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Abstract. In this paper, an extension to the TAM model is proposed to deal 
efficiently with authorization schemes involving sets of privileges. This new 
formalism provides a technique to analyse the safety problem for this kind of 
schemes and can be useful to identify which privilege transfers can lead to unsafe 
protection states. Further extensions are suggested towards quantitative 
evaluation of operational security and intrusion detection. 

1 Introduction 

The problem of controlled sharing of information in multi-user computing 
systems has been the subject of a large literature for more than 20 years. Many solutions 
have been advanced. Among them, the various access control based models are the most 
widely-known. The key abstractions they handle are those of  subjects, objects and 
access rights. They also make use of two other concepts: the protection state and the 
authorization scheme [14]. A protection state is defined by the sets of  rights held by each 
individual subject. The authorization scheme is defined by a set of  rules that lets the 
protection state evolve by the autonomous activity of  the subjects. 

The primary goal of these models is to offer an efficient resolution of  the so-called 
safety problem defined by Harrison, Ruzzo and Ullman in [7]. It consists in identifying 
states 1 that violate the security constraints and that are reachable given a initial state and 
an authorization scheme. Their model, the HRU model, possesses a very broad 
expressive power but appears to be inefficient in most practical cases. As a consequence, 
other models have been suggested. Lipton and Snyder, in [11 ], set a model forth that can 
solve the safety problem in linear time but at a price of  poor expressiveness. To fill the 
gap, various solutions have been proposed (SPM [12], ESPM [11, NMT [13] .... ), the 
most promising of  which are TAM [14] and ATAM [2]. These models are expressive 
enough - -  as claimed by the authors - -  to model most security policies of  practical 
interest and still offer strong safety properties. 

In this paper, we focus on a specific class of authorization schemes where a user 
can grant a, possibly large, set of  rights to other users. Such authorization schemes are 
quite common in most real-world situation and, therefore, are worth considering. Two 

1. In the rest of the paper, we use indifferently "state" for "protection state". 
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different solutions to the safety problem in that case, using the TAM formalism, are 
discussed. It follows that TAM can effectively solve that specific class of safety 
problems but in a non optimal way regarding ease of use and algorithmic complexity. 
Hence, we propose to enhance TAM with a complementary formalism based on a graph 
of sets of privileges 2 . This approach is presented as well as its main advantages and 
limitations. Furthermore, we indicate two other possible applications of our formalism, 
namely in the context of intrusion detection techniques and in the context of quantitative 
evaluation of computing systems security. 

The paper's organization is as follows. Section 2 briefly summarizes previous 
works, highlighting the connections between them. Section 3 presents a specific 
authorization scheme using TAM formalism and, taking a simple example, gives three 
different solutions to the safety problem. Section 4 suggests a more efficient approach 
to solve that specific problem, based on a privilege graph. Section 5 justifies the 
authorization scheme used in Section 2 and 3 by giving real-world examples of such a 
scheme. Section 6 describes three possible applications of our approach and Section 7 
gives a conclusion. 

2 Background 

Access controls models originate in Lampson's famous access matrix model [9] 
but Harrison, Ruzzo and Ullman were the first in [7] to formalize the safety problem in 
their HRU model. Their results are deceptive in the sense that they prove that, using 
HRU, the general safety problem is not decidable. In response to these negative results, 
other approaches have been suggested. One of them is the take-grant model [3, 10, 11, 
17, 18]. In [11], Lypton and Snyder described an algorithm that can solve the safety 
problem, for this model, in linear time. Sadly, efficiency is acquired at the price of 
expressiveness. Indeed, in this model, it is not possible to restrict the granting of rights. 
One is allowed to grant all the rights one holds to someone else or none of them. 
Therefore, as noted in [ 17], the model appears to be disappointingly weak when applied 
to typical protection problems. More recently, work has been carried out to relax some 
of the assumptions of this model [4, 6, 19, 20] but, still, it remains ill-adapted for 
practical applications. 

In [12], Sandhu defined the Schematic Protection Model (SPM) whose intent is to 
fill the gap in expressive power between the take-grant and the HRU models. However, 
attempts to prove the equivalence of SPM to monotonic HRU have remained 
unsuccessful and another model ESPM (Extended SPM) had to be designed for that 
purpose [ 1 ]. 

2. In order to be consistent with previous work we use the same convention as in [14]: 
"We view privilege as a primitive undefined concept. For the most part, privileges can 
be treated as synonymous with access rights. However, there are privileges such as 
security level, type or rfle, which are usually represented as attributes of subjects and 
objects rather than as access rights". 
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Later, Sandhu proposed the T y p e d  A c c e s s  M a t r i x  model ( T A M ) ,  a refinement of  
the H R U  model in which he introduces strong typing [14]. A T A M  model is 
characterized by a finite set R o f  rights, a finite set T o f  objects types, and a set ~ of  
subjects types ( T  s c_ fir). These sets are used to define the protection state by means of  a 
typed access matrix. The authorization scheme consists of  R,  Tand a finite collection 
of  commands. 

command ot(Xl : tl, X2 : t2 . . . . .  Xk : tk) 

i f  r I E [X s , X  o ] /x  r 2 E [X  s , X  o ] /x  r m E [Xs, ,Xom] 
1 1 2 2 

then o p l ;  op2 ;  ... ; Opn 

Table 1. Format of a TAM command 

A T A M  command has the format shown in Table 1 where t~ is the n a m e  of  the 
command; X 1, X 2 ..... X k are  f o r m a l  p a r a m e t e r s  whose types are respectively t l , t  2 .. . . .  t k ; 

r 1, r2,. . . ,  r m are  rights; and s 1, s2,..., s m and o 1, o 2 ..... o m are  integers between 1 and k. 
Each oPi is one of  the p r i m i t i v e  o p e r a t i o n s  shown in Table 2, in which Z E R and s 
and o are integers between 1 and k. 

enter z into [Xs, X o] create subject X s of type t s create object X o of type t o 

delete z from [Xs, X o] destroy subject X s of type t s destroy object X o of type t o 

Table 2. The six primitive operations of TAM. 

In the same paper [14], Sandhu demonstrates that it is possible in many practical 
cases to make safety tractable without loss of  expressive power. An algorithm is 
described to compute the m a x i m a l  s ta te ,  i.e., a state where no rule can be applied any 
more. In [2], an augmented version of  T A M  has been proposed which allows to test for 
absence of  rights. The aim of  A T A M  is to easily allow separation of  duties in the 
definition of the authorization scheme. It has been proved in [15] that both models are 
formally equivalent in their expressive power. 

This result highlights two points: i) TAM is a general model and, therefore, can 
be used as a reference, ii) ATAM existence shows the usefulness of  enriching TAM 
when dealing with some specific authorization schemes. 

To conclude with our historical review, it is worth mentioning that, in [13], the 
problem of non-monotonic transfer of  rights has been considered. The model proposed 
( N M T )  exhibits some promising results, though no formal proof of  its expressiveness is 
given. Moreover, even if safety is shown to be decidable for N M T ,  yet the decision 
procedure has exponential complexity. 

3 The  p r o b l e m  o f  grant ing sets o f  rights  

3.1 A simple example 

As indicated in Section 2, the expressive power of  the t a k e - g r a n t  model is very 
restricted. In this model, a grant action can focus neither on a given object, nor on a 
given right. One is only allowed to grant a given subject every rights in one's possession 
on every object. On the contrary, T A M  commands are such that they allow the granting 
of  one right on one object to one subject. In real-world situations, the problem of 
granting sets of  privileges appears to be quite common and seems to require an 
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expressiveness virtually located between the expressive power  of  these two models.  
This is the reason why it can be interesting to consider the ability of  T A M  to deal  
efficiently with such authorization schemes. 

In the following, we will focus on some of  these schemes which are characterized 
by empty intersections between the granted privileges and those checked in the 
condit ional  parts of  the commands. Such schemes present interesting properties to solve 
the safety problem, namely the absence of  cycles 3 . 

Throughout this paper, we use a simple example where the set '-/ 'of types is 
defined as T= {user, filel, file2,file3} and the set R o f  rights as R = {~o,r,w} (where the 
letters stand for the mnemonics of "execute" ,  "own" ,  "reaar' and "wri te"  respectively).  
Table 3 gives the initial ~rotection state for this example 4 . 

f :  file I i : file 3 

a : user e,o,r,w 

b : user e 

c : user 

g : file 2 h : file 3 

r,w r 

e ,o , r ,w  o , r ,w  

Table 3. A simple Typed Access Matrix 

The authorization scheme we consider consists of  two rules: 
Rule 1: If  a user U 1 owns a file F of  type f i le  1 and if  a user U 2 can 

execute that file F, then U 2 can grant U 1 all the read rights that 

U 2 holds on files of  t ype f i le3 .  
Rule 2: if a user U l can write into a file F of  type f i lee and if a user U 2 

owns that file F, then U a can grant U 1 all read and wri te  rights 

that U 2 holds on files of  t y p e f i l e  3 

Section 5 explains this choice by showing that these rules are representative of  
real-world problems. Based on these protection state and authorization scheme, we 
consider in the next subsections the two following basic safety problems: 

Q I :  Can the system reach a state where the user a can gain the r right on i ? 
Q2: Can the system reach a state where the user a can gain the w right on h ? 

3.2 F i r s t  Solut ion:  Direc t  App l i ca t i on  of  T A M  

The most obvious way to model  this authorization scheme, using TAM 
formalism, is by defining the three following commands: 

command RI(UI:  user, U2: user, Fl: file 1, F2: file3) 
if o ~ [U1,F1] A e ~ [U2,F1] ^ r ~ [U2,F2] 

then enter r into [U 1, F2] 

This first command expresses the first rule of  our authorization scheme. 

3. As discussed in Section 4.4, performance reasons can impose another constraint to the 
authorization scheme: there should be small mutual intersections between granted 
privilege sets. 

4. Empty rows and empty columns are not represented for the sake of conciseness. 
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command R2read(Ul: user, U2: user, Fl: file ~ F2: file3) 
if w ~ [U1,FI] A O ~ [U2,FI] ^ r E [U2,F2] 

then enter r into [Ut, F21 

command R2write(Ul: user, U2: user, Fl: file 2, F2: file3) 
if w ~ [U1,F1] ^ o ~ [U2,F 1] ̂  w ~ [U2,F2] 

then enter w into [U 1, F2] 

These last two commands express the second rule of our authorization scheme. 
Table 4 represents the maximal state of  this system. Obtaining this maximal state can be 
achieved in different ways. Here is an example of  one sequence of  command 
applications that reaches it: Rl (a ,b , f , h  ) - R2read(b,c,g,i ) - R2write(b,c,g,h) - R l (a ,b , f , i ) .  
Four command applications are required. Resolving the safety problem is 
straightforward with this method: a simple inspection of  the matrix leads us to answer 
the question Q1 positively and Q2 negatively. 

f : file I g :file 2 h :file 3 i :file 3 

a : user e,o,r,w r r 

b : user e r,w r,w r 

c : user e,o,r,w o,r,w r 

Table 4. Maximal state for the first solution 

It is important to note that the number of  command applications is directly 
proportional to the number of  files of  type f i l e  3. This can be highlighted by a rough 

generalization of  our example. Consider an authorization scheme defined by the only 
rule R1; consider a protection state with n users (U I, U 2 ..... Un), each of  them having the 

r right on m different files of  t y p e f i l e  3. Suppose also the existence of  n-1 files of  type 

f i l e  1 (F1,F 2 ..... Fn_l) such that: V j , ( l  < _ j < n - 1 )  o ~  [ U j , F j ] ^ e ~  [ U j + l , F j ] . I n t h i s  

case, the maximal state can be reached by applying m times the command R 1 with U n 

and Un_ 1 as parameters, 2m times with Un_ 1 and Un_ 2 ..... (n-1)m times with U 1 and U 2. 

Thus, the amount of command applications required to build the maximal state in this 
case is equal to: 

m +  ( m + m )  + . . . +  ( m + . . . + m )  = m x  ( l + . . . + n - 1 )  - r n x n x  ( n - l )  
2 

Hence, in this case, we need O(mn 2) command applications to reach the maximal state. 
It is shown in the next Subsection, that one could easily take profit of  the richness of  
TAM to find a much more efficient modelization. 

3.3 Second solution: Introducing ad-hoc privi leges  

The number of applications could remain constant, whatever is the number o f f i l e  3 

present in the system, thanks to the definition of  two a d - h o c  privileges tr  and tw, where 
tr (resp. tw) stands for the mnemonic of" take reaae' (resp. " take  wr i te" ) .  Hence, we can 
express the same authorization scheme with only two rules: 

command R'I(UI: user, g2: user, Fl: f i lel) 
if  o ~ [U1,FI]/x e ~ [U2,F1] 

then enter tr into [U b U2] 
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command  R'2(UI: user, U2: user, Fl: file2) 
i f  w e [Uj,F l] ^ o e [U2,F1] 

then enter tr into [U1, U2]; enter tw into [U 1, U 2] 

Table 5 shows the maximal state obtained by applying R ' l ( a , b ~  and R'2 (b , c ,g )  to 
the protection state defined in Table 3. 

a : user 

b : user 

c : user 

tr  

tr, tw  

f :  f i le 1 

e ,o , r ,w  

g : file2 

r,w 

e ,o ,r ,w 

h :file 3 i : file 3 

r,w r 

Table 5. Maximal State with the tr and tw privileges. 

It was shown in the previous section that the rough generalization of  our example 
required O(mn 2) to build the maximal state. Now, with this solution, it would require 
only n- 1 command applications but the answer cannot be found directly in the matrix as 
before. The privileges tr and tw have semantics that must be considered to answer that 
question. 

Actually, these privileges act like pointers. We note that introducing special rights 
which have such r61e is nothing new in a T A M  model. This is the trick used by Sandhu 
and Ganta in [15] to show that T A M  and A T A M  are formally equivalent in their 
expressive power. In our case, a recursive function g e t _ a n s w e r  will be used to solve the 
safety problem. Its algorithm 5 is given below: 

function get_.answer(Ul: user, F: object, R: right) 
i f R  ~ [U1, F] 

then 
elsif 

end if  

end if; 
elsif 

end if; 

answer is YES 
(R = r) 
then foreach (U: user such that tr E [U 1, U]) {get_answer(U, F, R)}; 

(R = w) 
then foreach (U: usersuch  that tw ~ [U1, U]) {get_answer(U, F, R)}; 

Hence, ge t_answer(a , i , r )  will first search in the matrix if a has the right r on i. I f  
not, it looks for a pointer to another subject who would hold this right or who would 
have another pointer to a third subject, etc. In this particular case, getting the answer 
requires five inspections 6 of  the matrix for the question Q1 and three 7 for Q2. It is 
important to note that these results are independent of  the number of  files o f  t y p e f i l e  3 

and linear with respect to the number of  users (to compare with O(mn 2) of  the rough 
generalization). 

5. The function get_answer returns YES if the answer is positive. It returns nothing if the 
answer is negative. This is a simplified version of the algorithm. A complete one 
should take care of the existence of possible cycles. 

6. Q l : r ~  [ a , i ] , ~ ' t r ~ [ a , b ] , ~ r ~ [ b , i ] , ~ ' t r ~ [ b , c ] , ~ r ~ [ c , i ] , ~ ' Y E S  
7. Q2: w ~ [a,h] ,~" tw ~ [a,b] ,~ tw ~ [a,c] ,~ NO 
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Of course, the astute reader has noticed that this example has been designed on 
purpose. In fact, this solution is directly proportional to the number of pointers. I f  we 
consider a protection state with many users, none of  them having the right to read "i", 
this solution is clearly worse than the first one. Indeed, it will probably impose us to 
follow a long list of  pointers to eventually reach a negative conclusion that could have 
been immediately derived with the first method! However,  it will be shown in Section 
5 that our example is representative of  many common,  yet specific, real-world 
situations. In these cases, the second solution is better than the first one. 

3.4 Discussion 

As can be seen, the introduction of  ad-hoc privileges in a given TAM model can 
improve dramatically its efficiency in some given situations. Unfortunately, this 
requires at least a new right for each class of  set of  privileges that can be granted. Each 
new right definition induces the rewriting of the get_answer algorithm in order to take 
the new pointer 's  semantics into account. Such task could rapidly become cumbersome 
with the growth of the set of  commands.This solution looks promising but it suffers 
f rom its lack of modularity. 

As a result of this comment,  one could be tempted to define a new approach using 
only one kind of pointer towards new virtual users created on purpose. For instance, to 
represent that the user b grants to a all his r rights on objects of type file 3, one could 
create a new user [3, give him all the r rights that b possesses on objects of  type file 3 and 
introduce in [a,~] a pointer called, for example, take_set. However, such solution is not 
easy to implement with TAM. The two following scenarios highlight this point: 

1) Once [~ created, suppose that b acquires a new right r on an object of  
type file 3, then I~'s privileges must be updated ! Thus, we must define 
rules to take care of every change in b 's  privileges. 

2) Once [3 created, b acquires all the r and w rights on all objects of  type 
file 3 that c has. Therefore, a new user y is created (with all the r and w 
rights on all objects of  type file 3 that c has) and the right take_set has to 
be inserted in [b,y]. How should this update be taken in consideration 
for the update of 13 ? If  we put a take_set right into [~,7] then a, by tran- 
sitivity, will gain the w rights of  c, which is not correct ! It is clear, there- 
fore, that the required update rules are not easy to define. Actually, this 
approach suffers from the same lack of modularity that the one 
explained hereabove. 

If  we could define ~ rather than create it, as we do by putting access rights in 
matrix cells, then the problem, explained in the first scenario, would disappear because 
no update would be necessary any more. Indeed, its definition would be independent of  
the evolution of the privileges of b. 

Furthermore, if we have such formal definition of ~, then we can also get rid of  
the second problem by integrating the update commands into the usual commands.  This 
is explained into the next section where we propose an extension to TAM that offers 
such formal definitions of sets of privileges. 
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4 The Privilege Graph. 

4.1 Definitions 

It is important to note that our formalism is not aimed at replacing TAM which has 
proved to be very powerful in many situations but rather as an efficient complementary 
notation�9 Our solution is based on a directed graph, the nodes of  which are sets of  triples 
( U, O, ER ) where U is a subject, O an object and Y.~ a set of  rights (ER ~ R) �9 For each 

type 0 (0 ~ T ), we define Z o as the set of  all objects of  type 0. We define E T as a union 

of  sets: ~q- = 0t~.)TZ0 . 

Nodes do represent sets of  privileges on sets of  objects. A node is not supposed to 
correspond to any row in any access matrix. It defines a set of  privileges that can be 
granted to other users. For instance, suppose that a rule specifies that the user b can grant 
all the read rights he has on every file oftypefile 3. The application of  this rule will create 
a node defined as: N = {(b,O,r)[O ~ gfite ^ r E [b,O]} . This node represents a subset 

�9 , 3  . . . 

of  the privileges that b effectively holds in the access matrix when the rule Is apphed 
but this subset is not "frozen". Indeed, such a definition could take "new" rights into 
account, i. e. rights entered into the matrix for b by some rule application after the 
creation of  the node. This is possible because the content of  the node is characterized by 
a formal definition rather than by the enumeration of  its contents. 

For each user U, we define M U as the maximal set of  privileges that U could get. 
This set can be identified with the row corresponding to U in the classical maximal state, 
defined in Section 3.2. Formally 8 : 

It is important to note that we do not define any node that corresponds to that 
definition. Actually, as explained below, we never have to compute this maximal state. 

The existence of  a directed edge in the graph from a node N 1 to a node N 2 implies 
that VU, U ~ ~-'users' MU ~ N1 ~ MU ~ N2 " Roughly speaking, the existence of  an edge 
from a node N 1 to a node N 2 means that, every user who can acquire N 1, can acquire N 2. 
The formal definition is not used in practice because, as already mentioned, we do not 
want to compute M U. 

Edges and nodes are created by successive applications of the rules that compose 
the authorization scheme. Therefore, we add two primitive operations to TAM: 
makenode  and make_edge. The operation make_node (resp. make_edge) will create a 
node in the graph (resp. an edge) only if this node (resp. edge) does not already exist. 

4.2 Cons t ruc t ion  

We have already mentioned that we do not have to compute M U at any time. 
Indeed, with this method, solving the safety problem is reduced to finding a path in a 
digraph. This is highlighted by the following protocol: 

1) For each subject U in the initial protection state, create a node defined as 
follows N u = {(U,O,Z~)]O~ ZT^ (E~ = (Rn[U,O]))  ^ Z ~ : ~ O }  . 

8. The notation [U,O]*, instead of [U,O], indicates that we do refer to the matrix 
representing the maximal state. 
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At any time, this definition represents the privileges present in the 
matrix for this user 9 . 

2) Apply the commands up to reach a maximal state 1~ . The maximal state, 
in this case, is characterized by the matrix and by the graph. Both are 
needed to define the final protection state. 

3) Reformulate the safety problem in terms of  two conflicting sets of  nodes 
and find if a path exists between these two sets. 

Each step of  this process is better understood by showing how it is achieved in 
our running example. Therefore, we need to define new commands to characterize our 
authorization scheme: 

command R"I(UI: user, U2: user, Fl: filel, ~1: node, ~2: node) 
i f o e  [ U l , F l ] A e e  [U2,F1] A ((Ul,O,r)lO~ ~'file A r e  [U1,O]} ~ N  1 

then make_node ~7~2 --- {(U2,0, r ) l d E ~ f i l e 3 A r ~  [U2,O]} 
makeedge  from ~r~ to 

end if 

Compared to command R'  I, we see that R"  1 contains a third test in its conditional 
part: 

1) o e [U1,Fa]Aee  [U2,F1] deals with the authorization scheme itself 
(identical to R '  1). 

2) ((U1,O , r)]O E ~r A r e [U1,O]} ~ NI identifies in the graph the node 
to which the pnmmve  operation make_edge will be applied. The rule 
will be applied for each node that satisfies this definition. As a result, for 
a given triple (U1,U2,FI), this rule will create one node N 2 but several 
links could be created, originating from various nodes N 1 to N 2. 

Keeping the same principles in mind, we define two new rules R"2rea d and 
R"2write to implement the second rule. Namely: 

command R "2read(Ul: user, U2: user, El:file 2, 9~l: node, 9~2: node) 
i f w ~  [Ut ,FI]AOE [U2,F1]A { (U l ,O , r ) lOE  Z f i l e3ArE [UI,O]} ~ff(1 

then 
make_node 9~2 = { (U2,O , r) ] O E ~,file 3 A r e [U2,O ]} 
make_edge from ~ to 

end if 

command R "2write(Ul: user, U2: user, FI: file 2, 9{ 1: node, ~(2: node) 
if W~ [UI,F1] Ao~ [U2,F1]A {(U1,O ,w)]O~ ~file 3 A W E  [U2,O]} c 9~1 

then 
make_node N2 = {(U2,O, w)lO e ~file 3 A w E [U2,O]} 
make_edge from ~ to 9~2 

end if 

9. 9~ is identical to Yvf U if and only if there is no edge originating from ~ .  In general, 
this is not tree and we have 9~ c_ 9flu. 

10. The task of constructing the graph is finite because the number of nodes is at most a 
linear combination of the number of cells in the maximal state matrix of Section 3.2 
- -  the size of which is finite [14]. 
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0 

~ (a'O'r'R)[O e ~:'r^ (~:R = (• n [a,O]) ) A :~R ~ ~}~ 

'O'r)lO�9 s A r e  [b, 

@ 

~,O,]~R)IO�9 ZTA (~.R = (~ ~[b,O]) ) AZR #(,~5 ~ D 

~(c,O,r)lO e :~me3 ̂  w e [c,O]} ) 

@ 

( { (c,O,r)lO �9 Xfite3^ re  [c,O] 

~ (c,O,Y.~t)[O �9 ~:TA (~:~. = (~. c~ [c,O]) ) ^ ~:R * 0 } )  

Fig 1. Example of a Privilege Graph 

In the first step, we create the nodes O, O, and @. They refer to the protection state 
of Table 3. In the second step, we can apply, for instance, the following sequence of 
command applications that leads to a maximal state: R"l(a,b,f ,O,O ) 
R"2read(b,c,g,@,O) - R"2wrae(b,c,g,@,O), R"2read(b,c,g,O,O). This is represented in the 
graph of Fig. 1 which could have been obtained with any other sequence. The third step 
is detailed in the next subsection. 

4.3 Resolution of the safety problem 

To solve the question Q1 of our safety problem, we run the following steps: 

1) Check in the matrix i f a  has read access to i; if the answer is no, go to 
the next step. 

2) Identify in the matrix the subjects who have read access to i; the only 
subject with that right in our example is c. 

3) Identify in the graph every node which contains the triple (c,i,r); both 
nodes @ and �9 have this property in our example. 

4) If a path can be found between the node representing the set of privi- 
leges of a (O) and one of the nodes identified in step 3, then, we know 
that a can read i; in this case the existence of the path between O and �9 
( arcs A and D) implies a positive answer to the question. 

For the question Q2, the same scheme leads us to deduce a negative answer 
because no path exists, neither between the nodes O and 0 ,  nor between @ and @. 
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4.4 Discussion 

We have already mentioned that this method was only efficient for specific 
authorization schemes. The conditions under which our method is worth being used are 
recalled hereafter: 

1) Sets of  granted privileges should not contain access rights on objects 
checked in the conditional parts of  the commands. This ensures that the 
conditional part can be evaluated by the sole inspection of  the matrix, 
without looking at the graph (of course, the node identifcation still 
requires inspection of  the graph). In our example, for instance, we grant 
privileges on objects of  type file 3 but the conditions always checks files 
of  type file t or file 2. If  this was not the case, the expression of  the condi- 
tion, though possible, would be cumbersome and require to check for 
the existence of  some well-defined node in a specific path. It is clear that 
the complexity of  this process would impede the usefulness of  this solu- 
tion. 

2) Sets of granted privileges should have small mutual intersections. 
Clearly, the best situation consists of  distinct sets of  privileges. This will 
minimize the number of  edges created. 

3) If  the safety problem is made of  a conjunction of  n questions, such as 
(r ~ [a,i]) ^ (w e [a,i]) , then its solution is found as the conjunction of  

the n answers to each individual question. In this case, ( t r u e  A f a l s e )  

r e t u r n s  f a l s e .  

The following example highlights the algorithmic complexity of  the method 
when these two requirements are satisfied. Consider the initial access matrix 
represented in Table 8 and the command R e. 

a: u s e r  

b: u s e r  

C: u s e r  

x : f i l e  l y : f i le  1 

e,o,r, w 

e ,o ,r ,w 

Z : f i l e !  u : f i le  2 

e ,o ,r ,w 

e ,o , r ,w  O,r,W 

v : f i l e  2 w : f i l e  2 

e ,o , r ,w  

e ,o , r ,w 

Table 6. A simple Typed Access Matrix 

command Re(UI: user, U2: user, FI: f i le l ,  F2: f i le2)  

if o ~ [U1,F1] ^ e E [U1,F2] 
then enter e into [U~ F2] 

Suppose also the existence of a rule R r (resp. R w )  equivalent to R e where the right 
e has been replaced by the right r (resp. w). 

In terms of privileges sets, we can rewrite tl this authorization scheme as: 

11. Actually, one such rule must be written for each subset of the set {e , r ,w} .  They 
determine the definition of N 1 but are equivalent for the primitive operations 
involved. 
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command R'e(UI: user, U2: user, Fl: filel, ~1: node, 96: node) 
if o �9 [Ul,F1] A {(U2,O , Y,~)[O e 5~file 2 A (Y'R = {e} c~ [U2,O]) A XR # ~ }  c 9~1 

then 
make_node N 2 = { (U 1,O, XR) [O �9 Y, file 2 A (Y.~. = ( {e; r, w} c~ [U 1,O]) ) A EX # ~}  
make_edge from ~ to 9 6 

end if 

In this case, the two above requirements are satisfied: i) objects involved in the 
condition are distinct from those granted and ii) the sets of  privileges granted are 
distinct. 

Hence, suppose that we have n users. Each user has the o right on at least one 
object of  t ype f i l e  1. Furthermore, each user has r rights that can be granted on m objects 
of  type  f i le  2. Then, in this case, TAM requires n x r x m x (n - l )  rule applications to 
reach a maximal state. With the privilege graph, it requires n x r x (n - 1 + n - 1). Thus, 
when the requirements are satisfied, the complexity is reduced by a factor 
approximately equal to m / 2 .  Furthermore, in general, we will have m>>n.  Of course, 
if the requirements are not satisfied, the best trade-off must be found between pure TAM 
and pure privilege graph, based on complexity evaluation. This evaluation can only be 
made with full knowledge of  the access matrix and of  the rules. 

In order to show the usefulness of  the method, we show hereafter real-world 
examples where the requirements are satisfied, and where, therefore, the use of  privilege 
graph must be preferred to TAM. 

5 Real World Examples 

In this section, we wish to stress that the authorization scheme presented in 
Section 3 is not artificial; it is representative of  privilege transfer features that can be 
found in most real life systems. To show this, we consider three examples based on 

�9 Unix TM : a . x i n i t r c  file, a . r h o s t s  file and s e t u i d  files. 

5.1 The . x i n i t r c  File 

When running, the X Window System initializer looks for a specific file in the 
user's home directory, called . x i n i t r c ,  to run as a shell script to start up client 
programs. Daily practice shows that novice users can encounter some difficulty to 
configure correctly this file. I f  a novice user trusts another user, more expert in X than 
himself, he may prefer use the expert's configuration file rather than bother to 
understand all the commands and options. To do so, an easy solution is to establish a 
symbolic link between his own .xinitrc file and the expert's file 12 . Then, if the so- 
called expert enhances his set-up file, the novice will enjoy the result as well. 

From a security point of  view, this can also be a good solution. Indeed, if the 
novice chooses inappropriate options or commands, this file will turn out as a trapdoor, 
letting his data unpl:otected. Using the expert's file - -  who should be aware of  the 
vulnerabilities - -  his data security is enhanced. Of course, he is at the mercy of  this 

12. in -s -expert/.xinitrc ~novice/.xinitrc 
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expert who can introduce a Trojan horse in his configuration file, and then acquire most 
of  the novice's privileges 13 . This is exactly what the first rule of  our authorization 
scheme wanted to characterize in its conditional part: the expert owns the. x i n i t r c  file 
executed by the novice. 

5.2 T h e .  rhosts File 

To log in a Unix system, a password is required. However, there is a mechanism 
in Unix that allows remote trusted users to access local system without supplying a 
password. This functionality is implemented by the . r h o s t s  file which enables to 
bypass the standard password-based authentication: if in John's home directory there is 
a . r h o s t s  file which contains Fred's username, then Fred, when logged in another 
machine, can establish a remote connection to John's machine and be identified as John 
on this machine, without typing John's password. Once again, this allows John to grant 
Fred almost all his privileges. This feature is frequently used, for instance if John wishes 
Fred to take care of  any urgent work during his vacations, without giving him his own 
password. Another advantage of this feature is to enable remote login without 
transmitting a password on the network where it would be vulnerable to wire tapping. 

If  such a file exists, any user who has write access to J o h n ' s .  r h o s t s  can get this 
set of  privileges. This is an example of the second rule of  our authorization scheme: a 
user who can write in John's . r h o s t s  can read and write the same files as John 14 . 

5.3 Setuid Files 

In Unix, every process holds the same privileges as the user for whom the process 
is run. However, it is possible to let a process get the privileges of the owner of  the 
program rather than the privileges of  the user initiating the process. This is particularly 
useful when an operation needs more privileges than held by the user. An example of  
this is the program /bin/passwd that changes user passwords: every user must be able 
to change his own password but this operation requires to write in a protected file, 
usually the / e t c / p a s s w d  file, to which no user has write access except the superuser; 
to do s o , / b i n / p a s s w d  uses the setuid facility to run with superuser privileges on behalf 
of  less privileged users. This functionality has many other applications, all of  them 
being examples of  grants of  sets of privileges by the owner of  the program to the user 
of  the program. As long as these setuid programs are correct and no low privileged user 
can create or modify such programs, the security is satisfactory. Indeed, this feature 
strengthens security since, without this feature, users should be granted more privileges 
constantly. But if a setuid-program owner trusts another user and gives him write access 
to his program, he is at the mercy of  this user. Such behaviour is another example of  the 
second rule of  the authorization scheme given in Section 3.1. 

13. Actually, the expert cannot acquire all the novice's privileges since, for instance, 
without knowing the novice's password he will not be able to change it. Other specific 
privileges could be denied to the expert due to the fact that, for instance, he is not 
physically located at the same place than the novice, etc. 

14. It is clearly a very bad idea to grant another user write access to your . rhos  t s  file but 
this is another problem! Preventive and/or corrective actions are beyond the scope of 
this paper. 
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6 Potential Applications of the Privilege Graph 

6.1 Practical Solutions to the Safety Problem 

It has already been explained at length how the privilege graph formalism could 
be used to analyse in an efficient way the safety problem. But to know whether an unsafe 
state is reachable is not enough: we wish to know what can be done to prevent to reach 
this state, i.e., which modification of the protection state can solve the problem. The 
graph enables to identify which paths are conflicting with the security constraints. In our 
experiments, this feature has proved to be helpful to solve conflicts. 

6.2 Quantitative Evaluation of Security 

The safety problem accepts only a boolean answer: either an unsafe state is 
reachable or not. There is no information on how easily or how fast the unsafe state can 
be reached.Yet, in most practical systems, attacks and intrusions are more or less easy 
and fast according to the configuration of the system. For instance, it can be more or less 
difficult to guess a user's password. In the safety problem, either you consider that 
passwords are guessable and then the system is unsafe, or that no password can be 
guessed and then ignore that indeed some of them can be guessed by chance or by brute 
force 15 . 

With the privilege graph, it can be envisaged to assign a weight to each edge 
corresponding to the likelihood associated to this privilege transfer; for instance, if an 
edge represents the possibility to guess userA's password, the corresponding weight can 
be lower if A's password is in a dictionary than if it had been carefully chosen. 
Moreover, it is possible to consider that successful attacks are represented in the graph 
as paths between potential attackers' privileges (e.g., non-users, or ftp users) and 
potential targets' privileges (e.g., superuser). The system security can then be assessed 
not only by the existence or absence of such a path, but also by the length of this path 
and the weights on the traversed edges. This approach could lead to a quantitative 
evaluation of the operational security but, firstly, open theoretical problems have to be 
solved, as discussed in [5]. 

6.3 Intrusion Detection 

Intrusion detection is another potential application of the privilege graph: if it is 
possible to correlate the user's behaviour observed by an intrusion detection system 
with a progress in the privilege graph towards a potential target, alarms of different 
levels can be triggered according to the likelihood to reach the target. This approach is 
similar to the pattern-oriented model proposed by [16]. It is probably possible to 
integrate the privilege graph analysis in sophisticated intrusion detection tools such as 
NIDES [8], e. g., in the resolver module, to help in detecting malicious activities carried 
on by a hacker impersonating other users by using their privileges. The graph could be 
used to correlate various suspicious activities that, if considered separately, would not 

15. Of course, intermediate considerations could be that low privileged users' passwords 
are guessable and superuser's password is not, but this does not change the problem. 
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bring enough evidence to detect an intruder. Also, their correlation could highlight on 
the graph that some possible attack is progressing along a path leading to a target. 

7 Conclusions 

In this paper, a graphical extension to the TAM model has been proposed to 
represent authorization schemes based on privilege transfers. This formalism provides 
an efficient technique to analyse the safety problem and can be useful to identify which 
privilege transfers can lead to an unsafe state. Further extensions are suggested towards 
quantitative evaluation of operational security and intrusion detection. 

It is our claim that this formalism is flexible enough to represent real world 
systems such as Unix systems. Indeed, it is possible to build a privilege graph by means 
of an automatic tool analysing the permissions in the Unix file system. In this case, 
nodes are privileges held by users or groups and edges are elementary privilege transfers 
corresponding to Unix operations on permissions. A prototype of such a tool has been 
implemented and experimented successfully [5]. 
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