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Abs t rac t .  Concept lattices are used in formal concept analysis to rep- 
resent data conceptually so that the original data are still recognizable. 
Their line diagrams should reflect the semantical relationships within 
the data. Up to now, no satisfactory automatic drawing programs for 
this task exist. The geometrical heuristic is the most successful tool for 
drawing concept lattices manually. It uses a geometric representation as 
intermediate step between the list of upper covers and the line diagram 
of the lattice. 

1 I n t r o d u c t i o n  

Concept lattices have become a useful tool in data  analysis and knowledge pro- 
cessing (cf. [7], [10], [6]). They allow to represent da ta  conceptually so that  the 
original data  are still recognizable. This supports reliable data  interpretations 
and opens possibilities of exploring data  and retrieving information. Concept lat- 
tices can be graphically represented by labelled line diagrams which have been 
proved as useful communication tools in many applications (cf. [9]). Although 
concept lattices can be easily computed for given data  contexts by using the 
Next-Closure-Algorithm of B. Ganter (cf. [3]), the automatic drawing of concept 
lattices is a great problem. The existing drawing programs are not satisfactory 
because they do not make the lattice structure sufficiently apparent. Also inter- 
active procedures do not reach satisfactory results up to now. A serious problem 
is how to represent graphically concept lattices such that  the semantical relation- 
ships within the data  become mostly transparent. This problem cannot be solved 
by drawing algorithms which are only based on formal optimization strategies 
(e. g. minimizing line crossings). 

Up to now, a geometrical heuristic yields the most successful method for 
drawing concept lattices. The idea is to sketch first a geometric representation 
of the given concept lattice which gives substantial insights into the structure of 
the concept lattice. Extensive experiences have shown that  these insights enable 
to draw satisfactory line diagrams of concept lattices. It is the aim of this paper 
to explain this "geometmcal method" (cf. [8]). 

2 C o n c e p t  L a t t i c e s  

Formally, a concept lattice is derived from a (formal) context defined as a triple 
(G, M, I) where G and M are sets and I is a relation between G and M (i. e. I C_ 
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Triangles i l  

T1 (0, 0), (6, 0), (3, 1) 
T2 (0, 0), (1, 0), (0, 1) 
T~ (0,0), (4,0), 0 ,2)  
T4 (0, 0), (2, 0)(1, v~) x 
T~ (0, 0), (2, 0), (5, 1) 
T6 (0, 0), (2, 0), (1, 3) 
T7 (0, 0), (2, 0), (0, 1) 
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Fig. 1. Context of triangles 

G x M).  The elements of G and M are called objects and attributes, respectively, 
and gIm (: r (g, m) �9 I) is read: the object g has the attribute m. The two 
following operators are needed to explain what we understand under a formal 
concept: 

A ~ A' := {m �9 MIgIm for all g �9 A} f o r A C _ G  

B ~-+ B' := {g �9 GIgIm for all m �9 B} for B C_ M 

Now a (formal) concept of the context (G, M, I) is a pair (A, B) with A C_ G,B C 
M, A ~ -- B, and B ~ = A. The set A is called the extent of the concept, the set 
B the intent. The hierarchical subconcept-superconcept-relation is mathematized 
by 

(A1,B1) < (A2,B2) :~=~ A1 C_ A2 ( ~ B1 D B2) 

The set of all concepts of a context (G, M, I) together with this order relation is 
a complete lattice which is called the concept lattice of (G, M, I) and is denoted 
by ~__(G, M, I). 

The following example shows how a line diagram of a concept lattice un- 
folds the conceptual relationships contained in the underlying data  context. The  
formal context given by Fig. 1 has common properties of triangles as attributes 
and enough concrete triangles as objects to violate all non-valid implications 
between those properties (cf. [2]). The concept lattice of the context in Fig. 1 is 
shown in Fig. 2. The numbered circles indicate the concepts of the given con- 
text.  A circle labelled by an object g represents the concept 7g := ({g}", {g}'), 
i.e., the concept with the smallest extent containing g. A circle labelled with an 
at tr ibute m represents the concept #m := ({m}', {m}"), i.e., the concept with 
the smallest intent containing m. In general, the circle of a concept is linked by 
a descending path to the circles of all those objects which belong to the extent 
of the concept and by an ascending path to the circles of all those attributes 
which are contained in the intent of the concept. For example, concept 12 has 
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Fig. 2. Concept lattice of the context in Fig. 1 

the objects T1,712, and T6 in its extent and the attr ibutes isosceles and scalene 
in its intent. The whole information given by the context (G, M, I)  can therefore 
be read from the line diagram of its concept lattice: An object g has an at t r ibute 
m if and only if there is an ascending path  from g to m in the line diagram. 

3 A G e o m e t r i c  R e p r e s e n t a t i o n  

The considered geometric representation of lattices is best explained by imag- 
ining the following situation: One is sitting on the top element of a lattice and 
is looking downwards. The first elements which one sees are the lower covers 
of the top element. Those elements are viewed as "points". In general, every 
element having only one upper cover shall be recognized as a "point" (hidden 
par t ly  by its upper cover if this is not the top element). Further downwards 
one may  discover elements having more than one upper cover. An element with 
two upper covers is viewed as a line segment between those upper covers, an 
element with three upper covers as triangle and so on. An element having n 
upper  covers shall therefore be understood as a ( n - 1 ) - s i m p l e x  with its upper 
covers as vertices. Of course, these vertices themselves may be simplices! The 
geometric representation of the lattice is now a visualization of those geometric 
objects with their incidences. A geometric representation of the triangle concept 
lattice is shown in the upper left of Fig. 3. Concept 1 is not represented in the 
diagram, because we have taken it as viewpoint. The concepts 2, 4, and 7 are 
represented by whole circles as they are the only "points" tha t  are not "hidden" 
behind other concepts. The concepts 3, 8, 10, and 17 are also represented by 
circles as each of them has also only one upper cover, but they are lying below 
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1 :  - -  

2: 1 - 

3: 2 - 

4: 1 - 

5: 2 4 - 

6: 3 5 - 

7: i - 

8: 7 - 

9: 2 7 - 

i0: 9 - 

ii: 3 9 - 

12: 4 7 - 

13: 8 12 - 

14: 5 9 12 - 

15: i0 14 - 

16: 6 ii 14 - 

17: 6 - 

18: 13 15 16 17 - 

Fig. 3. List of upper covers and geometric representations of the lattice in Fig. 2 

concepts different from concept 1 and are therefore partially hidden in the geo- 
metric representation. In the concept lattice we find seven concepts having two 
upper covers: these are the concepts 5, 6, 9, 11, 12, 13, and 15. In the geometric 
representation they are visualized by line segments linking their upper covers. 
The line segements are labelled by the corresponding concept numbers.  Finally 
we find two triangles in the geometric representation. They are representing the 
concepts 14 and 16 which have three upper covers. The bo t t om element of the 
lattice, concept 18, is not visualized in the geometric representation. However we 
can easily deduce its upper covers: they are those concepts not beeing a vertex 
of a simplex and not having a point lying behind them: these are the concepts 
13, 15, 16, and 17. 

The list of upper covers in Fig. 3 is an output  of the basic program of Formal  
Concept Analysis (cf. [1]). The upper covers of a concept are listed in the line 
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headed by the number of the concept. The list is sufficient for drawing the 
geometric representation. It is ordered in such a way that no concept appears 
as an upper cover of another concept before it is listed itself. So it is possible 
to obtain the geometric representation by working through the list of upper 
covers once from top to bottom. M. Kark has written an interactive program 
supporting the derivation of a geometric representation from a given list of upper 
covers (cf. [5]). An output of this program for the former example is also shown 
in Fig. 3. 

4 F r o m  G e o m e t r i c  R e p r e s e n t a t i o n s  t o  L i n e  D i a g r a m s  

Geometric representations can effectively support the drawing of line diagrams. 
They have extensively been used for elaborating adequate line diagrams of con- 
cept lattices. For this purpose it is important that meaningful substructures of 
lattices can be recognized by corresponding substructures of geometric represen- 
tations. 

Fig. 4. Linediagrams and geometric representations of lattices 

Figure 4 shows some important substructures of lattices and their corre- 
sponding geometric representations: The cube in the upper left indicates the 
independence of three attributes in a concept lattice. The chain at its right is 
typical for ordinally dependent attributes, while the diamond in the lower left 
signals that there are attributes excluding each other. The lattice in the lower 
right is caused by attributes describing an interval structure. 

Let us now have a look how the geometric representation in Fig. 3 has helped 
us to draw the concept lattice in Fig. 2. As already described in the preceding 
section, the program of P. Burmeister calculated the list of upper covers in 
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Fig. 3 from the context in Fig. 1. Then the geometric representation was sketched 
manually. It shows us that  the lattice mainly consists of two cubes. If one already 
has some experience in reading geometric representations, one also knows how 
the two cubes are "glued" together. If not, one starts drawing the "upper" cube 
consisting of the concepts 1, 2, 4, 7, 5, 9, 12, and 14. Thereby one has the choice 
to place two of the concepts 2, 4, and 7 on the outside. We choose concept 2 and 
7 as they have "points" as lower covers. This helps us keeping the line diagram 
in balance. Now we can attach concept 3 to concept 2 and complete the second 
cube by the concepts 6, 11, and 16. The concepts 7 and 12 are completed to a 
parallelogram by adding the concepts 8 and 13. Together with the concepts 9 
and 14, the concepts 10 and 15 also form a parallelogram. The only which is left 
to do is to attach the concept 17 to concept 6 and to add the bottom element, 
concept 18. 

Although drawing of parallelograms has high preference, the heuristic is not 
particularly based on specific lattice properties. So it may also be useful for 
elaborating appropriate drawings of arbitrary (partially) ordered sets. In general 
one does not have top and bottom elements in ordered sets; in this case the 
minimal and maximal elements of the ordered set has also to appear in the 
geometric representation. 

5 A c o n c r e t e  e x a m p l e  

The geometrical heuristic for drawing concept lattices has been applied in a great 
variety of applications. Here we can demonstrate this by only one example from 
a collaboration with the ministry of civil engineering of the German province 
Nordrhein- Westfalen to develop a retrieval system concerning all regulations for 
building constructions. Concept lattices are used in the retrieval system as con- 
ceptual nets leading the users to the regulations which they have to consider in 
a specific situation of the process of planing and designing. For our example we 
choose the concept lattice for the fundamental construction (Rohbau) of a fam- 
ily house. It was interesting that there have been attemps of drawing experts to 
create an adequate line diagram without the geometrical heuristic. The results 
were not bad, but they could be substantially improved by using the geomet- 
rical method. The lattice has 30 elements which are listed in Fig. 6 with their 
upper covers. The geometric representation in Fig. 6 is shown as it was produced 
directly from this list. The left-right-order in the geometric diagram gave the 
basic insight for the design of the line diagram (of course, there are many more 
instances which influenced the drawing of the line diagram). The labelled line 
diagram of the concept lattice which was also appreciated by our collaborating 
engineers is presented in Fig. 5. 
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2:  1 - 
3:  I - 
4 :  2 3 - 
5 :  3 - 

111 1 
12 :  
13 :  12 
1 4 : .  : 13 
15 :  13 
16 :  14  15  
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18 :  ~ 17  
19 :  17 
2 0 :  4 18 19  - 
2 1 : 7  11  17  - 
22 :  8 19  21  - 
2 3 : 5  22  ( 
2 4 :  13  21  
2 5 :  18  24 
2 6 :  14 22  24  
2 7 :  2 0  25  2 6  - 
2 8 :  15  24 - 
2 9 :  2 5  28  - 
3 0 :  6 16  23  27  2 9  - 
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