More Flexible Exponentiation with
Precomputation

Chae Hoon Lim and Pil Joong Lee

Department of Electrical Engineering, Pohang University of Science and Technology
(POSTECH), Pohang, 790-784, KOREA

Abstiract. A new precomputation method is presented for computing
gR for a fixed element ¢ and a randomly chosen exponent R in a given
group. Our method is more efficient and flexible than the previously
proposed methods, especially in the case where the amount of storage
available is very small or quite large. It is also very efficient in computing
g®y® for & small size E and variable number y, which occurs in the
verification of Schnorr’s identification scheme or its variants. Finally it
is shown that our method is well-suited for parallel processing as well.

1 Introduction

The problem of exponentiating fast in a given group (usually Zy, N alarge prime
or a product of two large primes) is very important for efficient implementations
of most public key cryptosystems (hereafter it is assumed w.l.0.g. that the com-
putation is performed over Zy and thus multiplication denotes multiplication
mod N). A typical method for exponentiation is to use the binary algorithm,
known as the square-and-multiply method [1]. For 512 bit modulus and expo-
nent, this method requires 766 multiplications on average and 1022 in the worst
case. The signed binary algorithm [2-3] can reduce the required number of mul-
tiplications to around 682 on average and 768 in the worst case.

On the other hand, using a moderate amount of storage for intermediate
values, the performance can be considerably improved again. Knuth’s 5-window
algorithm [1,4] can do exponentiation in about 609 multiplications on average,
including the on-line precomputation of 16 multiplications. The fastest known
algorithm for exponentiation is the windowing method based on addition chains,
where we can use bigger windows such as 10 [4] and need more storage for
intermediate values {5}. Though finding the shortest addition chain is an NP-
complete problem [6], it is reported [4] that, by applying heuristics, an addition
chain of length around 605 can be computed.

These general methods can be used for any cryptosystems requiring expo-
nentiation such as RSA [7] and ElGamal [8]. However, in many cryptographic
. protocols based on the discrete logarithm problem, we need to compute g® for
a fixed base g but for a randomly chosen exponent R. Thanks to the fixed base
element, a precomputation table can be used to reduce the number of multipli-
cations required, of course at the expense of storage for precomputed values.

At Eurocrypt’92, Brickell et al. [9] proposed such a method for speeding
up the computation of g® (called the BGMW method, for the convenience of

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPTO 94, LNCS 839, pp. 95-107, 1994.
© Springer-Verlag Berlin Heidelberg 1994

96

reference). Their basic strategy is to represent an exponent R in base b, that is,

R=dy b1 4. +d;b + do where 0 < d; < b (0 < i< t), and precompute
all powers g; = g*". Then g® can be computed by [Tisced = i (I"[d‘ _a9)%

Using a basic digit set for base b, they extended the basic scheme so that the
computation time can be further decreased while the storage required is increased
accordingly.

In this paper, we propose another precomputation method for fast exponen-
tiation. Our method is a generalization of the simple observation that if an n-bit
exponent R is divided into two equal blocks (i.e., R = Ry x 2%/? + Rp) and
g1 = g’“n is precomputed, then ¢ can be evaluated in a half of the time re-
quired by the binary method in the worst case (% on average) by computing
g{“gﬂ". It will be seen that the proposed method is more efficient, especially
when the storage available is very small or quite large, and also more flexible,
giving a wide range of time-memory tradeoffs, than the BGMW method. The
case of using a small amount of storage is of great importance for an application
to smart cards having limited storage and computing power, but the BGMW
method is not so efficient for this case.

Another advantage of the proposed method is its efficiency in computing
g™y®, where y is not fixed and the size of E is much less than that of R, which
is needed for the verification of Schnorr's identification and signature scheme
(10] or its variants, e.g., Brickell-McCurley’s scheme [11] and Okamoto’s scheme
[12]. Note that, for this kind of computation, representing exponents in non-
binary power base may considerably increase the on-line computational load
(see section 4). Finally we show that the proposed method is also well-suited for
parallel processing.

Throughout this paper, we will use ¢ as a fixed element of Zy and R as an
n-bit random exponent over [0, 2"). We denote by |S| the bit-length of S for an
integer S or the cardinality of S for a set S. We also denote by [2] the smallest
integer not less than = and by |z| the greatest integer not greater than z.

2 Review of Previous Work : BGMW Method

In this section, we briefly review the BGMW method, the precomputation method
proposed by Brickell, Gordon, McCurley and Wilson at Eurocrypt’92. For more
details, see the original paper [9].

A sget of integers D is called a basic digit set for base b if any integer can
be represented in base b using digits from the set D [13]. Suppose that we can
choose a set M of multipliers and a parameter h for which

D(M,h) = {mk|lm € M,0 <k < h} (1)

is & basic digit set for base b. Then an n-bit exponent R can be represented as
t-1

R=) d¥, di=mk € D(M,h). (2)

i=0

97

With this representation of R, g% can be computed by

- fIgm,-k.-b" - H H g™t)k Hck_ (3)

i=0 k=1 ki=k

Therefore, if we precompute and store powers gmbi foralli<tand m€ M,
then gF can be computed in at most ¢t + k — 2 multiplications using about ¢|M|
precomputed values by the following algorithm.

wi= [g=n g™

viI= Yy

for w:=h—1 to 1 step -1
U= Ux Hk,-:w gmib-’
vi= vk

return(v);

It is easily seen that the number of multiplications performed by the above
algorithm is £ + h — 2 in the worst case (t—h multiplications for computing
products of the form], _, ¢™* for w = 1,---,h and 2k — 2 multiplications
for completmg the for-loop) and & =1t + h—2 on average (For a randomly chosen
exponent, § digits are expected to be zero.).

The most obvious example for D is the base b number system (M = {1},
h=b-1,t = [log, (2" —1)]). For a 512 bit exponent, the choice of b = 26
minimizes the expected number of multiplications. This basic scheme requires
127.8 multiplications on average, 132 in the worst case, and storage for 109
precomputed values. More convenient choice of base will be b = 32, since then
the digits for the exponent R can be computed without radix conversion by
extracting 5 bits at a time. With this base, the required number of multiplications
is increased only by one for the average case and remains unchanged for the
worst case. Though the basic scheme is the obvious choice in the case where
the storage available is small, its performance is considerably degraded as the
number of storage is going down below 109. This means that the BGMW method
does not provide an efficient way to perform the computation when the storage
available is very small.

Brickell et al. also presented several schemes using other number systems to
decrease the number of multiplications required, of course using more storage
for precomputed values. One of the extreme examples is to choose the set M as

= {m|1 < m < b,wa(m) = 0 mod 2}, where w,(m) is the highest power of
p dividing m. Then, for 1 < d; < b, we have d; = m or 2m for some m € M;
(i.e., h = 2). Thus g® can be computed in ¢ multiplications on average and {31t
multiplications in the worst case, with the storage to |M,|[log, (2" — 1)] values.
For example, taking b = 256 (t = 64, |M3| = 170), we can achieve an average of
63.75 multiplications with 10880 precomputed values. Two tables that Brickell
et al. presented in [9] are given in the appendix A for the purpose of comparison
with our results.

98

3 The Proposed Method

We now present our method for fast evaluation of g® using a precomputation
table. Let R be an n-bit exponent for which we want to compute gB. We first
divide the exponent R into h blocks R;, for 0 < i < h — 1, of size a = [}] and
then subdivide each R; into v smaller blocks R;;, for 0 < j < v — 1, of size
b= [2] as follows (see figure 1):

h-1
R=Rp_1-- - R1Ro = 2 R;2'e,
=0
v—-1 .
Ri=Riyy- R 1Ry = ZRi,j:ZJb- (4)
j=0
Ro
R, | Riy-1 R Rio
Ry_y

b= I'%-] bits | I
t a = [}] bits l

Figure 1 : Division and arrangement of an n-bit exponent R

Let go = ¢ and define g; as ¢; = g2~, = g% for 0 < i < h. Then, using the
equations (4), we can express g as

v—~1h~1

Hg;‘—HH(”’) (5)

j=0i=0
If we let R; = e;,_1---€;,€;0 be the binary representation of R; (0 < i< h),
then R;; (0 < j < v) is represented in binary as

Bij = €ijopp—1"""€ijbik * €ijb+16i4b-
Therefore the expression (5) can be rewritten as follows :

2)0

o® =TI { I TT o (6)

99

Next suppose that the following values are precomputed and stored for all
1<i<2*and 0<j <.

G[O][] = g}?lllg;h 2: . g;:gau,
G[3 = (Gli — 1E)* = (GO (7

Here the index i is equal to the decimal value of ex_q - - e1€0. Then, using the
precomputed values of (7), we can rewrite the expression (6) as

2).
-1 fu-1
=IO {ILetlnal) (8)

where Ijx = en_1,3j4% - €1,bj+k€0,b5 +k (0 < j < b), which corresponds to the k-
th bit column of the j-th block column in the figure 1. Now it is straightforward

to compute g® using the expression (8) by the ordinary square-and-multiply
method as follows :

Z:=1;
for k:=b—1 to 0 step -1
Z:=ZxZ
for 7:=v — 1 to 0 step -1
Z .= Z x Gk
return(Z);

We next count the number of multiplications required by the above algorithm.
Here we have to note that the (v — 1)-th blocks in the figure 1 may not be full
of b bits. In fact, they are of bv — a bit size. Thus the number of terms to be
multiplied together in the inner for-loop is v + 1 for the first bv — a rounds
and v + 2 for the remaining b — bv + a rounds. Therefore, the total number
of multiplications required is at most v(bv-a)+(v+1)(b-bv+a)-2 = a+b-2 in the
worst case. Since we may assume that the probability of I;: being zero is 51,,- and
there are a occurrences of I in the above algorithm, the expected number of

multiplications is given by -2-%{—la+ b— 2. Of course, this performance is achieved
with storage for (2% — 1)v precomputed values.

In the above, we assumed that the exponent R is partitioned into hv blocks
of almost equal size and that these hv blocks are arranged in a h X v rectangular
shape. In most cases, such partitions and arrangements yield better performance
than others for a given amount of storage, but sometimes this may not be the
case. For example, consider two configurations shown in the figure 2 below, where
a 512-bit exponent is partitioned and arranged in two different ways. The first
configuration corresponds to the case we analyzed in the above and results in
the performance of 118.78 multiplications on average (122 in the worst case)
with storage for 155 values. On the other hand, with the second configuration,
we can do the exponentiation in 117.13 multiplications on average (119 in the

100

worst case) using storage for 157 values. This shows that we had better choose
the second configuration.

19 | 21 21 21 21 28 | 31 | 31
19
18
18
18
5 x 5 configuration 5 x 1|6 x 2 configuration

Figure 2 : Two different configurations with almost
the same storage requirement

For the configuration of type Ay X v1|ha X vz where hy < hj, we can easily
derive general formulae for the worst/average-case performance. Let b, and bz
be the size of partitioned blocks in kA3 X vy and hg X vg respectively. For better
performance, b; must be greater than or equal to b; and can be obtained in
the same way as b in the A x v configuration. Thus we get by = [Eh—f"_h—’;—:]
and b = | —‘—bﬁﬂi] Now the worst-case number of multiplications required
for this conﬁgura.tlon can be directly obtained from the formula for the A x v
configuration. by replacing a by hqvi +hava and b by b; respectively, This results
in byvy + ba(v2 + 1) — 2 multiplications in the worst case. Similaxly, the expected
number of multiplications can be shown to be 2 blvl + —2,;—,—b3v3 + b3 —2.
This performance can be achieved with the storage for (2" — 1)vy + (22 — 1)va
precomputed values. We can easily see that no configurations other than the two
types, b x v and h1 x vilhg x va(ha = hy + 1), yield better performance for a
given amount of storage.

The number of multiplications and storage requirements for a 512 bit mod-
ulus are summarized in tables B.1 and B.2 in the appendix B, for a 160-bit
and 512-bit exponent respectively. Note that not only is the proposed method
simpler, but it also achieves better performance than the BGMW method. In
particular, due to its effectiveness over a wide range of storage, our method is
flexibly applicable to various computing environments according to the amount
of storage available. For example, to speed up the computation by smart cards,
we may choose the configuration of 4 x 2. Then for 512 bit modulus and exponent
the computation of g® can be done in 182 multiplications on average with 1920
bytes of storage. On the other hand, when a relatively large amount of storage
is available, we can choose, for example, the configuration of 7 x 4, achieving
90.42 multiplications on average with about 32 Kbytes of storage.

101

4 Speeding up Identification and Signature Verifications

Based on the discrete logarithm problem, a lot of identification and digital sig-
nature schemes have been developed (e.g., [10-12]). In all these schemes, along
with a few modular multiplications the prover (or the signer) needs to compute
g® for a random R, which can be efficiently performed by the method described
in section 3. On the other hand, to validate the prover’s identity or the signature,
the verifier needs to perform the computation of the form gRy® where y corre-
sponds to the public key of the prover (or the signer) and thus varies in each run
of the protocol. The size of E typically lies between 20 and 40 in identification
schemes and around 80 in the corresponding signature schemes. This section
investigates the performance of the proposed method for computing i

Let ¢ be the size of F. It is clear that if ¢ < b, then g £ can be computed
in @ + b+t — 2 multiplications in the worst case and 2 '1a +b+0.5t—2on
average. In case of t > b, we can either proceed as above or do the computation
after partitioning F into smaller blocks. The first case yields the performance
of a + 2t — 2 multiplications in the worst case and %}la + 1.5¢ — 2 on average.
However, if t is much larger than b, the performance can be further improved by
dividing F into smaller blocks.

Thus, for more general formulae, suppose that E is partitioned into u blocks
of almost equal size (Consider the whole configuration for computing gRy® as
% X 1|A x v). Let c be the bit-length of the partitioned blocks (i.e., ¢ = [£]).

Then, we first have to compute y’“ for k = 1,2,---,u — 1, and each product
of their possible combinations, which all together requires (v — 1}e+2% —u—1
multiplications. For the range of ¢ we are interested in, i.e., up tot = 80, u
takes on at most 3. Now, if ¢ < b, then at most ¢ additional multiplications are
sufficient in the worst case (Q;-;ic on average). Therefore the total number of
multlphcations required in this case is @ + b + uc + 2% — u — 3 in the worst case
and %, "la +b+ ¥ ‘lc + 2% —u — 3 on average. Similarly, for the case of ¢ > &
we can easily show that the number of multiplications is a+ (u+1)c+2% —u—3
in the worst case and 2-;—',,—10, + (“—tlz-)—:'l‘_—lc + 2% — u — 3 on average.

With the proposed method, the Schnorr-like identification and/or signature
schemes can be made more practical for smart card implementations. For ex-
ample, with a 512-bit modulus, 160-bit exponents and t = 30, the verification
condition can be checked in 80.5 multiplications on average, if 1920 bytes of
storage are available (4 x 2 configuration). Similarly, a signature with { = 80
can be verified in 144.13 multiplications on average using the same amount of
storage. This is a considerable speedup only with a very small arnount of storage,
compared with the binary method requiring 246.5 multiplications for ¢+ = 30 and
259.0 multiplications for ¢ = B0 on average. Moreover, identification or signature
verifications are usually performed in much more powerful terminals capable of
being equipped with a large amount of memory. In such an environment, we
may adopt the 8 x 2 configuration and thus can perform, on average, identity
verifications in 60.2 multiplications for ¢ = 30 and signature verifications in 126.6
multiplications for ¢ = 80, using about 32 Kbytes of storage.

102

Further improvement with additional communication : Small additional
communication can considerably reduce the number of multiplications for com-
puting ¢®y® again. That is, the verifier can save the on-line computational load
for preparing yi = y’h fork=1,2,--.,u—1, if they are precomputed and stored
by the signer (or the prover), since y is a fixed number to him, and then trans-
mitted together with other data. For example, for the signature scheme ’vgith t
= 80, 1f the signer sends 2 additional 512 bit blocks y;,ys where y1 = y* and
Y2 = y1 , together with a signature for message, then the signature verification
can be done in 90.13 multiplications on average with the 4 x 2 configuration.
Therefore, 54 multiplications can be saved only with the increase of 128 bytes
of communication. This corresponds to about a 3-fold speedup on average over
the binary method which requires 259 multiplications on average.

For comparison, it is worth mentioning that the BGMW method is less effi-
cient for the computation of the form gy¥ in either case we considered above.
In case of no additional communication, if the exponents are represented in non-
binary power base, more computations are needed in performing the on-line pre-
computation required for ¥¥. When addtional communication is allowed, more
precomputed values must be transmitted due to the use of small base.

The above method of combining precomputation and additional communi-
cation can be used to speed up the verification of the digital signature standard
(DSS) [14] as well. In DSS, we have to perform the computation of the type g®y®
with |R| = |E| = 160 and thus without additional communication we can gain
no advantage with precomputatlon However, if the signer sends 3 additional
blocks {¥1,y2,ys} where y; = y,_1 for i = 1,2,3 and if the verifier adopts the
4 x 2 configuration, then the signature can be verified in 124 multiplications on
average. This i8 more than a 2-fold improvement over the binary method which
requires 279 multiplications on average, only with 1920 bytes of storage and 192
bytes of additional communication (for a 512 bit modulus).

signature generation
schemes | n/t || binary | 4x2 | 8x2
Schnorr | 160 / 80 | 318 /238 | 58 / 55.5 | 28 / 27.9
DSS |160 /160 || 318 /238 | 568 / 55.5 | 28] 27.9
BM 512 / 80 || 1022 / 766 | 190 / 182.0 | 94 / 93.8

signature verification
schemes | n/t] binary | 4x2 [8x2
Schnorr | 160/ 80 || 319/ 259 | 89/ 853 | 69/ 67.7
DSS | 160 /160 || 319 /279 | 129 / 124.0 | 109 / 106.4
BM | 512 / 80 || 1023 / 787 | 221 / 211.8 | 125 / 123.6

Table 1 : Worst/average performance w/ 3 block additional commun.

The table 1 shows the number of multiplications required for signature gen-
eration and verification in three signature schemes (Schnorr [10], DSS [14] and

103

Brickell-McCurley [11]), under the assumption that the signer sends additionally
3 precomputed values for his public key together with a signature, as mentioned
above. Here we only take into account the number of multiplications for exponen-
tiation operations, neglecting some other necessary operations such as reduction
mod ¢ and multiplicative inverse mod ¢ where ¢ is a prime of about 160 bit
size. Two configurations of 4 x 2 and 8 x 2 are taken as examples, since the
former is suitable for smart card applications and the latter for more general
applications with a relatively large amount of storage available. For comparison,
the performance of the binary method is also presented.

5 Parallel Processing

With multiple processors, the proposed method can be parallelized, much more
efficiently than the BGMW method, by assigning the j-th processor to the j-th
column of the h X v configuration {see figure 1). That is, if v processors are
available, then the j-th processor can be assigned to compute

b—1
T et (9)
k=0

in the expression of

H
1|Z|

fI GG, (10)

where we assume that each processor stores in its local memory 2* — 1 precom-
puted values. The computation of each processor can be completed in at most
2(b — 1) multiplications. After then, we need [logav] multiplications in addition
to produce the final result. Therefore, the total number of multiplications is
2(b— 1) + [logzv].

Table B.3 in the appendix B shows the required number of multiplications for
160/512 bit exponents, according to the number of processors and the storage
needed per processor. Note that only with a small number of processors the
performance can be greatly improved. For example, for 512-bit modulus and
exponent, we can compute ¢g® in 32 multiplications , when 4 processors are
available and each processor has a local storage for 255 precomputed values
(about 18 Khytes). With more processors, say 16, the exponentiation can be
done in 10 multiplications with the same storage requirement.

The described parallel computation can be more efficiently implemented by
a special-purpose hardware. For example, with 8 pairs of multiply and squar-
ing circuits together with read-only memory for 120 precomputed values (4 x 8
configuration), we can compute g with |R| = 512 in 18 multiplications and 15
squarings. If we use storage for 2040 values (8 x 8 configuration) with the same
circuits, then the computation can be done in 10 multiplications and 7 squarings.

104

6 Conclusion

We have proposed a new method for fast exponentiation with precomputation.
The proposed method is very simple but achieves better performance than the
BGMW method [9]. Our method is also preferable since it is flexibly applicable to
various computing environments due to its wide range of time-storage tradeoffs.
In particular, using the proposed method, we can substantially speed up the
computation by smart cards with only a very small amount of storage. We also
showed that the proposed method can also speed up the computation of the
form g®yFf with y variable. This can make much more practical the Schnorr-
type identification and signature scheme, since the verifier as well as the prover
(signer) can gain great computational advantage with a moderate amount of
storage. Finally we presented how the proposed algorithm can be parallelized.
Such parallel processing may be useful in high performance server machines with
multiple processors.

References

1. D.E.Knuth, The art of computer programming, Vol.2 : Seminumerical algorithms,
second Edition, Addison-Wesley (1981).

2. J.Jedweb and C.J.Mitchell, “Minimum weight modified signed-digit representa-
tions and fast exponentiation,” Flect. Let. 25 (17), 1171-1172 (1989).

3. C.N.Zhang, “An improved binary algorithm for RSA,” Computers Math. Applic.
25 (8), 15-24 (1993).

4. J.Bos and M.Coster, “Addition chain heuristics,” In Advances in Cryptoloy-
Crypto’89, Lecture Notes in Computer Science 435, (edited by G.Brassard), pp.400-
407, Springer-Verlag (1990).

5. J.Sauerbrey and A.Dietel, “Resource requirements for the application of addition
chains modulo exponentiation,” In Proc. Burocrypt’92, Balatonfured, Hungary

1992).

6. g’.Dov)vney, B.Leony and R.Sethi, “Computing sequences with addition chains,”
Siam J. Comput. 3, 638-696 (1981).

7. R.L.Rivest, A.Shamir and L.Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, 21 (2), 120-126 (1978).

8. T.ElGmal, “A public key cryptosystem and a signature scheme based on the dis-
crete logarithm,” IEEE Trans. Inform. Theory 31 (4), 469-472 (1985).

9. E.F.Brickell, D.M.Gordon, K.S.McCurley and D.Wilson, “Fast exponentiation
with precomputation,” In Proc, Eurocrypt’92, Balatonfured, Hungary (1992).

10. C.P.Schnorr, “Efficient signature generation by smart cards,” J. Cryptology 4 (3),
161-174 (1991).

11. E.F.Brickell and K.S.McCurley, “An interactive identification scheme based on
discrete logarithms and factoring,” J. Cryptology 5 (1) 29-39, (1992).

12. T.Okamoto, “Provably secure and practical identification schemes and correspond-
ing signature schemes,” In Proc. Crypto’92, Santa Barbara, CA (1992).

13. D.W.Matula, “Basic digit sets for radix representation,” J.ACM 29, 1131-1143
(1982).

14. A proposed Federal information processing standard for digital signature standard
(DSS), Federal Register 58 (169), 42080-42082 (1991).

105

A The Performance of the BGMW Method

Table A.1 : Selected parameters for a 160-bit exponent

[b | M [b | storage [worst / average |
13 17 12 a5 54 / 50.25
19 ey 9 76 45 7 43.00
29 {*1,+2} 9 134 41 / 39.83
36 | {£1,9, %14, £i7}| 7 || 219 37/ 36.11
36 M; 3 620 32 /31.14
64 M, 2 1134 27 / 26.58
128 M; 3 1748 24 / 23.82
256 M, 2 2751 21 / 20.92

Table A.2 : Selected parameters for a 512-bit exponent

{ b | M | h]| storage [worst / average |
26 {1} 25 109 132 / 127.81
45 {1} 22 188 114 / 111.91
53 {£1,+2} 17 362 106 / 104.28
67 {*1,+2,+23} 16 512 100 / 98.72
64 M3 3 3096 87 / 85.66
122 M, 3 5402 75 / 74.39
256 M, 2 10880 64 / 63.75

106

The Performance of the Proposed Method

Table B.1 : Selected parameters for a 160 bit exponent

[configuration || storage | worst / average |

2x2 6 118 /98.00
2x 13 x1 10 94 / 82.00
3x2 14 79 / 72.25
3x14x1 22 67 / 62.89
4x2 30 58 / 55.50
4x3 45 52 / 49.50
5x 2 62 46 / 45.00
4x1]5x 2 7 44 [42.63
5x3 93 41 / 40.00
5x4 124 38 / 37.00
5x1[6 x 2 157 368 / 35.44
6x3 189 34 /33.58
6x4 252 32 / 31.58
6x1[7x2 317 30 / 29.75
7Tx3 381 29 / 28.82
Tx4 508 27 / 26.82
7Tx86 762 25 / 24.82
8 x4 1020 23/ 22.92
8x7 1785 21 / 20.92
8x1/9x4 2299 20 / 19.96

Table B.3 : Performance on parallel processing (|R| = 160/512)

np\sp]] 15] 31 | 63 | 127 [255 | 511 [1023 |
2 [[39 7 127[31 /103] 27 7 85] 23 / 73] 19 / 63] 17 / 57] 15 / 51
4 [l20/64]16 /53]14 /44127 /38|10 /32]- /30 [8/26
6 [[15/45(13 /37|11 /31{9/27|-/23 {7 /21[-/19
8 [[11/33(9/27][-/23[7/21[-/17] -/-[5/15
16 [8/18|6/16[-/14|-/12[-/10[-/- | 4/-
32 |7/ |s/-1-79 | -/-1-/71-7-1-7-

* np = no. of processors (v), sp = storage / processor (2% — 1)

107

Table B.2 : Selected parameters for a 512 bit exponent

| configuration [| storage | worst / average |

2% 2 6 382 / 318.00
2x 13 x 1 10 306 / 267.63
3% 2 14 255 / 233.63
3x1jdx 1 22 218 / 204.38
4x2 30 190 / 182.00
4x3 45 169 / 161.00
) 62 153 / 149.78
5x3 93 136 / 132.78
5x 26 x 1 125 126 / 123.50
5X 1|6 X 2 157 106 / 104.66
6x3 189 113 / 111.66
6 x 4 252 106 / 104.66
6 x 1|7 X 2 317 101 / 100.20
7TX3 381 97 / 96.42
Tx 4 508 91/ 90.42
Tx5 635 87 / 86.42
7x 1|8 x 3 892 81/ 80.68
8 x 4 1020 78] 71.75
85 1275 75] 74.75
8x6 1530 73] 12.75
8x8 2040 70] 69.75
9x5 2555 67 / 66.89
9x6 3066 65 / 64.89
9x6[10 X 1 4089 62 / 61.90
9x110x 5 5626 59 / 58.94
9x 1]10 x 7 7672 57] 56.95
10x 2[11 x 4 || 10234 54 / 53.97
10x 2[11x 6 || 13305 52 / 51.98

	Introduction
	Review of Previous Work : BGMW Method
	The Proposed Method
	Speeding up Identification and Signature Verifications
	Parallel Processing
	Conclusion
	References

