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Abstract This paper describes and demonstrates a view-independent relational model 
(VIRM) in a vision system designed for recognising a known 3D object from single 
monochromatic images. The aim is to derive a model of an object able to effect 
recognition without invoking pose information. The system inspects a CAD model of the 
object from a number of different viewpoints to identify relatively view-independent 
relationships among component parts of the object. These relations are represented in the 
form of a hypergraph. The VIRM can be searched using a best-first technique to obtain 
hypotheses of vehicle poses which match image features. 

1. Introduction 
The recognition of 3D objects from single 2D monochromatic images of unknown scenes is a 
major problem for computer vision. In this paper we discuss the construction of a view- 
independent relational model (VIRM), derived automatically from a CAD wireframe model, and 
its use in recognising 3D objects. The VIRM of the object is a weighted hypergraph, associated 
with procedural constraints. Weights attached to the hyperedges, representing the probability of 
co-visibility of component parts of the object, are used to control the search for object hypotheses 
in recognition, and procedural constraints associated with the hyperedges prune the interpretation 
tree during the search. An early report of this model scheme has been given in [12]. We report 
here several major improvements brought about by adding an automatic model feature selection 
process, and by using the hypergraph to represent relations among clusters of more than two 
model features. We also report the use of the VIRM for recognition of multiple objects. 

In this paper we are only concerned to establish plausible initial hypotheses of objects and 
their poses. The system is used in conjunction with a hypothesis refinement process to recover 
accurate pose and object classes (see Sullivan [9], Worrall et al [10]). The V I R  is used to 
identify extended groups of 2D image features compatible with a hypothesis of the class and pose 
of the object. The VIRM encodes the object by means of five relations: co-visibility, parallelism, 
colinearity, side relation, and relative size. The model scheme is viewer-centred, so that the 
hypothesis generation process does not depend on an initial estimate of pose. However, unlike 
other viewer-centred models, such as those based on aspect graphs ([3,6,7,8]), the present model 
is comprised entirely of view-independent attributes and relations. No search over alternative 
viewpoints is needed during the object recognition process, and the storage required for the 
model is small. The model uses a hypergraph representation associated with procedural 
constraints, expressing relations among two or more features, which can be used to control the 
search in the labelling (or hypothesis generation) process. 

The model is generated automatically from a CAD wireframe model of the object. We 
illustrate the system by using a model of a car, but the approach can be applied to any 
geometrically defined object. The output of the model building phrase is a triple M={V, G, C}, 
which consists of: 

1. A set of extended model features, V, including their shapes and the types of extended 
213 image features, that they might match. 

2. Extended adjacency matrices, G, representing the co-visibility of the model features. 
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3. A set of procedural constraints, C, each associated with a pair of co-visible model 
features, representing selected view-independent relations based on: parallelism, 
colinearity, side relation and relative size. 

The first two elements V and G form the hypergraph representation of the VIRM. A 

hypergraph [1] is defined as an ordered pair H={X, El where X = {x  1, x 2 . . . .  , x n }  is a set 

o f  v e r t i c e s  a n d  E = {e  v e 2 . . . . .  e m}  is a set ofhyperedges suchthat e i ~ X ,  e i '~ ~ ,  i --" 1, 2 . . . . .  m 

n 

and L.) e i = X .  If ]eil = k, then e i is called an order-k hyperedge of the hypergraph. In particular, 
i 

e i is called an edge if l ei] = 2. In this work we consider only edges and order-3 hyperedges. 

2. Construct ion o f  the V l R M  from a C A D  Model  

2.1. The Wireframe Model and Its Projection 
Wirefrarne models of three different types of vehicles are shown in Fig. 1, with the features of a 
hatchback car labelled symbolically (the hatchback car is used in this paper to illustrate the 
approach). The primitives in the wireframe model are line segments. Each is labelled uniquely, 
e.g. nfw_4 denotes the bottom line of the nearside front window, rws_l denotes the bottom line 
of the rear windscreen, etc. (Note that the vehicles are British, the right side is the offside.) 
Throughout this research we assume that both the object and the image are approximately upright 
and that the angle between the axis of the camera and the ground is between 0 and 0raax (=60~ 
These assumptions cover all likely views of a car in normal conditions. 

We start the construction of the VIRM of an object by projecting the CAD wireframe model 
from a number of different viewpoints. Let 

O = {oi, o 2 ..... ore} 
be the set of line segments in the wireframe model of the object. The model of the object is placed 
at the centre of the Gaussian viewsphere. The area (0<q><2n, 0<0<0max) on the surface of the 
Gaussian viewsphere is sampled randomly giving n (=500) viewpoints equally distributed over 
the area. Each sampled image gives rise to a set of projected model line segments: 

s , .  . . . . .  - . . . . .  

i is either a line i represents the projection of model feature o k in sample i. Each s t in which s t 
segment in the 2D image plane represented by its coordinates [[x 1 Y]] Ix2 y211 or an empty set, 
if % is occluded from the given viewpoint. 

2.2. Building Nodes and Node Attributes of the VIRM 
The model primitives are 1-D line segments which provide only very poor constraints for object 
recognition. These 1-D line segments are therefore grouped into 2-D feature complexes which 
form invariant patterns, for example, a planar quadrilateral in the 3D world reliably projects to a 
2-D quadrilateral in the image. The 2-D complexes can therefore be used as "focus features" 
(Bolles & Horaud [2]) providing a starting point for searching for consistent cliques. 

A subset of model features is grouped into a 2D complex if they satisfy the following: 
1. For a given viewpoint, if any one feature is visible, then all are visible, 
2. The features form connected sets on the 3D model and hence the image, 
3. They conform to a known class of shapes (quadrilateral or U-shape curve). 

For example, the windows of the car satisfy the above conditions, but the bonnet of the car does 
not because the line at the bottom of the windscreen may be occluded in views from the rear. For 
the hatchback car, this process groups all 6 windows and the 4 wheel arches into 2D complexes, 
represented as quadrilaterals and U-shape curves respectively. Complexes of model features are 
used in the same way as single model features, and in the following discussion, we use O2a to 
express the set of 2-D complexes and Old to represent the remaining (l-D) model features. 
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Fig.1. Wireframe models of vehicles 

2.3. Building the Co-visibility Hypergraph of VIRM 
The VIRM consists of nodes corresponding to model features, and hyperedges indicating co- 
visibility of features. Co-visibility of model features is generally view-dependent. However, we 
accept features to be co-visible if the probability of their co-occurring in images is high. This 
relaxation of the co-visibility constraints introduces errors, but these errors can be eliminated by 
finding combinations of mutually consistent matches. Currently we only use the co-visibility of 
pairs and triples of features. 

2.3.1. Pairwise Co-visibility - Edges of  the hypergraph 

The pairwise co-visibility of two features is quantified by the conditional probability of observing 
one feature given the presence of another, represented by 

A 2 ( i , j )  = p {oil oi} 

Fig. 2 shows a part of co-visibility hypergraph of the VIRM of the hatchback car (a sub- 
hypergraph of G), where only the windows of the car are shown. (NB: p {oil oj} is shown to the 
right side of the arc from i to j). 

0 . 4 ~  40 

Fig.2. Part of the pairwise co-visibility hypergraph of the VIRM of a car 

2.3.2. Co-visibility of  Feature Clusters - Order-3 tIyperedges of  the tIypergraph 

Pairwise co-visibility provides only weak constraints on component parts of the object. It can be 
extended to include triples of features containing at least two 2-D complexes. For a cluster of 
model features {o i, oj, ok}, we consider all the n projections of the model features and estimate 
the probability of their co-occurrence in the sampled images. The quantified co-visibilities of 
feature clusters are represented by means of the adjacency matrix of the hypergraph 

A 2 ( i , j , k )  • p{okl (Oi, Oj) } 

in which % oj c o2a. This gives an order-3 hyperedge connecting nodes {o i, oj, ok} with weight 
p {okl (% %.) } to represent their co-occurrence. 
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2.4. Geometrical Constraints- Procedures Associated with Edges of the VIRM 
Although simple geometrical relations are inherently view-dependent, some are at least partially 
insensitive to view and provide weak constraints on pose. We consider, in particular, four 
pairwise relationships: parallelism, colinearity, side relation and relative size. Other view- 
independent relations, such as connectivity, symmetry, etc., are possible but have proved to be 
more difficult to compute and contribute little to car recognition. 

The constraints on feature pairs are examined by quantifying the above relations as scalars. 
There are no generally accepted ways to quantify parallelism, colinearity, side relation, and we 
have adopted measures which we call parallel ratio, co-line ratio, and side ratio (see below). Each 
is based on overlaps, lengths, and angles among the line segments concerned.We use the Monte 
Carlo methods to obtain statistical evidence of the four relations between each pair of model 
features. If a specified relation between a pair of model features is reasonably stable over all 
views, then it defines a constraint associated with the edge connecting the corresponding nodes 
in the co-visibility hypergraph of the VIRM. 

2.4.1. Parallel Ratio 

Parallel model features appear approximately parallel in the image except when viewed from 
extreme angles. The parallel ratio between a pair of line segments is defined as follows. If the 
two line segments do not overlap (as shown in Fig.3(a)), or if the crossing point of the two lines 
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Fig.3. Definition of parallel ratio 

is within both segments (Fig.3(b)), the parallel ratio is defined as zero. Otherwise, (e.g. Fig.3(c)), 
the parallel ratio is defined as 

rain {1 a , I b, I c, ld}  
p (ab ,  c d )  = c o s O  

m a x  { l a , l b, ! c, la] 

in which l a is the distance between a and its orthogonal projection onto cd, etc., and 0 is the angle 
between the two line segments. The parallel ratio between two line segments lies in [0,1], with 1 
indicates absolutely parallel. If the mean value of p is high (>0.75) and the standard deviation is 
small (<0.25) then the parallel relation is accepted. 
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Fig.4. Parallel ratio between feature pairs 

If one of the features is two dimensional (e.g. a quadrilateral or U-shape curve) and the other 
is a line segment, we record the parallel ratio between the line segment and each of the lines of 
the 2-D feature. If both are two dimensional, we record the parallel ratio of all pairs. 

The pdj~ of the parallel ratios (5(p)) for 4 pairs of features are shown in Fig. 4: (a) nearside 
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roof and nearside sill, (b) offside roof and offside sill, (c) nearside sill and the bottom line of the 
nearside front window, (d) offside upright (windscreen pillar) and nearside sill. The solid curves 
show the distribution function 5(p) of the variable. The dotted curves show the cumulative 
distributions. The first three show good parallel ratio of the pair of model features, with most 
values in the region of [0.8, 1].Therefore the constraints that these features pairs are parallel are 
accepted and are coded into the model. In Fig. 4(d), the parallel ratio is evenly distributed, and 
no parallel constraint exists between the pair. 

2.4.2. Colinear Ratio 

Colinearity between object features is preserved by the perspective transformation. Given two 
line segments ab and cd (assuming that ab is longer), as shown in Fig.5, we construct a minimal 
rectangle whose long axis is parallel to ab and encloses ab and cd. Let w be the length of the side 
of the rectangle parallel to ab, h be the length of the perpendicular side of the rectangle, and 0 be 
the angle between the two line segments. Coline ratio is defined as in Fig.5. 

c ( a b ,  c d )  = 

Fig.5. Definition of coline ratio 

o h>w 

(I - h )  cos0 h < : w  

The expected value for true colinearity, and the acceptance criterion is similar to that of 
parallelism. 

2.4.3. Side Relation 

Side relation, meaning one feature is to the left (or right) of another in the image, is view- 
independent if the object is solid and ff the roll of the camera is limited (i.e. if the object and the 
image are both "upright"), though this breaks down if the object has significant concavities. The 
side relation of a point P to a directed line segment a--/i is used in the following way: Let V be the 
vector from a to b. P is said to the left (right) of line segment a--/i if P is to the left (right) of V. To 
define the side relation between two features, all the line segments involved are labelled with 
directions so that they can be used as vectors. Given line segment ab and a featurefand assuming 
that there are n I points infwhich are on the left side of ab and n 2 points which are on the right 
side, the side ratio of featurefwith respect to line segments ab is defined as: 

n 1 - n 2 
s (ab,.O = - -  

n l + n  2 

The definition of side relation involving compound features is similar to that of parallelism. 
If one feature is always at the right (left) side of another the side relation constraint is accepted. 

2.4.4. Relative Size 

Relative size depends on the position and orientation of the camera, the focal length and the view 
angle. But provided that the focal length to distance ratio is not very small, and the object is not 
very large, the size changes of the different component parts of the object remain similar. The 
main effect on relative size is then due to the view angle. In the case of a two dimensional feature 
(e.g. a quadrilateral), at least one of its two dimensions is relatively stable and thus can provide 
bounds on the relative size of features. As an example, Fig. 6 shows a quadrilateral (Q) together 
with several projected shapes (Q1, Q2, 03) when viewed from different angles. At least one of its 
two dimensions remains at least 70% (1/4~) of its original scale, and can be used to provide 
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bounds for the relative sizes of component parts of the object. 

Q .~.View-direction~ QI: 

~ t  ~,,View-direction 
. V i e w - d i r e c t i o h a ~  

I ~ \ 

Fig.6. Variation of a quadrilateral viewed from different directions 

Relative size is only used in feature pairs including at least one 2-D complex. Under 
perspective transformations its longest observed edge (the pseudo-height of the feature) in the 
image is expected to remain stable to some degree. The relative size of two features (r) is defined 
as the ratio of the distance between the features in the image to the pseudo-height of the 2D 
feature (if both features are 213, the larger pseudo-height is used). The distance between two 
features is defined as the shortest distance from the vertices in one feature to the vertices in the 
ether. If both features are 2D, their pseudo-heights are also compared and stored as a separate 
constraint. These ratios vary considerably, and therefore only provide weak bounds for the 
distributions. The acceptance criterion is similar to that of parallelism. 

2.4.5. Procedural Constraints 

As a result of the statistical analysis, each edge is associated with a set of constraints 
Cij={Pij, Cij, lij, r ij} 

representing relations between the corresponding pair of features {oi, oy}. If a relation is not 
applicable to this pair, the entry is open. We combine the hypergraph and the constraints to obtain 
the VIRM, with the selected constraints being compiled as procedures associated with edges of 
the hypergraph. The compiled constraints are Boolean-valued procedures with two inputs (the 
polyline representations of the two image features concerned). All of the constraints are defined 
in terms of the individual line segments constituting the corresponding features. Vertices in both 
2D model features and 2D image features are labelled in an counter-clockwise order beginning 
with the bottom left vertex. 

3. Application of the VIRM in the Generation of Pose Hypotheses 

The VIRM is used to generate hypotheses of the class and pose of the object of interest. Fig.7 
illustrates the different stages of the hypothesis generation process. The Canny [5] edge detector 
is first applied to the original image to get edgelets (Fig. 7(b)). These edgelets are grouped into 
213 features (Fig. 7(c)). Each image feature is associated with all permissible model features, for 
example, quadrilateral image features are associated with any of the windows of the car. The 
image features are then matched with the VIRM by a depth-first search, restricted to only those 
cases with high co-visibility as recorded in the hypergraph. Typically around 10 consistent 
hypotheses are generated which reflect the inherent symmetries of the car (examples are shown 
in Fig. 7(d), (g) & (j)). 

The hypotheses are used to estimate the pose using a quantitative method described by Du 
[12] in which two labelled non-parallel, non-colinear, co-planar lines are used to estimate the 
position and orientation of the camera, by means of pre-compiled look-up tables. Each of the 10 
extended features groups identified by the VIRM gives rise to a number of pose hypotheses, 
based on the labelled 2-D features in the extended group. Fig. 7 shows three labelled feature 
groups ((d), (g) & (j)), each containing two 2-D features, so that each gives two pose hypotheses. 
Where these pose hypotheses are not consistent with each other, the labelling is rejected (Fig. 7 
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Fig.7. Hypothesis generation process 

(k), (1)). In the case here only two of the 10 hypotheses are retained by this requirement (Fig. 7 
(d) & (g)), giving two pairs of very similar possible poses. These accepted hypotheses must be 
subjected to further evaluation using view specific methods which are not discussed here. Details 
of the pose verification process can be found in Brisdon [4], and Worrall [10]. 

Fig.8 shows further examples of hypotheses superimposed on the images, which in theses 
examples have been selected manually from the few candidates. It should be noted that, as 
expected, the pose recovered is only approximate. The model can be used in the recognition of 
occluded objects (Fig.8(f)), as well as scenes containing multiple objects (Fig.8(c)). Table 1 
shows the number of hypotheses generated against the size of the combinatorial search space. To 
make the comparison realistic, the search space quoted represents the number of possible triples 
of feature labellings, containing at least one 2-D feature - these could form a comparable basis 
for viewpoint inversion and subsequent view-dependent reasoning. It can be seen that the VIRM 
is very effective in identifying the very few labellings in the interpretation tree which are 
mutually consistent with a single view of the vehicle model. 
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(a) Selected from 12 poses (b) Selected from 10 poses (c) Selected from 19 poses 

(d) Selected from 14 poses (e) Selected from 7 poses (f) Selected from 7 poses 

Fig.8. Correct instances superimposed on a representative set of original images 
Table 1: Number of hypotheses against the search space 

Image Number of 
Hypotheses 

Number of 
Quadrilaterals 

Fig. s(a) 12 

Fig. 8('0) 10 

Fig. 8(c) 19 

Fig, 8(d) 14 

Fig.8(e) 7 

FiB. 8~f) 7 

4. Results  and Discuss ion 

Number of U- 
shape Curves 

Number of Line 
Segments 

9 7 112 

8 4 128 9.4 X 107 

17 6 98 1.3 X 108 

7 6 57 1.7 X 107 

8 

112 

121 

Size of Search 
Space 

8.3 x 10 7 

1.7 x 107 

6.2 x 10 7 

We have built VIRMs for the three vehicles shown in Fig. 1.Table 2 summarises the result of the 
model building process. The results are obtained from 500 samples of the view with the camera 
upright and its position limited to within 0 and 60 ~ of the model's ground plane. In representing 
the fastback car, an extra shape feature, a triangle, was introduced. The data change slightly each 
time the model is built because viewpoints are selected randomly, but we have found that this 
change is small and has no appreciable influence in the later object recognition process. The 
number of constraints generated in the model building process depends on the thresholds selected 
for the acceptance criteria. Such thresholds are inherent m any recognition problem, and must be 
determined by experience. However, in our experiments the effects of the thresholds on final 
recognition performance appear not to be dramatic, mainly affect the time used in recognition. 

The time used to construct the relational model is high, since all the relations among the 
component parts of the object need to be assessed. At the present state of development the code 
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runs in pop11 and we have made no attempt to make the code efficient. Model generation takes 
about one and a half hours on a Sun Sparc 2 with 24 MB memory. However, storage of the 
eventual VIRM is very efficient. We need an m by m matrix to represent the pairwise co-visibility 
of the object and a similar m2d by m2a by m matrix (m2a is the number of 2-D complexes) to store 

co-visibility of feature clusters, and a set of procedures (typically 100 because a procedure may 
include more than one geometrical constraint) to represent geometrical relations among the 
component parts of the object. 

Table 2: VIRMs for different types of vehicles 

Numbar of Hatchback 

22 

Fastback 

26 1-D Features 

2-D F~ttmss 10 12 12 

Pairwiso Co-visibility 107 134 152 

Triple Co-visibility 300 424 468 

Parallel Constraints 43 58 67 

Colinear Constraints 21 25 31 

Side Relation Constraints 72 85 85 

35 Relative Size Constraints 42 

Estate 

28 

49 

5. S u m m a r y  

A method has been described for creating a view-independent relational model of an object used 
in object recognition to aggregate features related to a pose hypothesis. A match is accepted as a 
hypothesis, and therefore will be Rurther evaluated, only when its relational support passes a 
certain threshold. The model is created off-line and its use in object recognition requires no non- 
linear calculations. 
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