
Privilege Graph: an Extension to
the Typed Access Matrix Model

Marc Dacier, Yves Deswarte

LAAS-CNRS & INRIA
7, avenue du Colonel Roche

31077 Toulouse, France
(dacier @laas.fr, deswarte@laas.fr)

Abstract. In this paper, an extension to the TAM model is proposed to deal
efficiently with authorization schemes involving sets of privileges. This new
formalism provides a technique to analyse the safety problem for this kind of
schemes and can be useful to identify which privilege transfers can lead to unsafe
protection states. Further extensions are suggested towards quantitative
evaluation of operational security and intrusion detection.

1 Introduction

The problem of controlled sharing of information in multi-user computing
systems has been the subject of a large literature for more than 20 years. Many solutions
have been advanced. Among them, the various access control based models are the most
widely-known. The key abstractions they handle are those of subjects, objects and
access rights. They also make use of two other concepts: the protection state and the
authorization scheme [14]. A protection state is defined by the sets of rights held by each
individual subject. The authorization scheme is defined by a set of rules that lets the
protection state evolve by the autonomous activity of the subjects.

The primary goal of these models is to offer an efficient resolution of the so-called
safety problem defined by Harrison, Ruzzo and Ullman in [7]. It consists in identifying
states 1 that violate the security constraints and that are reachable given a initial state and
an authorization scheme. Their model, the HRU model, possesses a very broad
expressive power but appears to be inefficient in most practical cases. As a consequence,
other models have been suggested. Lipton and Snyder, in [11], set a model forth that can
solve the safety problem in linear time but at a price of poor expressiveness. To fill the
gap, various solutions have been proposed (SPM [12], ESPM [11, NMT [13]), the
most promising of which are TAM [14] and ATAM [2]. These models are expressive
enough - - as claimed by the authors - - to model most security policies of practical
interest and still offer strong safety properties.

In this paper, we focus on a specific class of authorization schemes where a user
can grant a, possibly large, set of rights to other users. Such authorization schemes are
quite common in most real-world situation and, therefore, are worth considering. Two

1. In the rest of the paper, we use indifferently "state" for "protection state".

320

different solutions to the safety problem in that case, using the TAM formalism, are
discussed. It follows that TAM can effectively solve that specific class of safety
problems but in a non optimal way regarding ease of use and algorithmic complexity.
Hence, we propose to enhance TAM with a complementary formalism based on a graph
of sets of privileges 2 . This approach is presented as well as its main advantages and
limitations. Furthermore, we indicate two other possible applications of our formalism,
namely in the context of intrusion detection techniques and in the context of quantitative
evaluation of computing systems security.

The paper's organization is as follows. Section 2 briefly summarizes previous
works, highlighting the connections between them. Section 3 presents a specific
authorization scheme using TAM formalism and, taking a simple example, gives three
different solutions to the safety problem. Section 4 suggests a more efficient approach
to solve that specific problem, based on a privilege graph. Section 5 justifies the
authorization scheme used in Section 2 and 3 by giving real-world examples of such a
scheme. Section 6 describes three possible applications of our approach and Section 7
gives a conclusion.

2 Background

Access controls models originate in Lampson's famous access matrix model [9]
but Harrison, Ruzzo and Ullman were the first in [7] to formalize the safety problem in
their HRU model. Their results are deceptive in the sense that they prove that, using
HRU, the general safety problem is not decidable. In response to these negative results,
other approaches have been suggested. One of them is the take-grant model [3, 10, 11,
17, 18]. In [11], Lypton and Snyder described an algorithm that can solve the safety
problem, for this model, in linear time. Sadly, efficiency is acquired at the price of
expressiveness. Indeed, in this model, it is not possible to restrict the granting of rights.
One is allowed to grant all the rights one holds to someone else or none of them.
Therefore, as noted in [17], the model appears to be disappointingly weak when applied
to typical protection problems. More recently, work has been carried out to relax some
of the assumptions of this model [4, 6, 19, 20] but, still, it remains ill-adapted for
practical applications.

In [12], Sandhu defined the Schematic Protection Model (SPM) whose intent is to
fill the gap in expressive power between the take-grant and the HRU models. However,
attempts to prove the equivalence of SPM to monotonic HRU have remained
unsuccessful and another model ESPM (Extended SPM) had to be designed for that
purpose [1].

2. In order to be consistent with previous work we use the same convention as in [14]:
"We view privilege as a primitive undefined concept. For the most part, privileges can
be treated as synonymous with access rights. However, there are privileges such as
security level, type or rfle, which are usually represented as attributes of subjects and
objects rather than as access rights".

321

Later, Sandhu proposed the T y p e d A c c e s s M a t r i x model (T A M) , a refinement of
the H R U model in which he introduces strong typing [14]. A T A M model is
characterized by a finite set R o f rights, a finite set T o f objects types, and a set ~ of
subjects types (T s c_ fir). These sets are used to define the protection state by means of a
typed access matrix. The authorization scheme consists of R, Tand a finite collection
of commands.

command ot(Xl : tl, X2 : t2 Xk : tk)

i f r I E [X s , X o] /x r 2 E [X s , X o] /x r m E [Xs, ,Xom]
1 1 2 2

then o p l ; op2 ; ... ; Opn

Table 1. Format of a TAM command

A T A M command has the format shown in Table 1 where t~ is the n a m e of the
command; X 1, X 2 X k are f o r m a l p a r a m e t e r s whose types are respectively t l , t 2 t k ;

r 1, r2,. . . , r m are rights; and s 1, s2,..., s m and o 1, o 2 o m are integers between 1 and k.
Each oPi is one of the p r i m i t i v e o p e r a t i o n s shown in Table 2, in which Z E R and s
and o are integers between 1 and k.

enter z into [Xs, X o] create subject X s of type t s create object X o of type t o

delete z from [Xs, X o] destroy subject X s of type t s destroy object X o of type t o

Table 2. The six primitive operations of TAM.

In the same paper [14], Sandhu demonstrates that it is possible in many practical
cases to make safety tractable without loss of expressive power. An algorithm is
described to compute the m a x i m a l s ta te , i.e., a state where no rule can be applied any
more. In [2], an augmented version of T A M has been proposed which allows to test for
absence of rights. The aim of A T A M is to easily allow separation of duties in the
definition of the authorization scheme. It has been proved in [15] that both models are
formally equivalent in their expressive power.

This result highlights two points: i) TAM is a general model and, therefore, can
be used as a reference, ii) ATAM existence shows the usefulness of enriching TAM
when dealing with some specific authorization schemes.

To conclude with our historical review, it is worth mentioning that, in [13], the
problem of non-monotonic transfer of rights has been considered. The model proposed
(N M T) exhibits some promising results, though no formal proof of its expressiveness is
given. Moreover, even if safety is shown to be decidable for N M T , yet the decision
procedure has exponential complexity.

3 The p r o b l e m o f grant ing sets o f rights

3.1 A simple example

As indicated in Section 2, the expressive power of the t a k e - g r a n t model is very
restricted. In this model, a grant action can focus neither on a given object, nor on a
given right. One is only allowed to grant a given subject every rights in one's possession
on every object. On the contrary, T A M commands are such that they allow the granting
of one right on one object to one subject. In real-world situations, the problem of
granting sets of privileges appears to be quite common and seems to require an

322

expressiveness virtually located between the expressive power of these two models.
This is the reason why it can be interesting to consider the ability of T A M to deal
efficiently with such authorization schemes.

In the following, we will focus on some of these schemes which are characterized
by empty intersections between the granted privileges and those checked in the
condit ional parts of the commands. Such schemes present interesting properties to solve
the safety problem, namely the absence of cycles 3 .

Throughout this paper, we use a simple example where the set '-/ 'of types is
defined as T= {user, filel, file2,file3} and the set R o f rights as R = {~o,r,w} (where the
letters stand for the mnemonics of "execute" , "own" , "reaar' and "wri te" respectively).
Table 3 gives the initial ~rotection state for this example 4 .

f : file I i : file 3

a : user e,o,r,w

b : user e

c : user

g : file 2 h : file 3

r,w r

e ,o , r ,w o , r ,w

Table 3. A simple Typed Access Matrix

The authorization scheme we consider consists of two rules:
Rule 1: If a user U 1 owns a file F of type f i le 1 and if a user U 2 can

execute that file F, then U 2 can grant U 1 all the read rights that

U 2 holds on files of t ype f i le3 .
Rule 2: if a user U l can write into a file F of type f i lee and if a user U 2

owns that file F, then U a can grant U 1 all read and wri te rights

that U 2 holds on files of t y p e f i l e 3

Section 5 explains this choice by showing that these rules are representative of
real-world problems. Based on these protection state and authorization scheme, we
consider in the next subsections the two following basic safety problems:

Q I : Can the system reach a state where the user a can gain the r right on i ?
Q2: Can the system reach a state where the user a can gain the w right on h ?

3.2 F i r s t Solut ion: Direc t App l i ca t i on of T A M

The most obvious way to model this authorization scheme, using TAM
formalism, is by defining the three following commands:

command RI(UI: user, U2: user, Fl: file 1, F2: file3)
if o ~ [U1,F1] A e ~ [U2,F1] ^ r ~ [U2,F2]

then enter r into [U 1, F2]

This first command expresses the first rule of our authorization scheme.

3. As discussed in Section 4.4, performance reasons can impose another constraint to the
authorization scheme: there should be small mutual intersections between granted
privilege sets.

4. Empty rows and empty columns are not represented for the sake of conciseness.

323

command R2read(Ul: user, U2: user, Fl: file ~ F2: file3)
if w ~ [U1,FI] A O ~ [U2,FI] ^ r E [U2,F2]

then enter r into [Ut, F21

command R2write(Ul: user, U2: user, Fl: file 2, F2: file3)
if w ~ [U1,F1] ^ o ~ [U2,F 1] ̂ w ~ [U2,F2]

then enter w into [U 1, F2]

These last two commands express the second rule of our authorization scheme.
Table 4 represents the maximal state of this system. Obtaining this maximal state can be
achieved in different ways. Here is an example of one sequence of command
applications that reaches it: Rl (a ,b , f , h) - R2read(b,c,g,i) - R2write(b,c,g,h) - R l (a ,b , f , i) .
Four command applications are required. Resolving the safety problem is
straightforward with this method: a simple inspection of the matrix leads us to answer
the question Q1 positively and Q2 negatively.

f : file I g :file 2 h :file 3 i :file 3

a : user e,o,r,w r r

b : user e r,w r,w r

c : user e,o,r,w o,r,w r

Table 4. Maximal state for the first solution

It is important to note that the number of command applications is directly
proportional to the number of files of type f i l e 3. This can be highlighted by a rough

generalization of our example. Consider an authorization scheme defined by the only
rule R1; consider a protection state with n users (U I, U 2 Un), each of them having the

r right on m different files of t y p e f i l e 3. Suppose also the existence of n-1 files of type

f i l e 1 (F1,F 2 Fn_l) such that: V j , (l < _ j < n - 1) o ~ [U j , F j] ^ e ~ [U j + l , F j] . I n t h i s

case, the maximal state can be reached by applying m times the command R 1 with U n

and Un_ 1 as parameters, 2m times with Un_ 1 and Un_ 2 (n-1)m times with U 1 and U 2.

Thus, the amount of command applications required to build the maximal state in this
case is equal to:

m + (m + m) + . . . + (m + . . . + m) = m x (l + . . . + n - 1) - r n x n x (n - l)
2

Hence, in this case, we need O(mn 2) command applications to reach the maximal state.
It is shown in the next Subsection, that one could easily take profit of the richness of
TAM to find a much more efficient modelization.

3.3 Second solution: Introducing ad-hoc privi leges

The number of applications could remain constant, whatever is the number o f f i l e 3

present in the system, thanks to the definition of two a d - h o c privileges tr and tw, where
tr (resp. tw) stands for the mnemonic of" take reaae' (resp. " take wr i te") . Hence, we can
express the same authorization scheme with only two rules:

command R'I(UI: user, g2: user, Fl: f i lel)
if o ~ [U1,FI]/x e ~ [U2,F1]

then enter tr into [U b U2]

324

command R'2(UI: user, U2: user, Fl: file2)
i f w e [Uj,F l] ^ o e [U2,F1]

then enter tr into [U1, U2]; enter tw into [U 1, U 2]

Table 5 shows the maximal state obtained by applying R ' l (a , b ~ and R'2 (b , c ,g) to
the protection state defined in Table 3.

a : user

b : user

c : user

tr

tr, tw

f : f i le 1

e ,o , r ,w

g : file2

r,w

e ,o ,r ,w

h :file 3 i : file 3

r,w r

Table 5. Maximal State with the tr and tw privileges.

It was shown in the previous section that the rough generalization of our example
required O(mn 2) to build the maximal state. Now, with this solution, it would require
only n- 1 command applications but the answer cannot be found directly in the matrix as
before. The privileges tr and tw have semantics that must be considered to answer that
question.

Actually, these privileges act like pointers. We note that introducing special rights
which have such r61e is nothing new in a T A M model. This is the trick used by Sandhu
and Ganta in [15] to show that T A M and A T A M are formally equivalent in their
expressive power. In our case, a recursive function g e t _ a n s w e r will be used to solve the
safety problem. Its algorithm 5 is given below:

function get_.answer(Ul: user, F: object, R: right)
i f R ~ [U1, F]

then
elsif

end if

end if;
elsif

end if;

answer is YES
(R = r)
then foreach (U: user such that tr E [U 1, U]) {get_answer(U, F, R)};

(R = w)
then foreach (U: usersuch that tw ~ [U1, U]) {get_answer(U, F, R)};

Hence, ge t_answer(a , i , r) will first search in the matrix if a has the right r on i. I f
not, it looks for a pointer to another subject who would hold this right or who would
have another pointer to a third subject, etc. In this particular case, getting the answer
requires five inspections 6 of the matrix for the question Q1 and three 7 for Q2. It is
important to note that these results are independent of the number of files o f t y p e f i l e 3

and linear with respect to the number of users (to compare with O(mn 2) of the rough
generalization).

5. The function get_answer returns YES if the answer is positive. It returns nothing if the
answer is negative. This is a simplified version of the algorithm. A complete one
should take care of the existence of possible cycles.

6. Q l : r ~ [a , i] , ~ ' t r ~ [a , b] , ~ r ~ [b , i] , ~ ' t r ~ [b , c] , ~ r ~ [c , i] , ~ ' Y E S
7. Q2: w ~ [a,h] ,~" tw ~ [a,b] ,~ tw ~ [a,c] ,~ NO

325

Of course, the astute reader has noticed that this example has been designed on
purpose. In fact, this solution is directly proportional to the number of pointers. I f we
consider a protection state with many users, none of them having the right to read "i",
this solution is clearly worse than the first one. Indeed, it will probably impose us to
follow a long list of pointers to eventually reach a negative conclusion that could have
been immediately derived with the first method! However, it will be shown in Section
5 that our example is representative of many common, yet specific, real-world
situations. In these cases, the second solution is better than the first one.

3.4 Discussion

As can be seen, the introduction of ad-hoc privileges in a given TAM model can
improve dramatically its efficiency in some given situations. Unfortunately, this
requires at least a new right for each class of set of privileges that can be granted. Each
new right definition induces the rewriting of the get_answer algorithm in order to take
the new pointer 's semantics into account. Such task could rapidly become cumbersome
with the growth of the set of commands.This solution looks promising but it suffers
f rom its lack of modularity.

As a result of this comment, one could be tempted to define a new approach using
only one kind of pointer towards new virtual users created on purpose. For instance, to
represent that the user b grants to a all his r rights on objects of type file 3, one could
create a new user [3, give him all the r rights that b possesses on objects of type file 3 and
introduce in [a,~] a pointer called, for example, take_set. However, such solution is not
easy to implement with TAM. The two following scenarios highlight this point:

1) Once [~ created, suppose that b acquires a new right r on an object of
type file 3, then I~'s privileges must be updated ! Thus, we must define
rules to take care of every change in b 's privileges.

2) Once [3 created, b acquires all the r and w rights on all objects of type
file 3 that c has. Therefore, a new user y is created (with all the r and w
rights on all objects of type file 3 that c has) and the right take_set has to
be inserted in [b,y]. How should this update be taken in consideration
for the update of 13 ? If we put a take_set right into [~,7] then a, by tran-
sitivity, will gain the w rights of c, which is not correct ! It is clear, there-
fore, that the required update rules are not easy to define. Actually, this
approach suffers from the same lack of modularity that the one
explained hereabove.

If we could define ~ rather than create it, as we do by putting access rights in
matrix cells, then the problem, explained in the first scenario, would disappear because
no update would be necessary any more. Indeed, its definition would be independent of
the evolution of the privileges of b.

Furthermore, if we have such formal definition of ~, then we can also get rid of
the second problem by integrating the update commands into the usual commands. This
is explained into the next section where we propose an extension to TAM that offers
such formal definitions of sets of privileges.

326

4 The Privilege Graph.

4.1 Definitions

It is important to note that our formalism is not aimed at replacing TAM which has
proved to be very powerful in many situations but rather as an efficient complementary
notation�9 Our solution is based on a directed graph, the nodes of which are sets of triples
(U, O, ER) where U is a subject, O an object and Y.~ a set of rights (ER ~ R) �9 For each

type 0 (0 ~ T), we define Z o as the set of all objects of type 0. We define E T as a union

of sets: ~q- = 0t~.)TZ0 .

Nodes do represent sets of privileges on sets of objects. A node is not supposed to
correspond to any row in any access matrix. It defines a set of privileges that can be
granted to other users. For instance, suppose that a rule specifies that the user b can grant
all the read rights he has on every file oftypefile 3. The application of this rule will create
a node defined as: N = {(b,O,r)[O ~ gfite ^ r E [b,O]} . This node represents a subset

�9 , 3 . . .

of the privileges that b effectively holds in the access matrix when the rule Is apphed
but this subset is not "frozen". Indeed, such a definition could take "new" rights into
account, i. e. rights entered into the matrix for b by some rule application after the
creation of the node. This is possible because the content of the node is characterized by
a formal definition rather than by the enumeration of its contents.

For each user U, we define M U as the maximal set of privileges that U could get.
This set can be identified with the row corresponding to U in the classical maximal state,
defined in Section 3.2. Formally 8 :

It is important to note that we do not define any node that corresponds to that
definition. Actually, as explained below, we never have to compute this maximal state.

The existence of a directed edge in the graph from a node N 1 to a node N 2 implies
that VU, U ~ ~-'users' MU ~ N1 ~ MU ~ N2 " Roughly speaking, the existence of an edge
from a node N 1 to a node N 2 means that, every user who can acquire N 1, can acquire N 2.
The formal definition is not used in practice because, as already mentioned, we do not
want to compute M U.

Edges and nodes are created by successive applications of the rules that compose
the authorization scheme. Therefore, we add two primitive operations to TAM:
makenode and make_edge. The operation make_node (resp. make_edge) will create a
node in the graph (resp. an edge) only if this node (resp. edge) does not already exist.

4.2 Cons t ruc t ion

We have already mentioned that we do not have to compute M U at any time.
Indeed, with this method, solving the safety problem is reduced to finding a path in a
digraph. This is highlighted by the following protocol:

1) For each subject U in the initial protection state, create a node defined as
follows N u = {(U,O,Z~)]O~ ZT^ (E~ = (Rn[U,O])) ^ Z ~ : ~ O } .

8. The notation [U,O]*, instead of [U,O], indicates that we do refer to the matrix
representing the maximal state.

327

At any time, this definition represents the privileges present in the
matrix for this user 9 .

2) Apply the commands up to reach a maximal state 1~ . The maximal state,
in this case, is characterized by the matrix and by the graph. Both are
needed to define the final protection state.

3) Reformulate the safety problem in terms of two conflicting sets of nodes
and find if a path exists between these two sets.

Each step of this process is better understood by showing how it is achieved in
our running example. Therefore, we need to define new commands to characterize our
authorization scheme:

command R"I(UI: user, U2: user, Fl: filel, ~1: node, ~2: node)
i f o e [U l , F l] A e e [U2,F1] A ((Ul,O,r)lO~ ~'file A r e [U1,O]} ~ N 1

then make_node ~7~2 --- {(U2,0, r) l d E ~ f i l e 3 A r ~ [U2,O]}
makeedge from ~r~ to

end if

Compared to command R' I, we see that R" 1 contains a third test in its conditional
part:

1) o e [U1,Fa]Aee [U2,F1] deals with the authorization scheme itself
(identical to R ' 1).

2) ((U1,O , r)]O E ~r A r e [U1,O]} ~ NI identifies in the graph the node
to which the pnmmve operation make_edge will be applied. The rule
will be applied for each node that satisfies this definition. As a result, for
a given triple (U1,U2,FI), this rule will create one node N 2 but several
links could be created, originating from various nodes N 1 to N 2.

Keeping the same principles in mind, we define two new rules R"2rea d and
R"2write to implement the second rule. Namely:

command R "2read(Ul: user, U2: user, El:file 2, 9~l: node, 9~2: node)
i f w ~ [Ut ,FI]AOE [U2,F1]A { (U l ,O , r) lOE Z f i l e3ArE [UI,O]} ~ff(1

then
make_node 9~2 = { (U2,O , r)] O E ~,file 3 A r e [U2,O]}
make_edge from ~ to

end if

command R "2write(Ul: user, U2: user, FI: file 2, 9{ 1: node, ~(2: node)
if W~ [UI,F1] Ao~ [U2,F1]A {(U1,O ,w)]O~ ~file 3 A W E [U2,O]} c 9~1

then
make_node N2 = {(U2,O, w)lO e ~file 3 A w E [U2,O]}
make_edge from ~ to 9~2

end if

9. 9~ is identical to Yvf U if and only if there is no edge originating from ~ . In general,
this is not tree and we have 9~ c_ 9flu.

10. The task of constructing the graph is finite because the number of nodes is at most a
linear combination of the number of cells in the maximal state matrix of Section 3.2
- - the size of which is finite [14].

328

0

~ (a'O'r'R)[O e ~:'r^ (~:R = (• n [a,O])) A :~R ~ ~}~

'O'r)lO�9 s A r e [b,

@

~,O,]~R)IO�9 ZTA (~.R = (~ ~[b,O])) AZR #(,~5 ~ D

~(c,O,r)lO e :~me3 ̂ w e [c,O]})

@

({ (c,O,r)lO �9 Xfite3^ re [c,O]

~ (c,O,Y.~t)[O �9 ~:TA (~:~. = (~. c~ [c,O])) ^ ~:R * 0 })

Fig 1. Example of a Privilege Graph

In the first step, we create the nodes O, O, and @. They refer to the protection state
of Table 3. In the second step, we can apply, for instance, the following sequence of
command applications that leads to a maximal state: R"l(a,b,f ,O,O)
R"2read(b,c,g,@,O) - R"2wrae(b,c,g,@,O), R"2read(b,c,g,O,O). This is represented in the
graph of Fig. 1 which could have been obtained with any other sequence. The third step
is detailed in the next subsection.

4.3 Resolution of the safety problem

To solve the question Q1 of our safety problem, we run the following steps:

1) Check in the matrix i f a has read access to i; if the answer is no, go to
the next step.

2) Identify in the matrix the subjects who have read access to i; the only
subject with that right in our example is c.

3) Identify in the graph every node which contains the triple (c,i,r); both
nodes @ and �9 have this property in our example.

4) If a path can be found between the node representing the set of privi-
leges of a (O) and one of the nodes identified in step 3, then, we know
that a can read i; in this case the existence of the path between O and �9
(arcs A and D) implies a positive answer to the question.

For the question Q2, the same scheme leads us to deduce a negative answer
because no path exists, neither between the nodes O and 0 , nor between @ and @.

329

4.4 Discussion

We have already mentioned that this method was only efficient for specific
authorization schemes. The conditions under which our method is worth being used are
recalled hereafter:

1) Sets of granted privileges should not contain access rights on objects
checked in the conditional parts of the commands. This ensures that the
conditional part can be evaluated by the sole inspection of the matrix,
without looking at the graph (of course, the node identifcation still
requires inspection of the graph). In our example, for instance, we grant
privileges on objects of type file 3 but the conditions always checks files
of type file t or file 2. If this was not the case, the expression of the condi-
tion, though possible, would be cumbersome and require to check for
the existence of some well-defined node in a specific path. It is clear that
the complexity of this process would impede the usefulness of this solu-
tion.

2) Sets of granted privileges should have small mutual intersections.
Clearly, the best situation consists of distinct sets of privileges. This will
minimize the number of edges created.

3) If the safety problem is made of a conjunction of n questions, such as
(r ~ [a,i]) ^ (w e [a,i]) , then its solution is found as the conjunction of

the n answers to each individual question. In this case, (t r u e A f a l s e)

r e t u r n s f a l s e .

The following example highlights the algorithmic complexity of the method
when these two requirements are satisfied. Consider the initial access matrix
represented in Table 8 and the command R e.

a: u s e r

b: u s e r

C: u s e r

x : f i l e l y : f i le 1

e,o,r, w

e ,o ,r ,w

Z : f i l e ! u : f i le 2

e ,o ,r ,w

e ,o , r ,w O,r,W

v : f i l e 2 w : f i l e 2

e ,o , r ,w

e ,o , r ,w

Table 6. A simple Typed Access Matrix

command Re(UI: user, U2: user, FI: f i le l , F2: f i le2)

if o ~ [U1,F1] ^ e E [U1,F2]
then enter e into [U~ F2]

Suppose also the existence of a rule R r (resp. R w) equivalent to R e where the right
e has been replaced by the right r (resp. w).

In terms of privileges sets, we can rewrite tl this authorization scheme as:

11. Actually, one such rule must be written for each subset of the set {e , r ,w} . They
determine the definition of N 1 but are equivalent for the primitive operations
involved.

330

command R'e(UI: user, U2: user, Fl: filel, ~1: node, 96: node)
if o �9 [Ul,F1] A {(U2,O , Y,~)[O e 5~file 2 A (Y'R = {e} c~ [U2,O]) A XR # ~ } c 9~1

then
make_node N 2 = { (U 1,O, XR) [O �9 Y, file 2 A (Y.~. = ({e; r, w} c~ [U 1,O])) A EX # ~}
make_edge from ~ to 9 6

end if

In this case, the two above requirements are satisfied: i) objects involved in the
condition are distinct from those granted and ii) the sets of privileges granted are
distinct.

Hence, suppose that we have n users. Each user has the o right on at least one
object of t ype f i l e 1. Furthermore, each user has r rights that can be granted on m objects
of type f i le 2. Then, in this case, TAM requires n x r x m x (n - l) rule applications to
reach a maximal state. With the privilege graph, it requires n x r x (n - 1 + n - 1). Thus,
when the requirements are satisfied, the complexity is reduced by a factor
approximately equal to m / 2 . Furthermore, in general, we will have m>>n. Of course,
if the requirements are not satisfied, the best trade-off must be found between pure TAM
and pure privilege graph, based on complexity evaluation. This evaluation can only be
made with full knowledge of the access matrix and of the rules.

In order to show the usefulness of the method, we show hereafter real-world
examples where the requirements are satisfied, and where, therefore, the use of privilege
graph must be preferred to TAM.

5 Real World Examples

In this section, we wish to stress that the authorization scheme presented in
Section 3 is not artificial; it is representative of privilege transfer features that can be
found in most real life systems. To show this, we consider three examples based on

�9 Unix TM : a . x i n i t r c file, a . r h o s t s file and s e t u i d files.

5.1 The . x i n i t r c File

When running, the X Window System initializer looks for a specific file in the
user's home directory, called . x i n i t r c , to run as a shell script to start up client
programs. Daily practice shows that novice users can encounter some difficulty to
configure correctly this file. I f a novice user trusts another user, more expert in X than
himself, he may prefer use the expert's configuration file rather than bother to
understand all the commands and options. To do so, an easy solution is to establish a
symbolic link between his own .xinitrc file and the expert's file 12 . Then, if the so-
called expert enhances his set-up file, the novice will enjoy the result as well.

From a security point of view, this can also be a good solution. Indeed, if the
novice chooses inappropriate options or commands, this file will turn out as a trapdoor,
letting his data unpl:otected. Using the expert's file - - who should be aware of the
vulnerabilities - - his data security is enhanced. Of course, he is at the mercy of this

12. in -s -expert/.xinitrc ~novice/.xinitrc

331

expert who can introduce a Trojan horse in his configuration file, and then acquire most
of the novice's privileges 13 . This is exactly what the first rule of our authorization
scheme wanted to characterize in its conditional part: the expert owns the. x i n i t r c file
executed by the novice.

5.2 T h e . rhosts File

To log in a Unix system, a password is required. However, there is a mechanism
in Unix that allows remote trusted users to access local system without supplying a
password. This functionality is implemented by the . r h o s t s file which enables to
bypass the standard password-based authentication: if in John's home directory there is
a . r h o s t s file which contains Fred's username, then Fred, when logged in another
machine, can establish a remote connection to John's machine and be identified as John
on this machine, without typing John's password. Once again, this allows John to grant
Fred almost all his privileges. This feature is frequently used, for instance if John wishes
Fred to take care of any urgent work during his vacations, without giving him his own
password. Another advantage of this feature is to enable remote login without
transmitting a password on the network where it would be vulnerable to wire tapping.

If such a file exists, any user who has write access to J o h n ' s . r h o s t s can get this
set of privileges. This is an example of the second rule of our authorization scheme: a
user who can write in John's . r h o s t s can read and write the same files as John 14 .

5.3 Setuid Files

In Unix, every process holds the same privileges as the user for whom the process
is run. However, it is possible to let a process get the privileges of the owner of the
program rather than the privileges of the user initiating the process. This is particularly
useful when an operation needs more privileges than held by the user. An example of
this is the program /bin/passwd that changes user passwords: every user must be able
to change his own password but this operation requires to write in a protected file,
usually the / e t c / p a s s w d file, to which no user has write access except the superuser;
to do s o , / b i n / p a s s w d uses the setuid facility to run with superuser privileges on behalf
of less privileged users. This functionality has many other applications, all of them
being examples of grants of sets of privileges by the owner of the program to the user
of the program. As long as these setuid programs are correct and no low privileged user
can create or modify such programs, the security is satisfactory. Indeed, this feature
strengthens security since, without this feature, users should be granted more privileges
constantly. But if a setuid-program owner trusts another user and gives him write access
to his program, he is at the mercy of this user. Such behaviour is another example of the
second rule of the authorization scheme given in Section 3.1.

13. Actually, the expert cannot acquire all the novice's privileges since, for instance,
without knowing the novice's password he will not be able to change it. Other specific
privileges could be denied to the expert due to the fact that, for instance, he is not
physically located at the same place than the novice, etc.

14. It is clearly a very bad idea to grant another user write access to your . rhos t s file but
this is another problem! Preventive and/or corrective actions are beyond the scope of
this paper.

332

6 Potential Applications of the Privilege Graph

6.1 Practical Solutions to the Safety Problem

It has already been explained at length how the privilege graph formalism could
be used to analyse in an efficient way the safety problem. But to know whether an unsafe
state is reachable is not enough: we wish to know what can be done to prevent to reach
this state, i.e., which modification of the protection state can solve the problem. The
graph enables to identify which paths are conflicting with the security constraints. In our
experiments, this feature has proved to be helpful to solve conflicts.

6.2 Quantitative Evaluation of Security

The safety problem accepts only a boolean answer: either an unsafe state is
reachable or not. There is no information on how easily or how fast the unsafe state can
be reached.Yet, in most practical systems, attacks and intrusions are more or less easy
and fast according to the configuration of the system. For instance, it can be more or less
difficult to guess a user's password. In the safety problem, either you consider that
passwords are guessable and then the system is unsafe, or that no password can be
guessed and then ignore that indeed some of them can be guessed by chance or by brute
force 15 .

With the privilege graph, it can be envisaged to assign a weight to each edge
corresponding to the likelihood associated to this privilege transfer; for instance, if an
edge represents the possibility to guess userA's password, the corresponding weight can
be lower if A's password is in a dictionary than if it had been carefully chosen.
Moreover, it is possible to consider that successful attacks are represented in the graph
as paths between potential attackers' privileges (e.g., non-users, or ftp users) and
potential targets' privileges (e.g., superuser). The system security can then be assessed
not only by the existence or absence of such a path, but also by the length of this path
and the weights on the traversed edges. This approach could lead to a quantitative
evaluation of the operational security but, firstly, open theoretical problems have to be
solved, as discussed in [5].

6.3 Intrusion Detection

Intrusion detection is another potential application of the privilege graph: if it is
possible to correlate the user's behaviour observed by an intrusion detection system
with a progress in the privilege graph towards a potential target, alarms of different
levels can be triggered according to the likelihood to reach the target. This approach is
similar to the pattern-oriented model proposed by [16]. It is probably possible to
integrate the privilege graph analysis in sophisticated intrusion detection tools such as
NIDES [8], e. g., in the resolver module, to help in detecting malicious activities carried
on by a hacker impersonating other users by using their privileges. The graph could be
used to correlate various suspicious activities that, if considered separately, would not

15. Of course, intermediate considerations could be that low privileged users' passwords
are guessable and superuser's password is not, but this does not change the problem.

333

bring enough evidence to detect an intruder. Also, their correlation could highlight on
the graph that some possible attack is progressing along a path leading to a target.

7 Conclusions

In this paper, a graphical extension to the TAM model has been proposed to
represent authorization schemes based on privilege transfers. This formalism provides
an efficient technique to analyse the safety problem and can be useful to identify which
privilege transfers can lead to an unsafe state. Further extensions are suggested towards
quantitative evaluation of operational security and intrusion detection.

It is our claim that this formalism is flexible enough to represent real world
systems such as Unix systems. Indeed, it is possible to build a privilege graph by means
of an automatic tool analysing the permissions in the Unix file system. In this case,
nodes are privileges held by users or groups and edges are elementary privilege transfers
corresponding to Unix operations on permissions. A prototype of such a tool has been
implemented and experimented successfully [5].

8 Acknowledgments

Thanks are due to Mohamed Ka~niche and Jean-Claude Laprie for useful
discussions that have led to the writing of this paper. The authors also want to thank the
anonymous referees for their valuable comments. Finally, the authors acknowledge
several insightful comments from Catherine Meadows and Gerard Eizenberg which
enabled significant improvements of this paper.

This work has been partially supported by ESPRIT Basic Research Action Project
n~ Predictable Dependable Computing Systems (PDCS2) and by the ESPRIT
Basic Research Network of Excellence in Distributed Computing Systems
Architectures - (CaberNet).

References

1. Amman, P. E. and Sandhu, R. S. "Extending the Creation Operation in the
Schematic Protect ion Model ," Proc. Sixth Annual Computer Security
Applications Conference, 1990, pp. 340-348.

2. Amman, E E. and Sandhu, R. S. "Implementing Transaction Control Expressions
by Checking for Absence of Access Rights," Proc. Eighth Annual Computer
Security Applications Conference, San Antonio (Texas, USA), December 1992,
pp. 131-140.

3. Bishop, M. and Snyder, L. "The Transfer of Information and Authority in a
Protection System," Proc. of the Seventh Symposium on Operating Systems
Principles, Pacific Grove, California (USA), December 10-12, 1979, SIGOPS
(ACM), pp. 45-54.

4. Biskup, J. "Some Variants of the Take-Grant Protection System", Information
Processing Letters, 19, 1984, pp. 151-156.

334

5. Dacier, M., Deswarte, Y. and Kaaniche, M. "A Framework for Security
Assessment of Insecure Systems," Predictably Dependable Computing Systems
(PDCS-2), First Year Report, ESPRIT Project 6362, September 1993,
pp. 561-578.

6. Dacier, M. "A Petri Net Representation of the Take-Grant Model," Proc. of the
6th. Computer Security Foundations Workshop, Franconia (USA), June 15-17,
1993, pp. 99-108.

7. Harrison, M. A., Ruzzo, W. L. and Ullman, J. D. "Protection in Operating
Systems," Communications of the ACM, 19(8), August 1976, pp. 461-470.

8. Jagannathan, R., Lunt, T., Gilham, E, Tamaru, A., Jalali, C., Neumann, P.,
Anderson, D., Garvey, T. and Lowrance, J., Requirements Specification: Next-
Generation Intrusion Detection Expert System (NIDES), SRI Project 3131 -
Requirement Specifications (A001, A002, A003, A004, A006), September 3,
1992.

9. Lampson, B. W. "Protection", ACM Operating Systems Review, 8(1), 1974,
pp. 18-24.

10. Landwehr, C. E. "Formal Models for Computer Security", ACM Computing
Surveys, 13(3), 1981, pp. 247-278.

11. Lypton, R. J. and Snyder, L. "A Linear Time Algorithm for Deciding Subject
Security," Communications of the ACM, ACM, 24(3), July 1977, pp. 455-464.

12. Sandhu, R.S. "The Schematic Protection Model: Its Definition and Analysis of
Acyclic Attenuation Schemes," Journal of the ACM, No. 2, 1988, pp. 404-432.

13. Sandhu, R. S. and Suri, G. S. "Non-monotonic Transformation of Access Rights,"
Proc. 1992 IEEE Symposium on Research in Security and Privacy, May 4-6,
1992, pp. 148-161.

14. Sandhu, R. S. "The Typed Access Matrix Model," Proc. 1992 IEEE Symposium
on Research in Security and Privacy, May 4-6, 1992, pp. 122-136.

15. Sandhu, R. S. and Ganta, S. "On Testing for Absence of Rights in Access Control
Models," Proc. of the Computer Security Foundations Workshop VI, IEEE
Computer Society Press, Franconia (NH,USA), June 15-17, 1993, pp. 109-118.

16. Shieh, S. W. and Gligor, V. D. "A Pattern-Oriented Intrusion-Detection Model
and Its Application", Proc. 1991 IEEE Symposium on Research in Security and
Privacy, Oakland (USA), May 20-22, 1991, pp. 327-342.

17. Snyder, L. "On the Synthesis and Analysis of Protection Systems," Proc. of the
Sixth Symposium on Operating Systems Principles, Purdue University (USA),
November 16-18, 1977, SIGOPS (ACM), 11(5), pp 141-150.

18. Snyder, L. "Formal Models of Capability-Based Protection Systems", IEEE
Transactions on Computers, C-30(3), 1981, pp.172-181.

19. Snyder, L. "Theft and Conspiracy in the Take-Grant Protection Model", Journal
of Computer and System Sciences, 23, 1981, pp. 333-347.

20. von Solms, S. H. and de Villiers, D. P. "Protection Graph Rewriting Grammars
and the Take-Grant Security Model", Quaestiones lnformaticce, 6(t), 1988, pp. 15-
18.

