
Secure Distributed Key Generation

for Discrete-Log Based Cryptosystems

Rosario Gennaro1, Stanis law Jarecki2, Hugo Krawczyk3, and Tal Rabin1

1 IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA
{rosario,talr}@watson.ibm.com

2 MIT Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139,
USA, stasio@theory.lcs.mit.edu

3 Department of Electrical Engineering, Technion, Haifa 32000, Israel, and
IBM T.J. Watson Research Center, New York, USA

hugo@ee.technion.ac.il

Abstract. Distributed key generation is a main component of threshold
cryptosystems and distributed cryptographic computing in general. So-
lutions to the distributed generation of private keys for discrete-log based
cryptosystems have been known for several years and used in a variety
of protocols and in many research papers. However, these solutions fail
to provide the full security required and claimed by these works. We
show how an active attacker controlling a small number of parties can
bias the values of the generated keys, thus violating basic correctness
and secrecy requirements of a key generation protocol. In particular, our
attacks point out to the places where the proofs of security fail.
Based on these findings we designed a distributed key generation pro-
tocol which we present here together with a rigorous proof of security.
Our solution, that achieves optimal resiliency, can be used as a drop-in
replacement for key generation modules as well as other components of
threshold or proactive discrete-log based cryptosystems.

Keywords: Threshold Cryptography. Distributed Key Generation. VSS.
Discrete Logarithm.

1 Introduction

Distributed key generation is a main component of threshold cryptosystems. It
allows a set of n servers to jointly generate a pair of public and private keys
according to the distribution defined by the underlying cryptosystem without
having to ever compute, reconstruct, or store the secret key in any single loca-
tion and without assuming any trusted party (dealer). While the public key is
output in the clear, the private key is maintained as a (virtual) secret shared via
a threshold scheme. In particular, no attacker can learn anything about the key
as long as it does not break into a specified number, t+1, of servers. This shared
private key can be later used by a threshold cryptosystem, e.g., to compute sig-
natures or decryptions, without ever being reconstructed in a single location. For
discrete–log based schemes, distributed key generation amounts to generating a

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 295–310, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



296 Rosario Gennaro et al.

secret sharing of a random, uniformly distributed value x and making public the
value y = gx. We refer to such a protocol as DKG.

A DKG protocol may be run in the presence of a malicious adversary who
corrupts a fraction (or threshold) of the players and forces them to follow an
arbitrary protocol of his choice. Informally, we say that a DKG protocol is secure
if the output of the non-corrupted parties is correct (i.e. the shares held by the
good players define a unique uniformly distributed value x and the public value
y satisfies y = gx), and the adversary learns no information about the chosen
secret x beyond, of course, what is learned from the public value y.

Solutions to the shared generation of private keys for discrete-log based
threshold cryptosystems [DF89] have been known and used for a long time.
Indeed, the first DKG scheme was proposed by Pedersen in [Ped91a]. It then ap-
peared, with various modifications, in several papers on threshold cryptography,
e.g., [CMI93, Har94, LHL94, GJKR96, HJJ+97, PK96, SG98], and distributed
cryptographic applications that rely on it, e.g., [CGS97]. Moreover, a secure
DKG protocol is an important building block in other distributed protocols for
tasks different than the generation of keys. One example is the generation of the
randomizers in discrete-log based signature schemes (for example the r value
in a (r, s) DSS signature as in [GJKR96]). Another example is the generation
of the refreshing polynomial in proactive secret sharing and signature schemes
[HJKY95, HJJ+97, FGMY97].

The basic idea in Pedersen’s DKG protocol [Ped91a] (as well as in the sub-
sequent variants) is to have n parallel executions of Feldman’s verifiable secret
sharing (VSS) protocol [Fel87] in which each player Pi acts as a dealer of a
random secret zi that he picks. The secret value x is taken to be the sum of
the properly shared zi’s. Since Feldman’s VSS has the additional property of
revealing yi = gzi , the public value y is the product of the yi’s that correspond
to those properly shared zi’s.

In this paper we show that, in spite of its use in many protocols, Pedersen’s
DKG cannot guarantee the correctness of the output distribution in the presence
of an adversary. Specifically, we show a strategy for an adversary to manipu-
late the distribution of the resulting secret x to something quite different from
the uniform distribution. This flaw stresses a well-known basic principle for the
design of cryptographic protocols, namely, that secure components can turn in-
secure when composed to generate new protocols. We note that this ability of
the attacker to bias the output distribution represents a flaw in several aspects
of the protocol’s security. It clearly violates the basic correctness requirement
about the output distribution of the protocol; but it also weakens the secrecy
property of the solution. Indeed, the attacker acquires in this way some a-priori
knowledge on the secret which does not exist when the secret is chosen truly
at random. Moreover, these attacks translate into flaws in the attempted proofs
of these protocols; specifically, they show that simulation arguments (à la zero-
knowledge) as used to prove the secrecy of these protocols must fail.

In contrast to the above, we present a protocol that enjoys a full proof of
security. We first present the formal requirements for a secure solution of the



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 297

DKG problem, then present a particular DKG protocol and rigorously prove that
it satisfies the security requirements. In particular, we show that the output
distribution of private and public keys is as required, and prove the secrecy re-
quirement from the protocol via a full simulation argument. Our solution is based
on ideas similar to Pedersen’s DKG (in particular, it also uses Feldman’s VSS as
a main component), but we are careful about designing an initial commitment
phase where each player commits to its initial choice zi in a way that prevents
the attacker from later biasing the output distribution of the protocol. For this
commitment phase we use another protocol of Pedersen, i.e., Pedersen’s VSS
(verifiable secret sharing) protocol as presented in [Ped91b]. Very importantly,
our solution preserves most of the efficiency and simplicity of the original DKG
solution of [Ped91a], in particular it has comparable computational complexity
and the same optimal threshold of t < n/2.

Organization: In Section 2 we present the basic communication and adversarial
models for our protocols. In Section 3 we describe previously proposed solutions
to the DKG problem and show where they fail. In Section 4 we present our solu-
tion and its full analysis; we also discuss some other applications of our protocol.
Finally, in Section 5 we discuss an enhanced (and more realistic) security model
under which our solution works as well.

2 Preliminaries

Communication Model. We assume that our computation model is composed
of a set of n players P1, . . . , Pn that can be modeled by polynomial-time ran-
domized Turing machines. They are connected by a complete network of private
(i.e. untappable) point-to-point channels. In addition, the players have access to
a dedicated broadcast channel.

For simplicity of the discussion that follows, we assume a fully synchronous
communication model, i.e. that messages of a given round in the protocol are
sent by all players simultaneously, and that they are simultaneously delivered to
their recipients. This model is not realistic enough for many applications, but
it is often assumed in the literature; moreover, our attacks against known DKG
protocols (Section 3) work even in this simplified setting.

In Section 5 we introduce a more realistic, partially synchronous communica-
tion model. Our solution to the DKG problem (Section 4) and its security proof
work in this strictly stronger adversarial model.

The Adversary. We assume that an adversary, A, can corrupt up to t of the
n players in the network, for any value of t < n/2 (this is the best achievable
threshold – or resilience – for solutions that provide both secrecy and robust-
ness). We consider a malicious adversary that may cause corrupted players to
divert from the specified protocol in any way. We assume that the computational
power of the adversary is adequately modeled by a probabilistic polynomial time
Turing machine. Our adversary is static, i.e. chooses the corrupted players at the
beginning of the protocol (see section 4.2 for a reference to a recent extension of
our results to the non-static – or adaptive – adversary setting).



298 Rosario Gennaro et al.

3 Distributed Key Generation in DLog-Based Schemes

In this section we define the minimal requirements for a secure distributed key
generation protocol. We show how previous solutions fail to satisfy these re-
quirements. We also discuss the applicability of our attacks to other existing
distributed protocols.

3.1 Requirements of a Secure DKG Protocol

As we mentioned in the introduction, distributed generation of keys in a discrete–
log based scheme amounts to generating a secret sharing of a random, uni-
formly distributed value x and making public the value y = gx. Specifically, in a
discrete–log based scheme with a large prime p and an element g of order q in Z∗

p

where q is a large prime dividing p− 1, the distributed protocol DKG performed
by n players P1, . . . , Pn generates private outputs x1, . . . , xn, called the shares,
and a public output y. The protocol is called t-secure (or secure with threshold
t) if in the presence of an attacker that corrupts at most t parties the following
requirements for correctness and secrecy are satisfied:

Correctness:

(C1) All subsets of t + 1 shares provided by honest players define the same
unique secret key x.

(C2) All honest parties have the same value of public key y = gx mod p, where
x is the unique secret guaranteed by (C1).

(C3) x is uniformly distributed in Zq (and hence y is uniformly distributed in
the subgroup generated by g).

Secrecy: No information on x can be learned by the adversary except for what
is implied by the value y = gx mod p.
More formally, we state this condition in terms of simulatability: for every (prob-
abilistic polynomial-time) adversary A, there exists a (probabilistic polynomial-
time) simulator SIM , such that on input an element y in the subgroup of Z∗

p

generated by g, produces an output distribution which is polynomially indistin-
guishable from A’s view of a run of the DKG protocol that ends with y as its
public key output, and where A corrupts up to t parties.

The above is a minimal set of requirements needed in all known applications
of such a protocol. In many applications a stronger version of (C1) is desirable,
which reflects two additional aspects: (1) It requires the existence of an efficient
procedure to build the secret x out of t+1 shares; and (2) it requires this procedure
to be robust, i.e. the reconstruction of x should be possible also in the presence
of malicious parties that try to foil the computation. We note that these added
properties are useful not only in applications that require explicit reconstruction
of the secret, but also in applications (such as threshold cryptosystems) that
use the secret x in a distributed manner (without ever reconstructing it) to
compute some cryptographic function, e.g. a signature. Thus, we formulate (C1’)
as follows:



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 299

(C1’) There is an efficient procedure that on input the n shares submitted by the
players and the public information produced by the DKG protocol, outputs
the unique value x, even if up to t shares are submitted by faulty players.

3.2 The Insecurity of a Common DKG Protocol

The Joint-Feldman Protocol. Feldman [Fel87] presents a verifiable secret shar-
ing (VSS) protocol, denoted by Feldman-VSS, that allows a trusted dealer to share
a key x among n parties in a way that the above security properties are achieved
(with the exception that the protocol assumes the dealer never to be corrupted
by the attacker). Based on this protocol, Pedersen [Ped91a] proposes the first dis-
tributed solution to this problem, i.e. the first DKG protocol. It specifies the run
of n parallel executions of Feldman-VSS as follows. Each player Pi selects a ran-
dom secret zi ∈ Zq and shares it among the n players using Feldman-VSS. This
defines the set QUAL of players that shared their secrets properly. The random
secret x is set to be the sum of the properly shared secrets and each player can
compute his share of x by locally summing up the shares he received. The value
y can be computed as the product of the public values yi = gzi mod p generated
by the proper executions of the Feldman-VSS protocols. Similarly, the verifica-
tion values A1, . . . , At necessary for robust reconstruction of x in Feldman-VSS,
can be computed as products of the corresponding verification values generated
by each properly executed VSS protocol.

In Figure 1 we present a simplified version of the protocol proposed in
[Ped91a], which we call Joint-Feldman. By concentrating on the core of the proto-
col we are able to emphasize the central weakness in its design. We also show that
several variants of this core protocol (including the full protocol from [Ped91a]
and other modifications [HJKY95, HJJ+97]) are also insecure.

An Attack Against Joint-Feldman. We show how an adversary can influence
the distribution of the result of Joint-Feldman to a non-uniform distribution.

It can be seen, from the above description of the protocol that the deter-
mining factor for what the value x will be, is the definition of the set QUAL.
The attack utilizes the fact that the decision whether a player is in QUAL or
not, even given the fully synchronous communication model, occurs after the
adversary has seen the values yi of all players. The values yi are made public in
Step 1 and the disqualification of players occurs in Steps 2-3. Using this timing
discrepancy, the attacker can affect the distribution of the pair (x, y).

More specifically the attack works as follows. Assume the adversary wants
to bias the distribution towards keys y whose last bit is 0. It assumes two faulty
players, say P1 and P2. In Step 1, P1 gives players P3, ..., Pt+2 shares which are
inconsistent with his broadcast values, i.e. they do not pass the test of Step 2.
The rest of the players receive consistent shares. Thus, in Step 2 there will be
t complaints against P1, yet t complaints are not sufficient for disqualification.
Now, at the end of Step 1 the adversary computes α =

∏n
i=1 yi and β =

∏n
i=2 yi.

If α ends with 0 then P1 will do nothing and continue the protocol as written.
If α ends with 1 then the adversary forces the disqualification of P1 in Step 3.



300 Rosario Gennaro et al.

Protocol Joint-Feldman

1. Each player Pi chooses a random polynomial fi(z) over Zq of degree t:

fi(z) = ai0 + ai1z + . . . + aitz
t

Pi broadcasts Aik = gaik mod p for k = 0, . . . , t. Denote ai0 by zi and
Ai0 by yi. Each Pi computes the shares sij = fi(j) mod q for j = 1, . . . , n
and sends sij secretly to player Pj .

2. Each Pj verifies the shares he received from the other players by checking
for i = 1, . . . , n:

gsij =

tY

k=0

(Aik)jk

mod p (1)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
3. If more than t players complain against a player Pi, that player is clearly

faulty and he is disqualified. Otherwise Pi reveals the share sij matching
Eq. 1 for each complaining player Pj . If any of the revealed shares fails
this equation, Pi is disqualified. We define the set QUAL to be the set of
non-disqualified players.

4. The public value y is computed as y =
Q

i∈QUAL yi mod p. The public veri-
fication values are computed as Ak =

Q
i∈QUAL Aik mod p for k = 1, . . . , t.

Each player Pj sets his share of the secret as xj =
P

i∈QUAL sij mod q.
The secret shared value x itself is not computed by any party, but it is
equal to x =

P
i∈QUAL zi mod q.

Fig. 1. An insecure solution for distributed generation of secret keys

This is achieved by asking P2 to also broadcast a complaint against P1, which
brings the number of complaints to t+1. This action sets the public value y to β
which ends with 0 with probability 1/2. Thus effectively the attacker has forced
strings ending in 0 to appear with probability 3/4 rather than 1/2.

Why the Simulation Fails. An attempt to prove this protocol secure would
use a simulation argument. Following is an explanation of why such a simulator
would fail. Consider a simulator S which receives the value y and needs to “hit”
this value. That is, S needs to generate a transcript which is indistinguishable
from an actual run of the protocol that outputs y as the public key, and where
the adversary controls up to t players, say P1, ..., Pt. The simulator has enough
information to compute the values z1, ..., zt that the adversary has shared in
Step 1. Now S needs to commit itself to the values shared by the good players.
However, the attack described in the paragraph above can be easily extended
to a strategy that allows the adversary to decide in Steps 2-3 on the set Q
of faulty players whose values will be considered in the final computation (i.e.
QUAL = Q∪{t+1, ..., n}). Consequently, in Step 1, the simulator S does not know



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 301

how to pick the good players’ values yt+1, ..., yn so that (
∏

i∈Q yi)·(yt+1 ·...·yn) =
y mod p, as S still does not know the set Q. Since the number of possible sets Q
that the adversary can choose is exponential in t, then S has no effective strategy
to simulate this computation in polynomial time.

Other Insecure Variants of the Joint-Feldman Protocol. The many variants
and extensions of the Joint-Feldman protocol which have appeared in the liter-
ature are also insecure. They all fail to achieve the correctness property (C3)
and the secrecy requirement as presented in Section 3.1. The variants include:
signatures on shares, commitments to yi, committing encryption on broadcast
channel, committing encryption with reconstruction, and “stop, kill and rewind”.
Due to space limitations, we invite the reader to the on-line appendix to this
paper [GJKR99] for the description of these variants and their flaws.

4 The New Protocol

Our solution enjoys the same flavor and simplicity as the Joint-Feldman protocol
presented in Figure 1, i.e. each player shares a random value and the random
secret is generated by summing up these values.

But we use a different sharing and then introduce methods to extract the
public key. We start by running a commitment stage where each player Pi com-
mits to a t-degree polynomial (t is the scheme’s threshold) fi(z) whose constant
coefficient is the random value, zi, contributed by Pi to the jointly generated
secret x. We require the following properties from this commitment stage: First,
the attacker cannot force a commitment by a (corrupted) player Pj to depend on
the commitment(s) of any set of honest players. Second, for any player Pi that
is not disqualified during this stage, there is a unique polynomial fi committed
to by Pi and this polynomial is recoverable by the honest players (this may be
needed if player Pi misbehaves at a later stage of the protocol). Finally, for each
honest player Pi and non-disqualified player Pj , Pi holds the value fi(j) at the
end of the commitment stage.

To realize the above commitment stage we use the information-theoretic ver-
ifiable secret sharing (VSS) protocol due to Pedersen [Ped91b], and which we
denote by Pedersen-VSS. We show that at the end of the commitment stage the
value of the secret x is determined and no later misbehavior by any party can
change it (indeed, if a non-disqualified player misbehaves later in the protocol
his value zi is publicly reconstructed by the honest players). Most importantly,
this guarantees that no bias in the output x or y of the protocol is possible, and
it allows us to present a full proof of security based on a careful simulation argu-
ment. After the value x is fixed we enable the parties to efficiently and securely
compute gx mod p.

In the next subsection we present the detailed solution and its analysis. But
first we expand on Pedersen’s VSS protocol.

Pedersen’s VSS. As said, we use the protocol Pedersen-VSS introduced in
[Ped91b] as a central tool in our solution. For lack of space we do not explic-
itly describe Pedersen-VSS here, however its description is implicit in step 1 of



302 Rosario Gennaro et al.

Figure 2. We note that this protocol uses, in addition to the parameters p, q, g
which are inherent to the DKG problem, an element h in the subgroup of Z∗

p gen-
erated by g. It is assumed that the adversary cannot find the discrete logarithm
of h relative to the base g. In section 4.2 we discuss how this value of h can be
generated in the context of our DKG solution. Some of the main properties of
Pedersen-VSS are summarized in the next Lemma and used in the analysis of
our DKG solution in the next subsection.

Lemma 1. [Ped91b] Pedersen-VSS satisfies the following properties in the pres-
ence of an adversary that corrupts at most t parties and which cannot compute
dloggh:

1. If the dealer is not disqualified during the protocol then all honest players
hold shares that interpolate to a unique polynomial of degree t. In particular,
any t + 1 of these shares suffice to efficiently reconstruct (via interpolation)
the secret s.

2. The protocol produces information (the public values Ck and private values
s′i) that can be used at reconstruction time to test for the correctness of
each share; thus, reconstruction is possible, even in the presence of malicious
players, from any subset of shares containing at least t + 1 correct shares.

3. The view of the adversary is independent of the value of the secret s, and
therefore the secrecy of s is unconditional.

4.1 Secure DKG Protocol

Our secure solution to the distributed generation of keys follows the above ideas
and is presented in detail in Figure 2. We denote this protocol as DKG.
The security properties of this solution are stated in the next Theorem.

Theorem 2. Protocol DKG from Figure 2 is a secure protocol for distributed key
generation in discrete-log based cryptosystems, namely, it satisfies the correctness
and secrecy requirements of Section 3.1 with threshold t, for any t < n/2.

Proof of Correctness. We first note that all honest players in the protocol
compute the same set QUAL since the determination of which players are to
be disqualified depends on public broadcast information which is known to all
(honest) players.

(C1) At the end of Step 2 of the protocol it holds that if i ∈ QUAL then player Pi

has successfully performed the dealing of zi under Pedersen-VSS. From part 1 of
Lemma 1 we know that all honest players hold shares (sij) which interpolate to
a unique polynomial with constant coefficient equal to zi. Thus, for any set R of
t+1 correct shares, zi =

∑
j∈R γj ·sij mod q where γj are appropriate Lagrange

interpolation coefficients for the set R. Since each honest party Pj computes its
share xj of x as xj =

∑
i∈QUAL sij , then we have that for the set of shares R:

x =
∑

i∈QUAL

zi =
∑

i∈QUAL


∑

j∈R
γj · sij


 =

∑
j∈R

γj ·

 ∑

i∈QUAL

sij


 =

∑
j∈R

γjxj



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 303

Protocol DKG

Generating x:

1. Each player Pi performs a Pedersen-VSS of a random value zi as a dealer:

(a) Pi chooses two random polynomials fi(z), f ′
i(z) over Zq of degree t:

fi(z) = ai0 + ai1z + . . . + aitz
t f ′

i(z) = bi0 + bi1z + . . . + bitz
t

Let zi = ai0 = fi(0). Pi broadcasts Cik = gaikhbik mod p for k =
0, . . . , t. Pi computes the shares sij = fi(j), s

′
ij = f ′

i(j) mod q for
j = 1, . . . , n and sends sij , s

′
ij to player Pj .

(b) Each player Pj verifies the shares he received from the other players.
For each i = 1, . . . , n, Pj checks if

gsij hs′ij =

tY

k=0

(Cik)jk

mod p (2)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
(c) Each player Pi who, as a dealer, received a complaint from player Pj

broadcasts the values sij , s
′
ij that satisfy Eq. 2.

(d) Each player marks as disqualified any player that either
– received more than t complaints in Step 1b, or
– answered to a complaint in Step 1c with values that falsify Eq. 2.

2. Each player then builds the set of non-disqualified players QUAL. (We
show in the analysis that all honest players build the same set QUAL and
hence, for simplicity, we denote it with a unique global name.)

3. The distributed secret value x is not explicitly computed by any party,
but it equals x =

P
i∈QUAL zi mod q. Each player Pi sets his share of the

secret as xi =
P

j∈QUAL sji mod q and the value x′
i =
P

j∈QUAL s′ji mod q.

Extracting y = gx mod p:

4. Each player i ∈ QUAL exposes yi = gzi mod p via Feldman VSS:

(a) Each player Pi, i ∈ QUAL, broadcasts Aik = gaik mod p for k =
0, ..., t.

(b) Each player Pj verifies the values broadcast by the other players in
QUAL, namely, for each i ∈ QUAL, Pj checks if

gsij =

tY

k=0

(Aik)jk

mod p (3)

If the check fails for an index i, Pj complains against Pi by broad-
casting the values sij , s

′
ij that satisfy Eq. 2 but do not satisfy Eq. 3.

(c) For players Pi who receive at least one valid complaint, i.e. values
which satisfy Eq. 2 and not Eq. 3, the other players run the re-
construction phase of Pedersen-VSS to compute zi, fi(z), Aik for
k = 0, . . . , t in the clear. For all players in QUAL, set yi = Ai0 =
gzi mod p. Compute y =

Q
i∈QUAL yi mod p.

Fig. 2. Secure distributed key generation in discrete–log based systems



304 Rosario Gennaro et al.

Since this holds for any set of t + 1 correct shares then x is uniquely defined.

(C1’) The above argument in (C1) shows that the secret x can be efficiently
reconstructed, via interpolation, out of any t + 1 correct shares. We need to
show that we can tell apart correct shares from incorrect ones. For this we show
that for each share xj , the value gxj can be computed from publicly available
information broadcast in Step 4a:

gxj = g
P

i∈QUAL sij =
∏

i∈QUAL

gsij =
∏

i∈QUAL

t∏
k=0

(Aik)jk

mod p

where the last equality follows from Eq. 3. Thus the publicly available value gxj

makes it possible to verify the correctness of share xj at reconstruction time.

(C2) The value y is computed (by the honest players) as y =
∏

i∈QUAL yi mod p,
where the values of yi are derived from information broadcast in the protocol
and thus known to all honest players. We need to show that indeed y = gx

where x =
∑

i∈QUAL zi. We will show that for i ∈ QUAL, yi = gzi, and then
y =

∏
i∈QUAL yi =

∏
i∈QUAL gzi = g

P
i∈QUAL zi = gx. For parties i ∈ QUAL against

whom a valid complaint has been issued in Step 4b value zi is publicly recon-
structed and yi set to gzi mod p (the correct reconstruction of zi is guaranteed
by Lemma 1 (part 2)). Now we need to show that for Pi, i ∈ QUAL, against
whom a valid complaint has not been issued, the value yi is set to Ai0. Values
Aik, k = 0, . . . , t broadcast by player Pi in Step 4a define a t-degree polynomial
f̂i(z) in Zq. Since we assume that no valid complaint was issued against Pi then
Eq. 3 is satisfied for all honest players, and thus f̂i(z) and fi(z) have at least
t + 1 points in common, given by the shares sij held by the uncorrupted players
Pj . Hence they are equal, and in particular Ai0 = gfi(0) = gzi.

(C3) The secret x is defined as x =
∑

i∈QUAL zi. Note that as long as there is
one value zi in this sum that is chosen at random and independently from other
values in the sum, we are guaranteed to have uniform distribution of x. Also
note that the secret x and the components zi in the sum are already determined
at the end of Step 2 of DKG (since neither the values zi nor the set QUAL change
later). Let Pi be a non-corrupted player; in particular, i ∈ QUAL. At the end of
Step 1 of the protocol zi exists only as a value dealt by Pi using Pedersen-VSS.
By virtue of part 3 of Lemma 1 the view (and thus actions) of the adversary are
independent of this value zi and hence the secret x is uniformly distributed (as
zi is).

Proof of Secrecy. We provide a simulator SIM for the DKG protocol in Fig-
ure 3. Here we show that the view of the adversary A that interacts with SIM
on input y is the same as the view of A that interacts with the honest players
in a regular run of the protocol that outputs the given y as the public key.

In the description and analysis of the simulator we assume, without loss of
generality, that the adversary compromises players P1, . . . , Pt′ , where t′ ≤ t. We
denote the indices of the players controlled by the adversary by B = {1, . . . , t′},
and the indices of the players controlled by the simulator by G = {t′ +1, . . . , n}.



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 305

In a regular run of protocol DKG, A sees the following probability distribution
of data produced by the uncorrupted parties:

– Values fi(j), f ′
i(j), i ∈ G, j ∈ B, uniformly chosen in Zq (and denoted as

sij , s
′
ij , resp.).

– Values Cik, Aik, i ∈ G, k = 0, . . . , t that correspond to (exponents of) coef-
ficients of randomly chosen polynomials and for which the Eqs. (2) and (3)
are satisfied for all j ∈ B.

Algorithm of simulator SIM

We denote by B the set of players controlled by the adversary, and by G
the set of honest parties (run by the simulator). Wlog, B = {1, . . . , t′} and
G = {t′ + 1, . . . , n}, t′ ≤ t.

Input: public key y

1. Perform Steps 1a-1d,2 on behalf of the uncorrupted players Pt′+1, . . . , Pn

exactly as in protocol DKG. This includes receiving and processing the
information sent privately and publicly from corrupted players to honest
ones. At the end of Step 2 the following holds:
– The set QUAL is well-defined. Note that G ⊆ QUAL and that poly-

nomials fi(z), f ′
i(z) for i ∈ G are chosen at random.

– The adversary’s view consists of polynomials fi(z), f ′
i(z) for i ∈ B,

the shares (sij , s
′
ij) = (fi(j), f

′
i(j)) for i ∈ QUAL, j ∈ B, and all the

public values Cik for i ∈ QUAL, k = 0, . . . , t.
– SIM knows all polynomials fi(z), f ′

i(z) for i ∈ QUAL (note that for
i ∈ QUAL ∩ B the honest parties, and hence SIM , receive enough
consistent shares from the adversary that allow SIM to compute all
these parties’ polynomials). In particular, SIM knows all the shares
sij , s

′
ij , the coefficients aik, bik and the public values Cik.

2. Perform the following computations:
– Compute Aik = gaik for i ∈ QUAL \ {n}, k = 0, . . . , t
– Set A∗

n0 = y ·Qi∈(QUAL\{n})(Ai0)
−1 mod p

– Assign s∗nj = snj = fn(j) for j = 1, . . . , t

– Compute A∗
nk = (A∗

n0)
λk0 ·Qt

i=1(g
s∗ni)λki for k = 1, . . . , t, where λki’s

are the Lagrange interpolation coefficients.

(a) Broadcast Aik for i ∈ G \ {n}, and A∗
nk for k = 0, . . . , t

(b) Perform for each uncorrupted player the verifications of Eq. 3 on
the values Aik, i ∈ B, broadcast by the players controlled by the
adversary. If the verification fails for some i ∈ B, j ∈ G, broadcast a
complaint (sij , s

′
ij). (Notice that the corrupted players can publish a

valid complaint only against one another.)
(c) Perform Step 4c of the protocol on behalf of the uncorrupted parties,

i.e. perform reconstruction phase of Pedersen-VSS to compute zi and
yi in the clear for every Pi against whom a valid accusation was
broadcast in the previous step.

Fig. 3. Simulator for the shared key generation protocol DKG



306 Rosario Gennaro et al.

Since here we are interested in runs of DKG that end with the value y as the
public key output of the protocol, we note that the above distribution of values
is induced by the choice (of the good players) of polynomials fi(z), f ′

i(z), i ∈ G,
uniformly distributed in the family of t-degree polynomials over Zq subject to
the condition that

∏
i∈QUAL

Ai0 = y mod p . (4)

In other words, this distribution is characterized by the choice of poly-
nomials fi(z), f ′

i(z) for i ∈ (G \ {n}) and f ′
n(z) as random independent t-

degree polynomials over Zq, and of fn(z) as a uniformly chosen polynomial
from the family of t-degree polynomials over Zq that satisfy the constraint
fn(0) = dlogg(y) − ∑

i∈(QUAL\{n}) fi(0) mod q. (This last constraint is neces-
sary and sufficient to guarantee Eq. (4).) Note that, using the notation of values
computed by SIM in Step 2 of the simulation, the last constraint can be denoted
as fn(0) = dlogg(A∗

n0).
We show that the simulator SIM outputs a probability distribution which

is identical to the above distribution. First note that the above distribution
depends on the set QUAL defined at the end of Step 2 of the protocol. Since all the
simulator’s actions in Step 1 of the simulator are identical to the actions of honest
players interacting with A in a real run of the protocol, thus we are assured that
the set QUAL is defined at the end of this simulation step identically to its value in
the real protocol. We now describe the output distribution of SIM in terms of t-
degree polynomials f∗

i and f ′
i
∗ corresponding to the choices of the simulator when

simulating the actions of the honest players and defined as follows: For i ∈ G\{n},
set f∗

i to fi and f ′
i
∗ to f ′

i . For i = n, define f∗
n via the values1 f∗

n(0) = dlogg(A∗
n0)

and f∗
n(j) = s∗nj = fn(j) , j = 1, . . . , t. Finally, the polynomial f ′

n
∗ is defined via

the relation: f∗
n(z)+d·f ′

n
∗(z) = fn(z)+d·f ′

n(z) mod q, where d = dlogg(h). It can
be seen that by this definition that the values of these polynomials evaluated
at the points j ∈ B coincide with the values fi(j), f ′

i(j) which are seen by
the corrupted parties in Step 1 of the protocol. Also, the coefficients of these
polynomials agree with the exponentials Cik published by the simulated honest
parties in Step 1 of the protocol (i.e. Cik = ga∗

ikhb∗ik where a∗
ik and b∗ik are

the coefficients of polynomials f∗
i (z), f ′

i
∗(z), respectively, for i ∈ G), as well

as with the exponentials Aik, i ∈ G \ {n} and A∗
nk published by the simulator

in Step 2a on behalf of the honest parties (i.e. Aik = ga∗
ik , i ∈ G \ {n} and

A∗
nk = ga∗

nk , k = 0, . . . , t) corresponding to the players’ values in Step 4a of the
protocol. Thus, these values pass the verifications of Eq. (2) and (3) as in the
real protocol.

It remains to be shown that polynomials f∗
i and f ′

i
∗ belong to the right

distribution. Indeed, for i ∈ G \ {n} this is immediate since they are defined
identically to fi and f ′

i which are chosen according to the uniform distribution.
1 Note that in this description we use discrete log values unknown to the simulator;

this provides a mathematical description of the output distribution of SIM useful
for our analysis but does not require or assume that SIM can compute these values.



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 307

For f∗
n we see that this polynomial evaluates in points j = 1, . . . , t to random

values (snj) while at 0 it evaluates dlogg(A∗
n0) as required to satisfy Eq. 4. Finally,

polynomial f ′
n
∗ is defined (see above) as f ′

n
∗(z) = d−1 · (fn(z) − f∗

n(z)) + f ′
n(z)

and since f ′
n(z) is chosen in Step 1 as a random and independent polynomial

then so is f ′
n
∗(z).

4.2 Remarks

Efficiency. We point out that our secure protocol does not lose much in ef-
ficiency with respect to the previously known insecure Joint-Feldman protocol.
Instead of Feldman-VSS, each player performs Pedersen-VSS (Steps 1-3), which
takes the same number of rounds and demands at most twice more local com-
putation. The extraction of the public key in Step 4 adds only two rounds (one
if no player is dishonest) to the whole protocol. We point out that all the long
modular exponentiations needed during this extraction have already been com-
puted during the Pedersen-VSS phase, thus Step 4 is basically “for free” from a
computational point of view.

Generation of h. The public value h needed to run Pedersen’s VSS can be easily
generated jointly by the players. Indeed it is important that nobody knows the
discrete log of h with respect to g. The procedure for generating h consists of a
generic distributed coin flipping protocol which generates a random value r ∈ Z∗

p.
To generate a random element in the subgroup generated by g it will be enough
to set h = rk mod p where k = (p − 1)/q. If q2 does not divide p − 1 (which is
easily checkable) then h is an element in the group generated by g.

4.3 Other Applications of a DKG Protocol

DKG protocols have more applications than just key generation. We sketch here
two of these applications where previous flawed DKG protocols were used and
for which our solution can serve as a secure plug-in replacement.

Randomizers in ElGamal/DSS Threshold Signatures. Signature schemes
based on variants of the ElGamal scheme [ElG85], such as DSS, usually consist
of a pair (r, s) where r = gk for a random value k ∈ Zq. Several robust threshold
versions of such signature schemes have been proposed in the literature [CMI93,
GJKR96, PK96]. In these schemes the public value r and the sharing of the secret
value k is jointly generated by the players running a DKG protocol. Clearly, in
order for the resulting threshold scheme to be identical to the centralized case,
r must be uniformly distributed in the group generated by g. However, each
of these papers uses a version of the Joint-Feldman protocol which allows an
adversary to bias the distribution of r. Our DKG protocol fixes this problem.

Refresh Phase in Proactive Secret Sharing and Signature Schemes.
Proactive secret sharing [HJKY95] and signature schemes [HJJ+97] were intro-
duced to cope with mobile adversaries who may corrupt more than t servers
during the lifetime of the secret. In these protocols time is divided into stages,



308 Rosario Gennaro et al.

with an assumption that the adversary may corrupt at most t servers in each
stage. However in different stages the adversary can control different players. In
order to cope with such adversaries the basic idea of proactive secret sharing
is to “refresh” the shares at the beginning of each stage so that they will be
independent from shares in previous stages, except for the fact that they in-
terpolate to the same secret. This is achieved by the players jointly creating a
random polynomial f(z) of degree t with free term 0 such that each player Pi

holds f(i). If the share of player Pi at the previous stage was si, the new share
will be si + f(i). In order to generate f(z) the players run a variation of Joint-
Feldman where each player shares value zi = 0. The polynomial f(z) is the sum
of the polynomials fi(z) picked by each player (see Figure 1). It should be clear
that the same attack described in Section 3.2 to bias the free term of f(z) can
be carried out to bias its any other coefficient. The result is that the polynomial
f(z) generated by this refresh phase is not truly random, which implies that
shares from different stages are not independent. Our DKG protocol fixes this
problem as well.

5 Enhanced Security: Partially Synchronous Model

In the design of distributed cryptographic protocols it is often assumed that
the message delivery is fully synchronous (see Section 2). This assumption is
unrealistic in many cases where only partially synchronous message delivery is
provided (e.g. the Internet). By partially synchronous communication model we
mean that the messages sent on either a point-to-point or the broadcast channel
are received by their recipients within some fixed time bound. A failure of a
communication channel to deliver a message within this time bound can be
treated as a failure of the sending player. While messages arrive in this partially
synchronous manner, the protocol as a whole proceeds in synchronized rounds
of communication, i.e. the honest players start a given round of a protocol at
the same time. To guarantee this round synchronization, and for simplicity of
discussion, we assume that the players are equipped with synchronized clocks.

Notice that in a partially synchronous communication model all messages
can still be delivered relatively fast, in which case, in every round of commu-
nication, the malicious adversary can wait for the messages of the uncorrupted
players to arrive, then decide on his computation and communication for that
round, and still get his messages delivered to the honest parties on time. There-
fore we should always assume the worst case that the adversary speaks last in
every communication round. In the cryptographic protocols literature this is also
known as a rushing adversary.

Clearly the fully synchronous communication model is strictly stronger than
the partially synchronous one, thus the previously existing DKG protocols which
we recalled in Section 3 remain insecure also in this model. In fact, the relaxation
of the model allows stronger attacks against many of the Joint-Feldman variants.
For example, the adversary could choose the zi’s of the dishonest players depen-
dent on the ones chosen by the honest ones (while in the fully synchronous model



Secure Distributed Key Generation for Discrete-Log Based Cryptosystems 309

he is restricted to deciding whether the previously decided zi’s of the dishonest
players will be “in” or “out” of the computation).

In contrast, the DKG protocol we propose in this paper is secure even in this
more realistic partially synchronous communication setting. Intuitively, this is
because the first stage involves an information-theoretic VSS of the zi values.
Thus the adversary has no information about these values and he has to choose
the zi’s of the dishonest players in an independent fashion even if he speaks
last at each round. When the values yi = gzi are revealed, it is too late for the
adversary to try to do something as at that point he is committed to the zi’s
which are recoverable by the honest players. A formal proof of security of our
protocol in this stronger model is identical to the proof presented in Section 4.1.
Indeed, it can be easily verified that the proof of security carries over to the
partially synchronous communication model basically unchanged.

Extension to Adaptive Adversary. Recently, [CGJ+99] showed a modifica-
tion of our DKG protocol which is secure against an adaptive adversary. In this
model the attacker can make its decision of what parties to corrupt at any point
during the run of the protocol (while in our model the corrupted parties are fixed
in advance before the protocol starts). The only modification to our protocol in-
troduced in [CGJ+99] is in the y-extracting step (Step 4), where they replace our
method of publishing yi = Ai0 = gzi values via Feldman-VSS with the following:
Each player broadcasts a pair (Ai0, Bi0) = (gai0 , hbi0) s.t. Ai0 ·Bi0 = Ci0 mod p,
and proves in zero-knowledge that he knows the discrete logs DLOGg(Ai0) and
DLOGh(Bi0). Proving this ensures that yi = gzi. If a player fails the proof then
his shared value zi is reconstructed via the Pedersen-VSS reconstruction, as in
our DKG protocol.

This modification turns out to suffice to make the protocol secure against
an adaptive adversary because it allows the construction of a simulator that, at
any point in the simulation, has at most a single “inconsistent player”. Namely,
there is at most one player that if corrupted will make the simulation fail, while
all other corruptions can be handled successfully by the simulator. The way
the simulator proceeds is by choosing this “inconsistent player” at random and
hoping the attacker will not corrupt him. If it does, the simulation rewinds to a
previous state, a new choice of inconsistent player is made, and the simulation
continues. It is shown in [CGJ+99] that this brings to the successful end of the
simulation in expected polynomial-time.
Acknowledgments. We thank Don Beaver for motivational discussions on this
problem.

References

[CGJ+99] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive
Security for Threshold Cryptosystems. Mansuscript, 1999.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Advances in Cryptology —
Eurocrypt ’97, pages 103–118. LNCS No. 1233.



310 Rosario Gennaro et al.

[CMI93] M. Cerecedo, T. Matsumoto, and H. Imai. Efficient and secure multiparty
generation of digital signatures based on discrete logarithms. IEICE Trans.
Fundamentals, E76-A(4):532–545, 1993.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in
Cryptology — Crypto ’89, pages 307–315. LNCS No. 435.

[ElG85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. IEEE Trans. Info. Theory, IT 31:469–472, 1985.

[Fel87] P. Feldman. A Practical Scheme for Non-Interactive Verifiable Secret Shar-
ing. In Proc. 28th FOCS, pages 427–437.

[FGMY97] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Optimal resilience
proactive public-key cryptosystems. In Proc. 38th FOCS, pages 384–393.
IEEE, 1997.

[GJKR96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. In Advances in Cryptology — Eurocrypt ’96, pages 354–371.
LNCS No. 1070.

[GJKR99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems
http://www.research.ibm.com/security/dkg.ps

[Har94] L. Harn. Group oriented (t, n) digital signature scheme. IEE Proc.-
Comput.Digit.Tech, 141(5):307–313, Sept 1994.

[HJJ+97] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive public key and signature systems. In 1997 ACM Conference on Com-
puters and Communication Security, 1997.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret
sharing, or: How to cope with perpetual leakage. In Advances in Cryptology
— Crypto ’95, pages 339–352. LNCS No. 963.

[LHL94] C.-H. Li, T. Hwang, and N.-Y. Lee. (t, n) threshold signature schemes
based on discrete logarithm. In Advances in Cryptology — Eurocrypt ’94,
pages 191–200. LNCS No. 950.

[Ped91a] T. Pedersen. A threshold cryptosystem without a trusted party. In Ad-
vances in Cryptology — Eurocrypt ’91, pages 522–526. LNCS No. 547.

[Ped91b] T. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology — Crypto ’91, pages 129–140.
LNCS No. 576.

[PK96] C. Park and K. Kurosawa. New ElGamal Type Threshold Digital Signature
Scheme. IEICE Trans. Fundamentals, E79-A(1):86–93, January 1996.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4:161–174, 1991.

[SG98] V. Shoup and R. Gennaro. Securing threshold cryptosystems against cho-
sen ciphertext attack. In Advances in Cryptology — Eurocrypt ’98, pages
1–16. LNCS No. 1403.

[Sha79] A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–
613, 1979.


	Introduction
	Preliminaries
	Distributed Key Generation in DLog-Based Schemes
	Requirements of a Secure {sf DKG} Protocol
	The Insecurity of a Common {sf DKG} Protocol

	The New Protocol
	Secure {sf DKG} Protocol
	Remarks
	Other Applications of a {sf DKG} Protocol

	Enhanced Security: Partially Synchronous Model

