
Proving the Soundness of a Java Bytecode

Verifier Specification in Isabelle/HOL

Cornelia Pusch?

Institut für Informatik, Technische Universität München

80290 München, Germany
http://www.in.tum.de/~pusch/

Abstract. Compiled Java programs may be downloaded from the World
Wide Web and be executed on any host platform that implements the
Java Virtual Machine (JVM). However, in general it is impossible to
check the origin of the code and trust in its correctness. Therefore stan-
dard implementations of the JVM contain a bytecode verifier that stati-
cally checks several security constraints before execution of the code.
We have formalized large parts of the JVM, covering the central parts
of object orientation, within the theorem prover Isabelle/HOL. We have
then formalized a specification for a Java bytecode verifier and formally
proved its soundness. While a similar proof done with paper and pencil
turned out to be incomplete, using a theorem prover like Isabelle/HOL
guarantees a maximum amount of reliability.

1 Introduction

The Java Virtual Machine (JVM) is an abstract machine consisting of a mem-
ory architecture and an instruction set. It is part of the Java language design
developed by Sun Microsystems and serves as a basis for Java implementations.
However, it also can be used as intermediate platform for other programming
languages, since the JVM works independently of Java. The corresponding com-
piler then generates architecture-independent JVM code instead of machine code
for a specific host platform. This approach allows execution of compiled JVM
code on any host platform that implements the JVM. However, this advantage
does not come without risks. One can download any JVM code from the World
Wide Web, and in general it is impossible to check the origin of the code and
trust in its correctness.

The Java Virtual Machine Specification (short JVMS) [LY96] describes a set
of static and structural constraints that must hold for the code to assure safe
execution, and requires that the JVM itself verifies that these constraints hold.
However, this is not a formal specification, and it is in the nature of informal
descriptions to contain ambiguities or even inconsistencies. Our goal is to give
a fully formal specification of the JVM and a bytecode verifier that overcomes
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this problem. We think that this work can be useful in several aspects: on the
one hand it allows the formal investigation of central concepts of the JVM,
such as the correctness of the bytecode verifier and compiler verification; on the
other hand it may serve as reference specification that is more accurate than the
informal description.

Formalizing a real life programming language is a very complex task and it
is likely that an approach done with paper and pencil also will be susceptible
to more or less grave errors. Therefore, tool assistance is required to reach a
maximum amount of reliability. A theorem prover like Isabelle/HOL [Pau94, Isa]
offers valuable support in developing consistent specifications and correct proofs.

To avoid the execution of incorrect JVM code, several verification strategies
for JVM code may be used, for example:

- Cohen [Coh97] has implemented a so called defensive JVM using the theorem
prover ACL2. In this approach runtime checks are performed to guarantee
a type-safe execution of the code.

- The JVMS [LY96] describes Sun’s implementation of a bytecode verifier,
where most of the type-checking is done statically but several parts are
delayed until runtime.

- Qian [Qia98] has developed a specification for an extended bytecode verifier,
where all type-checking is done statically.

The specification of a bytecode verifier in Isabelle/HOL presented in this paper
follows Qian’s work. However, our formalization of the operational semantics
[Pus98] has been done independently of Qian’s approach. Therefore we had to
deviate from Qian’s work in several points to make it fit to our approach.

There are several other approaches to formalize (parts of) the JVM (see
[Ber97, FM98, Gol97, HBL98, SA98]). As far as we know, our work is the first
to formally prove the soundness of a bytecode verifier using a theorem prover.

The rest of the paper is organized as follows: section 2 briefly introduces
Isabelle/HOL. Section 3 describes our formalization of the JVM, in particular
the representation of runtime data and the definition of an operational semantics
for the JVM instructions. In section 4 we introduce the notion of static well-
typedness and give a formal specification for a bytecode verifier. Section 5 defines
the notion of soundness for a bytecode verifier and sketches the corresponding
soundness proof. In section 6 we discuss two extensions we have added to the
specification, and section 7 summarizes our results and outlines future work.

2 Isabelle/HOL

Isabelle [Pau94, Isa] is a generic theorem prover that can be instantiated with
different object logics. The formalization and proofs described in this paper
are based on the instantiation for Higher Order Logic, called Isabelle/HOL.
Subsequently we give an overview over the basic types and functions used in
this paper.
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Isabelle’s type system is very similar to that of ML, with slight syntactic
differences: function types are denoted by τ1 ⇒ τ 2, where τ1 ⇒ τ 2 ⇒ . . . ⇒ τn

may be abbreviated as [τ1,τ2,. . .] ⇒ τn. Product types are written as α × β × γ.
Functions are preferably defined in a curried style (i.e. f a b c). Occasionally

we have to define uncurried functions f (a, b, c); this is due to restrictions of
Isabelle’s package for well-founded recursive functions.

The basic types bool, nat and int are predefined. Isabelle/HOL also offers
the polymorphic types α set (with the usual set operators) and α list. The list
constructors are [] (‘nil’) and x#xs (‘cons’). The functions hd xs and tl xs return
the head and tail of a list. The i-th list element is written xs ! i, length xs computes
the length of a list, and set xs converts a list into a (finite) set. We also have
map f xs to apply a function to all elements of a list, and zip xs ys takes two lists
and returns a list of pairs.

Inductive datatypes can be defined by enumerating their constructors to-
gether with their argument types. For example, the predefined datatype for
optional values looks as follows:

α option = None | Some α

In Isabelle/HOL, all functions are total. Partiality can be modeled using the
predefined ‘map’ type which is defined as follows:

α ; β = (α ⇒ β option)

We use the infix operator !! of type [α ; β,α] ⇒ β for ‘partial’ function applica-
tion. Whenever f x = Some y then f !! x = y. In the case of None the result will be
an unknown value arbitrary, defined as εx. False (where ε is Hilbert’s description
operator).

Throughout this paper, we write logical constants in sans serif, whereas vari-
ables and types appear in italic.

3 The Java Virtual Machine

JVM code is stored in so called classfiles. If the code is produced by compilation
of a Java program, each Java class is translated into a separate classfile. Simi-
lar to Java classes, a JVM classfile contains information about inheritance and
implementation relations, as well as field and method definitions. Method code
consists of a sequence of JVM instructions (bytecode). The machine model of the
JVM has different memory areas for runtime data: a heap stores runtime objects
and a frame stack contains state information for each active method invocation.
Each method frame has its own operand stack and local variables array. Similar
to Java, the JVM has an exception mechanism to treat error conditions. In our
formalization, we consider a set of predefined exceptions, but do not yet treat
exception handling.

We have formalized large parts of the JVM, including the classfile structure
and the operational semantics for a subset of JVM instructions covering the
central parts of object orientation. Due to lack of space, we cannot present the
entire formalization that can be found in [Pus98, NOP]. However, we introduce
the main ideas of our approach.
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3.1 JVM classfiles

The first component of a classfile consists of the constant pool, a kind of symbol
table containing name and type information. This is followed by a flag indicating
whether the classfile describes an interface or a class, several pointers to constant
pool entries returning the names of the current class, its superclass and direct
superinterfaces, and finally the field and method definitions:

α classfile = cpool × iflag × idx × idx × idx list × fields × α methods

The type for methods is parameterized over the type of the method code, which
may be instantiated later. This allows us to formalize the JVM instruction set
and its operational semantics in a modular way.
A predicate wf classfiles checks the well-formedness of classfiles, e.g. the super-
class and superinterface relations must be acyclic and method overriding must
obey certain type restrictions.

Example: Consider a set of classfiles (see figure 1) consisting of class Object, as
well as the classes C0, C1, C2, and Q. C0 and Q are direct subclasses of Object;
C1 and C2 are both extensions of C0. Class C0 contains an integer field f0, class
Q contains a method m.
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Fig. 1. Example class hierarchy

Figure 2 shows the contents of classfile Q. The interface flag is set to False, cpool
index 1 points to the name of class Q. This information extends over two entries:
the keyword Class indicates the entry type, index 9 points then to another entry
containing the string Q (with keyword Utf8). The superclass index points in the
same way to class name Object. The description of method m contains again
two pointers. The first one returns name m, the second one points to a type
descriptor. In our case, method m gets two arguments of type C1 and C2 and
returns an integer. The code section m code will be shown later.

3.2 JVM Runtime Data

The JVM operates on two different types of values, primitive values and reference
values. We consider only primitive values, of type integer. The reference values
are pointers to objects, the null pointer is expressed by a special null reference.
The realization of object references is kept abstract: we model them by an opaque
type loc that is not further specified. We define a datatype for JVM values as
follows:
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cpool cpool

iflag False
idxclass 1
idxsuper 2
idxinter []
fields []

methods (7, 10, m code)

cpool
1 Class 9

2 Class 8
...
...

7 Utf8 m
8 Utf8 Object

9 Utf8 Q
10 Utf8 ([L C1,L C2],I)

...
...

Fig. 2. Classfile for Q

val = Intg int | Addr loc | Null

You may have noticed that in contrast to our formalization, the JVMS [LY96]
does not require values to be tagged with their runtime types. However, our
approach does not impose any restrictions on possible implementations, because
the type information is not used to determine the operational semantics of (cor-
rect) JVM code. We use the type tags only to state and prove the correctness
of the bytecode verifier, where the runtime types are checked against the static
type information.

3.3 Operational Semantics of JVM Instructions

The JVMS [LY96] describes the operational semantics for each instruction in
the context of a JVM state where several constraints hold, e.g. there must be an
appropriate number of arguments on the operand stack, or the operands must
be of a certain type. If the constraints are not satisfied, the behaviour of the
JVM is undefined.

In our approach, we formalize the behaviour of JVM instructions with total
functions. If a state does not satisfy the constraints of the current instruction,
e.g. if an element should be popped from an empty operand stack, the result will
be the unknown value arbitrary.

We have structured the instructions into several groups of related instruc-
tions, describing each by its own execution function. This makes the operational
semantics easier to understand, since every function only works on the parame-
ters that are needed for the corresponding group of instructions:

instr = LAS load and store | CO create object | MO manipulate object
| MA manipulate array | CH check object | MI meth inv
| MR meth ret | OS op stack | CB cond branch | UB uncond branch
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Now, we can instantiate the type parameter for the code section of a classfile
and introduce the following type abbreviation, describing a partial mapping from
class names to classfiles:1

classfiles = ident ; (instr list) classfile

Example: The code of method m is shown in figure 3. Aload i loads the content
of local variable i onto the operand stack. Ifnull 3 compares the top operand
stack element against Null and performs a conditional jump to pc = pc+3. Goto 2

performs an unconditional jump to pc = pc+2. Getfield 4 loads a field described
at cpool entry 4 onto the operand stack (which is in our example integer field
f0). Finally, Ireturn closes the current method invocation and returns the integer
result to the calling method.

pc instr

0 Aload 1
1 Ifnull 3
2 Aload 1
3 Goto 2
4 Aload 2
5 Getfield 4
6 Ireturn

Fig. 3. Code of method m

Execution of a JVM instruction transforms the machine state. The machine
state is formalized as a triple consisting of an exception flag, an object heap, and
a frame stack. For each active method invocation, there exists a frame containing
its own operand stack, a list of local variables, the name of the current class, a
reference to the current method, and the program counter:

frame = opstack × locvars × ident × method loc × pc
jvm state = xcpt option × heap × frame list

If an exception has been raised or the frame stack is empty, execution termi-
nates.2 If the machine has not yet reached a final state, the function exec performs
a single execution step: it calls an appropriate execution function (e.g. exec mo)
and incorporates the result in the new machine state. If execution has reached a
final state, exec does not return a new state. This is modeled by embedding the
result state in an option type:

exec :: classfiles × jvm state ⇒ jvm state option
exec (CFS, (Some xp, hp, frs)) = None
exec (CFS, (None, hp, [])) = None
exec (CFS, (None, hp, (stk,loc,cn,ml,pc)#frs)) =

case (get code CFS cn ml) ! pc of MO ins ⇒ Some ( . . . exec mo . . .) | . . .

1 We have abstracted from the size of instructions and regard the code section as a
list of instructions.

2 We do not yet treat exception handling.
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For example, the operational semantics of the Getfield instruction for object field
access looks like this:

exec mo :: [manipulate object,classfiles,cpool,heap,opstack,pc]
⇒ (xcpt option × heap × opstack × pc)

exec mo (Getfield idx) CFS cp hp stk pc =
let oref = hd stk;

(cn,od) = get Obj (hp !! (get Addr oref));
(fc,fn,fd) = extract Fieldref cp idx;
xp’ = if oref=Null then Some NullPointer else None

in
(xp’ , hp , (od !! (fc,fn))#(tl stk) , pc+1)

CFS denotes a set of JVM classfiles. The operand stack stk is supposed to contain
a reference to a class instance stored on the heap hp. In case of a null reference
an exception is thrown. Otherwise, the referenced object contains class name cn

and object data od. Index idx should point to a Fieldref entry in the constant pool
cp, containing a class name fc, a field name fn and a field descriptor fd. The tuple
(fc,fn) determines the field whose value is stored on the operand stack. Finally,
the program counter pc is incremented.

Execution of the entire code then consists of repeated application of exec as
long as the result is not None. The relation CFS ` σ −→∗ σ’ maps a given set
of classfiles CFS and a JVM state σ to a new state σ’, where the pair (σ,σ’) is in
the reflexive transitive closure of successful execution steps:

` −→∗ :: [classfiles,jvm state,jvm state] ⇒ bool

CFS ` σ −→∗ σ’
def
= (σ,σ’) ∈ {(s,t). exec (CFS,s) = Some t}∗

4 A Specification for a Bytecode Verifier

Standard implementations of the JVM contain a bytecode verifier that statically
checks several security constraints before execution of the code. One main aspect
of the bytecode verifier is to statically derive the types of possible runtime data
and check that all instructions will get arguments of the correct type.

4.1 Static types

As Qian has pointed out in his work [Qia98], the attempt to statically type-check
JVM code requires the introduction of reference type sets instead of single types.
This is due to the fact that, as a result of a branching instruction, a program
point may have multiple preceeding program points. These predecessor points
are allowed to contain values of different types.3 In this case, the types of the
3 Surprisingly, the typing rule for the similar working conditional expression of the

Java source language turns out to be more restricted (see [GJS96] and the discussion
at [Typ]): it requires that the two branches yield two types where the first is a
supertype of the second or vice versa.
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two branches have to be merged to the first common supertype. However, the
JVM allows multiple inheritance of interfaces, and therefore this supertype is
not necessarily unique.

Qian defines a static type system including types representing adresses of
subroutine calls and uninitialized objects. We do not yet consider these aspects
of the JVM, but have added array types. Static types are represented as values
of datatype tys. Among the primitive types, we only consider type Integer. A
reference type is either the type of the null reference (NT), or an interface or
class name (IT id or CT id), or an array type (AT ts, where ts contains the type
of the components of the array). A static type consists then either of a primitive
type or a list of reference types.4 During bytecode verification, type information
of different execution paths has to be merged. In case of incompatible types, the
result becomes unusable. This is expressed by a value of type any, which is either
a static type or Unusable. The return type of methods is denoted by a value of
type tyOrVoid, which is either a static type or Void:

prim = Integer
ref = NT | IT ident | CT ident | AT tys
tys = PTS prim | RTS (ref list)
any = Unusable | US tys
tyOrVoid = Void | TY tys

We abbreviate US (PTS p) and US (RTS r) by Prim p and Refs r.
If two types are merged, the resulting supertype must cover both types.

A type a covers a type a’ (written CFS ` a w a’), if any instruction that is
applicable to all values of type a is also applicable to all values of type a’. The
predicate holds in the following cases:

` w :: [classfiles,any,any] ⇒ bool
CFS ` Unusable w a’
CFS ` Prim Integer w Prim Integer
CFS ` Refs rs w Refs rs’ = (∀r’∈set rs’. ∃r∈set rs. widenConv CFS r’ r)

Qian gives a more restrictive definition identifying the covering of reference types
with the superset relation. In our definition, an element of the subtype needs not
be contained in the supertype, it just must be convertible to one of its elements.

A state type contains type information for all local variables and the operand
stack of the current invocation frame at a certain program point. The local
variables may contain unusable values (as a result of merging two incompatible
types), whereas only usable values may be stored on the operand stack. We
extend the predicate w in two steps to state types:

state type = tys list × any list

` w :: [classfiles,any list,any list] ⇒ bool

CFS ` as w as’
def
=

length as = length as’ ∧ ∀(a,a’)∈ set (zip as as’). CFS ` a w a’

4 Due to restrictions to the construction of inductive datatypes, we model reference
type sets as lists.
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` w :: [classfiles,state type,state type] ⇒ bool

CFS ` (ST,LT) w (ST’,LT’)
def
=

CFS ` map US ST w map US ST’ ∧ CFS ` LT w LT’

Type information for the entire code of a method is collected in a value of method
type. A value of class type maps a method reference to a value of method type,
and a value of program type maps a class name to a value of class type:

method type = state type list
class type = method loc ⇒ method type
prog type = ident ⇒ class type

4.2 Static Well-typedness

A bytecode verifier has to infer type information for each instruction and then
check if the method code is well-typed. In our specification, well-typedness is
checked with respect to a given type. A correct implementation of that specifi-
cation must then compute a type that is well-typed according to the specification.

We define a type checking predicate that checks whether an instruction at
a certain program point is well-typed with respect to a given method type.
Additionally, it checks several other constraints, e.g. an index to local variables
must not be greater than the number of local variables and the program counter
must remain within the current method. These constraints are indispensable
to carry out the soundness proof for the bytecode verifier. The type-checking
predicate makes a case distinction over the instruction to be executed at the
current program point. In case of Getfield, the instruction is well-typed if the
following predicate holds:

wt MO :: [manipulate object,classfiles,cpool,method type,pc,pc] ⇒ bool
wt MO (Getfield idx) CFS cp ∆ maxpc pc =

let (ST,LT) = ∆ ! pc;
(fc,fn,fd) = extract Fieldref cp idx

in
pc+1 < maxpc ∧ is class CFS fc ∧
get fields (CFS !! fc) (fc,fn) = Some fd ∧
∃rs ST’. ST = (RTS rs) # ST’ ∧

widenConv CFS rs [CT fc] ∧
CFS ` ∆ ! (pc+1) w (fd # ST’ , LT)

All well-typedness predicates contain a line of the form CFS ` ∆ ! (pc+1) w type,
which means that the next instruction expects a type according to type. Since
that next instruction has possibly other predecessors, its type information is not
necessarily equal to new type, but rather must cover it.
The above predicate enforces that the incremented program counter pc+1 does
not exceed the code length maxpc. The class fc must be defined and must contain
a field with name fn according to the constant pool entry. The stack must not
be empty and the top stack element must contain a reference type convertible
to the type of fc. Finally, the next instruction must expect a type according to
the field descriptor fd on top of the operand stack.
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Similarly to the execution function exec, we define a predicate wt instr that
selects the appropriate well-typedness predicate for each group of instructions.
We extend the notion of well-typedness to methods, classes, and programs: at
the beginning of a method body, the operand stack must be empty, and the local
variables must contain values according to the type of the current class cn and
the parameter descriptor pd of the current method:

wt start :: [classfiles,ident,param desc,method type] ⇒ bool

wt start CFS cn pd ∆
def
=

CFS ` ∆ ! 0 w ([],(Refs [CT cn])#(map (fd2any CFS) pd))

The code array of a method must not be empty, i.e. its length must be greater
than zero. A method is well-typed with respect to a method type ∆, if it is
well-typed at the beginning of the method body, and if for every program point
in the method body the instruction is well-typed:

wt method :: [classfiles,ident,param desc,return desc,instr list,method type] ⇒ bool

wt method CFS cn pd rd ins ∆
def
=

let cp = get cpool (CFS !! cn);
maxpc = length ins

in
0 < maxpc ∧ wt start CFS cn pd ∆ ∧
∀ pc. pc<maxpc −→ wt instr (ins ! pc) CFS rd cp ∆ maxpc pc

Example: Method m is well-typed with respect to the method type shown in
figure 4. The Getfield instruction at pc=5 requires an element of reference type
on top of the operand stack. This may have been put there either by the Aload 1

instruction at pc=2 or by the Aload 2 instruction at pc=4. This is reflected by the
static type ST ! 5 = [RTS [CT C0]], which covers both possibilities5.

pc ST LT

0 [] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
1 [RTS [CT C1]] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
2 [] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
3 [RTS [CT C1]] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
4 [] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
5 [RTS [CT C0]] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]
6 [PTS Integer] [Refs [CT Q],Refs [CT C1],Refs [CT C2]]

Fig. 4. Static type of method m

A class is well-typed with respect to a class type Γ , if every method defined
in that class is well-typed with respect to the corresponding method type:

wt class :: [classfiles,ident,class type] ⇒ bool

wt class CFS cn Γ
def
=

∀ml rd ins. get methods (CFS !! cn) ml = Some (rd,ins)
−→ wt method CFS cn (snd ml) rd ins (Γ ml)

5 ST ! 5 = [RTS [CT C1,CT C2]] is also a correct type.
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A JVM program is well-typed with respect to a program type Φ, if every defined
class is well-typed with respect to the corresponding class type:

wt classfiles :: [classfiles,prog type] ⇒ bool

wt classfiles CFS Φ
def
= ∀cn. is class CFS cn −→ wt class CFS cn (Φ cn)

5 Soundness of the Bytecode Verifier Specification

A bytecode verifier (or more abstract: a type system) statically determines the
types of all runtime data. A type system is sound, if the statically predicted type
gives a correct approximation of a runtime value produced during execution.6

In this section, we will show that our specification of a bytecode verifier is
sound. For a concrete implementation of a bytecode verifier, it then remains to
be proved that it satisfies our specification.

5.1 Correct Approximation of Runtime Values

In our formalization, runtime values carry some type information (see §3.2),
whereas Qian has to go through the code and assign a type tag to each value
depending on the instruction it has been created by. However, he only gives an
informal motivation that indeed all runtime values can be associated with a tag.
Therefore, our correctness relation between runtime data and static types differs
from that given in [Qia98]:

approx val :: [classfiles,heap,val,any] ⇒ bool
approx val CFS hp (Intg i) at = CFS ` at w Prim Integer
approx val CFS hp Null at = ∃rs. CFS ` at w Refs rs
approx val CFS hp (Addr a) at = ∃ obj. hp a = Some obj ∧

CFS ` at w (fd2any CFS (get obj type obj))

An integer value must have static type Integer or Unusable. The Null reference
is approximated by any reference type or Unusable, and in case of an object
reference Addr a, the corresponding object type must be a subtype of the static
type.

This notion of correct approximation is extended to local variables and the
operand stack:

approx loc :: [classfiles,heap,locvars,any list] ⇒ bool

approx loc CFS hp loc LT
def
=

length loc = length LT ∧ ∀(val,any)∈set (zip loc LT). approx val CFS hp val any

approx stk :: [classfiles,heap,opstack,tys list] ⇒ bool

approx stk CFS hp stk ST
def
=

length stk = length ST ∧
∀(val,tys)∈set (zip stk ST). approx val CFS hp val (US tys)

6 This is often formulated as ‘runtime data must be correct with respect to its static
type’. Technically, there is no difference, but we regard our view as more intuitive.
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5.2 Soundness Proof

Qian states a soundness theorem saying that for statically well-typed bytecode,
the correctness relation between runtime values and static types of the current
operand stack and local variables will be preserved in every execution step.
However, his proof given in [Qia97] remains sketchy, and it turnes out that the
theorem cannot be proved in the given form. A stronger proof invariant has to
be formulated, assuring the correctness not only of the current operand stack
and local variables, but the correctness of the entire state containing all active
invocation frames. In particular, the method executed in the (n+1)-th frame
must correspond to a method invocation of the n-th frame.

We define several auxiliary predicates to formulate the correctness of all state
components: in a correct heap, all objects contain correct data:

correct obj :: [classfiles,heap,obj] ⇒ bool
correct obj CFS hp (Obj cn od) =

is class CFS cn ∧
∀fl fd. (get all fields (CFS,cn)) fl = Some fd

−→ ∃val. od fl = Some val ∧ approx val CFS hp val (fd2any CFS fd)
correct obj CFS hp (Arr fd ad ⇒) =
∀val∈set ad. approx val CFS hp val (fd2any CFS fd)

correct heap :: [classfiles,heap] ⇒ bool

correct heap CFS hp
def
= ∀a obj. hp a = Some obj −→ correct obj CFS hp obj

The predicate correct frame checks whether the operand stack entries stk and
local variables loc have been approximated correctly by the state type (ST,LT).
Additionally, the frame itself must be well-formed, i.e. the class cn is defined,
the method reference ml points to an existing method, and the program counter
pc points to an instruction inside the method code:

correct frame :: [classfiles,heap,state type,frame] ⇒ bool

correct frame CFS hp (ST,LT) (stk,loc,cn,ml,pc)
def
=

approx stk CFS hp stk ST ∧ approx loc CFS hp loc LT ∧ is class CFS cn ∧
∃rd ins. get methods (CFS !! cn) ml = Some (rd,ins) ∧ pc < length ins

The predicate correct frames checks whether a method reference mln+1 and a
return descriptor rdn+1 (belonging to frame fn+1) fit to the next frame fn of the
frame stack. If the frame stack is empty, the method must have return type void
(i.e. return descriptor V). If there exists a frame fn, the last executed instruction
must have invoked method mln+1 with return type rdn+1. Besides that, fn itself
must be correct. These checks are performed recursively on the remaining stack:

correct frames :: [classfiles,heap,prog type,return desc,method loc,frame list] ⇒ bool
correct frames CFS hp Φ rdn+1 mln+1 [] = (rdn+1=V)
correct frames CFS hp Φ rdn+1 mln+1 (fn#frs) =

let (stk,loc,cn,ml,pc) = fn;
(rd,ins) = get methods (CFS !! cn) !! ml;

cp = get cpool (CFS !! cn);
(ST,LT) = (Φ cn ml) ! pc
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in
∃mi c k l. pc = k+1 ∧ ins ! k = MI mi ∧ extract meth cp mi = (c,mln+1,rdn+1,l) ∧
correct frame CFS hp (pop rd CFS rdn+1 ST, LT) fn ∧
correct frames CFS hp Φ rd ml frs

The entire state is correct, if an exception has been thrown or the frame stack
is empty. In case of a nonempty frame stack, the heap must be correct, the top
level frame fn+1 must be correct, and the remaining frame frs must be correct
with respect to the method mln+1 executed on the top level frame and its return
descriptor rdn+1:

correct state :: [classfiles,prog type,jvm state] ⇒ bool
correct state CFS Φ (Some x,hp,frs)
correct state CFS Φ (None,hp,[])
correct state CFS Φ (None,hp,fn+1#frs) =

let (stk,loc,cn,mln+1,pc) = fn+1;
(rdn+1,ins) = get methods (CFS !! cn) !! mln+1

in
correct heap CFS hp ∧
correct frame CFS hp ((Φ cn ml) ! pc) fn+1 ∧
correct frames CFS hp Φ rdn+1 mln+1 frs

Now we can prove the following main soundness theorem:

wf classfiles CFS ∧ wt classfiles CFS Φ ∧
correct state CFS Φ σ ∧ CFS ` σ −→∗ σ’

=⇒ correct state CFS Φ σ’

It says that for a set of well-formed classfiles CFS that are statically well-typed
with program type Φ, program execution in a correct state σ leads to correct
states σ’.7 This means that starting from a correct initial state (invoking the
main method of the executed class), all possible runtime data for a program CFS

is correctly approximated by its static type Φ. Inspecting the definitions of well-
typedness and correct approximation, we are able to conclude that all required
constraints will be satisfied at runtime, e.g. in case of the Getfield instruction,
the top operand stack element will be a reference value Null or Addr a.

The proof of the main theorem has been carried out by induction over
CFS ` σ −→∗ σ’. Then the preservation of the correctness property for a single
execution step had to be shown by case distinction over the instructions.

6 Extensions to the Bytecode Verifier Specification

A bytecode verifier implementing our specification rejects bytecode that would
not do any harm at runtime. Of course, it is not possible to build a complete static
7 Remember that in our formalization, execution of a program is guaranteed by defi-

nition, since we modeled it using total functions.
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type system, since static well-typedness is undecidable. However, we can elimi-
nate two unnecessary restrictions in our specification: instructions that are not
reachable, i.e. dead code, may be neglected during type-checking, and operand
stack values may be of type Unusable if they are not used for further computation.
In fact, optimizing compilers will detect dead code and eliminate it. However,
bytecode may stem from other sources, e.g. may be hand-written. Besides that,
we wanted to check the modularity of our proofs: a modification of our specifi-
cation should not entail too much adaptions of our proof script.

Therefore, we have defined a predicate reach :: [instr list,nat] ⇒ bool. It checks
whether a certain program point may be reached from the starting point. We
have then replaced in our definition of wt method the premise pc < length ins by
reach ins pc. Due to this, we had to adapt our proof invariant: a correct state now
only contains reachable program points. We could then prove the new correctness
statement by using an additional lemma, stating that any reachable state leads
to another reachable state. The existing lemmas were not affected.

Our second extension, the introduction of possibly Unusable values on the
operand stack, did not impose any changes to the proofs at all. It strikes posi-
tively that the formalization gets more readable, since operand stack and local
variables are now treated in a uniform way, admitting both values of type any.

7 Results and Further Work

We have given a fully formal specification for the JVM and a bytecode veri-
fier, and then formally proved the soundness of the bytecode verifier using the
theorem prover Isabelle/HOL. The formalization of the JVM classfile structure
and the operational semantics comprises about 1000 lines, the specification of the
bytecode verifier took another 500 lines. The proof scripts contain approximately
2400 lines. It took about 6 month to develop the formalization and conduct the
proof. The most complex parts of the proof concern the instructions for field
access and method invocation, where the existence of a field or method for some
static type must assure that an appropriate field or method can be found at
runtime.

Isabelle/HOL turned out to be an adequate instrument to model real life
programming languages such as Java (see also [ON98]). It is obvious that we
had to make certain restrictions in this first approach to formalize the JVM.
For example we do not consider the size of instructions and its operands and
use instead abstract datatypes. These abstractions can be refined in further
development steps of our formalization.

As next steps, we want to extend our formalization and the proof to sub-
routine call and object initialization. The work done by Qian [Qia98], Stata and
Abadi [SA98], and Freund and Mitchell [FM98] showed that these constructs
form the most complex part of bytcode verification, and therefore are worth a
fully formal investigation using a theorem prover.
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