromnent of declaration sequence D, 
e evaluates to v. Since expressions do not depend on processes the evaluation 
may safely ignore any process bindings in D. It will be convenient to extend this 
relation to channel and clock names by stipulating 

(D, c) ~ c (D, a) ~ a. 

The transition relation is given by the inductive set of rules shown in Fig. 2. 

3 A S i g n a l  A n a l y z e r  i n  P M C  

We are now going to describe a simplified version of the Briiel &: Kj~er 2145 in 
P M C  where we focus on some of the essential features of the actual instrument 
illustrating the use of clocks fox the distributed programming of a real-time 
measurement problem. The main simplification consists in picking out only one 
measurement mode and trigger condition from the many possibilities available 
in the Briiel &= Kjaer 2145. 

The simplified 2145 measures the noise produced by a large turbine in the run-up 
phase and at a certain critical rotation angle. The total result of the measurement 
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shall be the peak value in three pre-defined frequency bands together with the 
velocities at which the peaks occurred. To solve our measurement problem we 
use the three basic components, Filter, Evaluation, Tacho, shown in Fig. 3. All 
three modules correspond to hardware components in the Briiel & Kjmr 2145% 
implementation, and the formal description to follow is a (simplified) abstract 
view of the actual components' functionality. 

(D, c ? x; t) ~? (D, t[#/~]> 

B =~true Co 4 C' 

if B then Co else C1 J+C ' 

Co-%C' C1--%C' 

(D, e) =* v 

<b, ~ ! ~; t) ~ <D, t> 

B ~ f a l s e  C I - ~ C '  

i f  B then Co e l s e  CI-~C' 

co-%c; Cl-%C~ 
C0 + C1 -% C' C0 + Cl -% C' C0 + C1 ~+ C~ + C~ 

Co 2+ c~ ci -% c~ 
c~ II c~ -% c~ I L c~ Co I L c, -% Co t l ci 

co ~+ c; ci -% cl 
Co I I c, :+ c~ll cl 

c? ; I ! c? I ! 
Co --+ (Do,to> C1 ~ C, Co ~ C; C1 ~ (D1,L1 > 

Co II c, 4 <D;,t~,[v/#]> II q Co II C, ~ C; 11 <Di,~i[~/#]> 

C/+ C' 
(l = c?, c!v implies c ~ 

" C '  r e s t r i c t  c ' to C -+ r e s t r i c t  c ' to  

Colic ' 
(l # o) 

timeout Co on G as C1 ~ C' 

C~C'  (~ r ~) 
C allowing J ~ C' allowing 

C -~ C' (<D, ~,> ~ ~,~, D(p)(,J) = C) 
(U,p(e> 4 c '  

<liD, t} 4 C op(<D,t,>,..., <D,t,~>) 4 C 
<D, l e t  d in t end> l} C (N, op(tl,...,tn)> 4 C 

timeout C0 on a as CI-Z-}C1 

C allowing 6~Callowing 

Fig .  2. Action and Clock Progress Rules. RecMl that  ~ ranges over actions, 
over clocks, 1 over both, and finally op over {if_then_else_,  +,  II, r e s t r i c t  6" to_, 
t imeout_on a as_, _al lowing J} in the last rule. 
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Fig. 3. A Filter, Evaluation, and Tacho Component 
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The f i l t e r  extracts  the average energy of the incoming signal sig in a well- 
defined frequency band, and delivers the square root of this mean value on 
output  pwr. There are two clocks associated with the filter characterizing its 
real-t ime behaviour. The first one, as is the sampling rate which determines the 
frequency resolution and the filter's maximal  cut-off frequency. In the 2145 this 
is set at a fixed rate  of 65kHz.  The second clock, a~, is the update  rate on the 
output  side. It  is the rate with which the accumulated averaged signal energy is 
updated  on the output  to be picked up and evaluated by the system. In general, 
a~ may  be variable and smaller than the sampling rate depending on the speed of 
the successive computat ions or on how fast the frequency information of interest 
changes over time. 

A description of the filter in P M C  syntax reads as follows: 

p r o c  Filter(ffeq, sig, pwr, as, a~) = 
r e s t r i c t  r t o  

l e t  p r o c  F -- awa i t  ~ ;  sig ? x; r ? s; r ! filter(freq, x ,s) ;  F 
p r o c  R(s ,p ,  o) = t i m e o u t  

t imeout  
r ? s; R ( s ,p ,o )  
+ r ! s; R ( s ,p ,o )  
+ pwr ! o; R ( s ,p ,o )  

on a ( s ,  s, o) 
on a~ as  R(s ,p ,  p) 

in  R(O, O, O) If F end 

The unspecified function filter, parametr ized by a frequency ffeq, a sample x, 
and a filter-state s, implements the filtering algorithm. The filter consists of two 
processes running in parallel and communicating on the internal channel r. The 
process R(s ,p ,  o) is a register with three state variables, s, p and o. The first 
component  can be set and read along the channel r. The last component  holds 
the current value of the output  line of the filter and it can always be read off 
by the output  action pwr ! o. At every tick of as the value of s is copied to the 
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second component,  and at every tick of a~ the value of p is copied to the third 
component becoming the new output  of the filter. The register is used by the 
process F for storing the accumulated mean square of the signal energy. At the 
beginning of each iteration the process F waits for the next tick of as, reads in 
the new sample x and retrieves the current value of s from the register. From x 
and s it computes the new state filter(freq, x, s) and updates the register. 

The two-phase shifting of states in the register ensures that  if a bank of filters is 
connected to the same as and a~, values read from the output  lines of different 
filters between consecutive ticks of a~ will be consistent. L e. they will be the 
result of computing the signal energy of the same number of samples. The reader 
is encouraged to t ry  out a simplified version where the register only contains the 
state variables s and o and at every tick of a~ the value of s is copied to o while 
as is given free by a l lowing .  With such filters unsynchronized values can occur: 
If some of the filters have performed the update of their registers and others not, 
the values read off are inconsistent. 

The  t a c h o  m e a s u r e m e n t  (the right-hand flow-graph in Fig. 3) computes the 
current rotation speed from the tacho pulse, which we may view as a variable 
clock ap. To get the velocity from this tacho clock we need to know the amount  
of t ime that  has passed between any two pulses. This real-time information is 
implemented by another clock, at,  ticking off global system time. In the Briiel 

Kjaer 2145 this is done by a high-precision free-running timer oscillating at 
1 M H z ,  yielding a l#s  time resolution. A description of the tacho as a P M C  
process is as follows: 

proc Tacho(vel, ap, at) --- 
l e t  p roc  T(c,e) = t imeou t  

timeout 
vel ! I /e ;  T(c,e) 

on ap a s  T ( 0 ,  c) 
on at a s  T(c + 1, e) 

in T(O, oo) end 

The state of the tacho T(c, e) is specified by two parameters. The first one, c, 
counts the time between pulses, ue. it is incremented with every at and reset 
with every ~p tick. The second parameter, e, holds the result count between two 
pulses; it is updated with ap. The current velocity, which is indirectly propor- 
tional to the result count can be read at any time with output action vel ! i/e. 

The last module to be specified is the evaluation module. A flow-graph for this 
module is found in Fig. 3. The task of the evaluation is to find the maximum 
peak energies supplied at its inputs pwr~, i = I, 2, 3 in the run-up phase of the 
rotation. The run-up phase is a period of increasing velocity vel, beginning with 
a start value start and ending with a pre-defined stop value stop. The clock a 
serves to separate successive input vectors of synchronous frequency and velocity 
data. The evaluation module cycles through the states E~t, Ecomp (m), and 
Eready. In state Eready it is ready to start the next run-up measurement. When 
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the velocity falls below the start margin it passes to state Ewa~t where it waits for 
the velocity to enter the run-up interval [start, stop]. Then the actual computa-  
tion state Ecomp (m) is entered. In this s tate the component  reads in consecutive 
triples of frequency energies from pwq,  pwr2, pwr 3 and for each frequency chan- 
nel memorizes the maximum value found so far along with the corresponding 
velocity. This computat ion is done on the state, parameter  m, a triple of pairs of 
maximal  energies and corresponding speeds, using an appropriate  ML function 
max. We use m0 for the initial .value of the state parameter .  In concrete terms 
the P M C  description of this process can be given as follows: 

proc Eval(pwrl, pwr2, pwr3, 
let p r o c  Ewa~t. = 

and E~omp (m) = 

and Eready = 

in Eready end 

max, vel, 0) = 
await (7; 

pwrl ? Pl; pwr2 ? P2; pwr3 ? P3; vel ? x; 
i f  X < start t h e n  Ewa~t 
e l s e  Ecomp (max (mo,Pl,P2,p3, x)) 
await o;  

pwq ? Pl; pwr2 ? P2; pwr3 ? P3; vel ? x; 
i f  x > stop t h e n  

max ! rn allowing a; 

Eready 
e l s e  

Ecomp (max (m, pl,p2,p3,x)) 
await o;  

vel ? x; 
i f  x < start t h e n  Ewa,t 
e l s e  Eready 

A few explanations are in order here. The fact that  the sequence of input prefixes 
pwq ?Pl; pwr2?p2; pwr3 ?Pa; vel?x; blocks clocks is essential for it makes sure tha t  
no tick of o~ can intercept with the reading of the input lines, so that  Eval obtains 
a t ime consistent view of the input. On the other hand, when the velocity has 
passed the upper  margin,  x > stop, we may safely allow the environment to run 
on freely until the results of the previous measurement  have been picked up at 
output  max. When this happens we prepare ourselves for a new measurement  
in s tate  Er~aau. This explains the relaxed prefix rnax!m a l l o w i n g  0; Er~aay. The 
final observation made use of in the above formulation is tha t  in state Eready, 
where we wait for the velocity to fall below the s tar t  margin, we do not need to 
read in the frequency information, therefore the input action vel?x suffices. 

With  the three components at hand we may now assemble our instrument  as 
shown in Fig. 4. We take a bank of three filters each one tuned at a specific 
center frequency and have all filters sample the incoming sound signal by the 
same sampling rate. This ensures that  all filters get a consistent view of the 
signal's shape. This is important  as any imprecision in the synchronization of 
the sampling would result in a distortion of the measured results. Fur ther ,  we 
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Fig. 4. Mini2155 - A Simple Version of the 2145 Signal Analyzer 

connect the filters' output  update rate with the tacho pulse, to obtain a vector 
of time-synchronous frequency energies and rotation speed relating to a fixed 
position of the rotating turbine. The evaluation module finally uses the velocity 
to pick out the frequency spectra corresponding to a predefined speed-interval 
in the run-up phase of the turbine. The P M C  description of the overall system 
is now easily given: 

p ro c  Mini21~5( signal, max, sample_rate, data_collect, time) = 
r e s t r i c t  mean_power 1, mean_power 2, mean_power 3, velocity t o  

( Filter(freql , signal, mean_poweq, sample_rate, data_collect) 
[I Filter(freq2, signal, mean_power2, sample_rate, data_collect) 
II Filter(freq3, signal, mean_power3, sample_rate, data_collect) 
) a l l o w i n g  time 

II Tacho(velocity, data_collect, time) 
a l l o w i n g  sample_rate 

II Eval( mean_poweq, mean_power2, mean_power3, max, velocity, data_collect) 
allowing sample_rate, time 

Although this description contains no explicit timing constraints, it does contain 
all the information necessary to ensure proper functional real-time behaviour 
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of the system. What  remains is to decide on the realization and the speed of 
clocks. The Mini2145 features three clearly independent clocks modelling three 
different real-time aspects of the Brfiel ~ Kj~er 2145. Two of these clocks, the 
sampling rate and real time base are fixed rate, while the data  collect rate is 
flexible. The point is that  no mat ter  how the three clocks are implemented all 
the constraints imposed on the system can be found in the above description. For 
instance, selecting the sampling rate to be a fixed clock running at 65kHz requires 
the Mini2145 be ready to synchronize on sample_rate at every 1/65000 second, 
which in turn requires the three filter processes to be able to each complete the 
t reatment  of one sample within this limit. 

A more involved constraint occurs for the pulse detecting clock data_collect. Any 
external requirement given in the form of an acceptable range of pulse speeds 
(e.g. 0.01Hz-30kHz) will require the Filters, the Tacho and the Eval process 
all to get ready to synchronize on data_collect when the pulse comes. Since the 
processes must communicate on various channels before this happens we are 
faced with constraints not only on the speed of actions internal to the processes 
but also on the communications between them. 

4 C l o c k s  a n d  R e a l - T i m e  C o n s t r a i n t s  

Given that  the notion of 'clock' features prominently in our approach it is ap- 
propriate to be rigorous about our use of the term, and for that  matter,  about  
our view of real-time programming. 

In fact, to get the right picture of our approach it is important  to realize tha t  the 
term 'clock' in its strict sense does not refer to the chronometer or an absolute 
notion of time but  to the bell, i.e. the audible signal by which we tell the hour. 
The point we wish to make, of course, is that  our use of clocks does not formalize 
the quantitative aspect of real time but rather the qualitative aspect of real- 
time, viz. that  of a global synchronization event. There is indeed some risk of 
confusion as in the literature on timed semantics 'clocks' sometimes are used as 
a mechanism for measuring absolute quantitative time in order to t ime-stamp 
observations. Examples of such uses are the process algebra CIPA [1] and the 
timed automata  of Alur and Dill [2]. 

Although, at first glance our approach is somewhat akin to having a discrete 
time-domain, viz. using a single clock to tick off intervals of a global and abso- 
lute time, the intended interpretation here is more abstract: In general, PMC 
processes would use a set of unrelated clocks which a priori proceed indepen- 
dently. As mentioned in the beginning, in any actual implementation these clocks 
may have a variety of different realizations: They coulc~ be chosen to be real hard- 
ware clocks running at fixed speed, or more relaxed clocks with an allowed range 
of time-intervals between successive ticks. The fixed clocks sample_rate and time 
in the Briiel ~: Kj~er 2145 are examples of the first kind, whereas as the pulse 
data_collect is an example of the second kind. However, some clocks may even 
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run entirely independent while others are derived multiples of a distinguished 
master clock. But not only may the hardware interpretation apply, also software 
realizations are adequate: a clock may represent a time-out interrupt,  a global 
synchronization signal, or the completion signal of a distributed initialization or 
termination protocol. 

When we say that  clocks are a primitive real-time mechanism then we do suggest 
that  they capture certain properties of real time. There is, however, one crucial 
property not captured by clocks, and this is the ceaseless progress of time. Real 
time, as it is usually perceived, is an independent physical parameter  that  cannot 
be prevented from continuously proceeding towards infinity. This progress of t ime 
cannot be modelled by clocks. A clock in P M C  is an internal signal which all 
components of a system are free to block or synchronize on. In other words, a 
process may produce a time-lock preventing a particular clock from ticking ever 
again. In P M C  time-locks indicate the violation of a real-time constraint. If for 
example the Mini2145 is put in parallel with a process tha t  occassionally gets 
into a state where it stops sending new samples on the channel s~gnal, the filters 
will stop the clocks sample_rate and data_collect indefinitely. Another example 
occurs in synchronous circuits where a time-lock is produced by feed-back loops 
that  do not contain a clocked register [4]. 

5 C o n c l u s i o n  and Future  Work 

The ideas put forward in this paper aim at a qualitative approach to real-time 
programming that focuses on functional correctness and factors out issues like 
response time, measurement resolution, and calibration. The approach, which is 
based on PMC and emphasizes the importance of clocks, was illustrated on the 
Briiel & Kj3er 2145 Vehicle Signal Analyzer. 

It is worth to be stressed that we do not propose to ignore quantitative timing 
altogether. As a matter of fact, in our example analyzer we do have, implicitly, 
constraints on the implementation of clocks. For instance, the time base clock 
must be a high-precision fixed-frequency oscillator, for otherwise, the actual rota- 
tion speed cannot be computed correctly. Also, the sampling rate must be higher 
than the update rate, etc. Clearly, nothing prevents us from specifying timing 
properties initially as requirements on the clocks and actions of a design but - so 
is our thesis - ultimately their satisfaction cannot be determined until the final 
implementation is developed. For instance, determining the actual frequency of 
the Mini2145's time-base clock and its precision is an issue of calibration not of 
programming. 

Thus, the approach we follow with PMC is to provide a powerful, high-level 
operational description language for which satisfaction of timing constraints will 
be determined from the final machine-executable code. It is our hope that by 
being very careful in the way the compilation is carried out, we shall be able to 
lift this information to a higher-level to guide the design by providing analysis 
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information. For instance, by compiling parts of the description and estimating 
the execution time of this partial code information on clocks may be obtained. 
Hence, the emphasis is on providing information to the programmer and not to 
require him to perform detailed calculations on timing requirements. Of course, 
timed automata [2] and temporal logics such as the Duration Calculus [10] are 
good candidates for expressing timing requirements but we do not want this 
information to enter the process description. 

The timing of code ultimately depends on the choice of the target machine(s); 
any attempt to estimate the execution times early in the design must rely on a 
very carefully designed compilation strategy. We believe that any such strategy 
should be based on a clear operational semantics of the language that reveals in 
detail the steps that have to be performed and where choices must be made. 

For expressing dynamic behaviour PMC uses the basic constructions of Milner's 
CCS and for computations on values fragments of Standard ML. Of course, there 
is a tension between having a rich language and being able to derive real-time 
faithful implementations. We handle this by allowing a rich language that can 
be useful for initial high-level descriptions and to run simulations, and only give 
time-respecting implementations for some reasonable subsets of the language - 
any future advances in compilation technology could then extend these subsets. 
The design goal in such a framework is to refine a high-level description into 
one within one of the executable subsets. All this takes place within the same 

language, which makes possible the co-existence and debugging of descriptions 
containing both low-level and high-level components. 
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