
More Flexible Exponentiation with 
Precomputat ion 

Chae Hoon Lim and Pi1 Joong Lee 

Department of Electrical Engineering, Pohang University of Science and Technology 
(POSTECH), Pohang, 790-784, KOREA 

Abstract. A new precomputation method is presented for computing 
gR for a fixed element g and a randomly chosen exponent R in a given 
group. Our method is more efficient and flexible than the previously 
proposed methods, especially in the case where the amount of storage 
available is very small or quite large. It is also very efficient in computing 
gRyB for a small size E and variable number y, which OCCUIE in the 
verification of Schnorr’s identification scheme or its variants. Finally it 
ia shown that our method is well-suited for parallel processing as well. 

1 Introduction 

The problem of exponentiating fast in a given group (usually ZN, N a large prime 
or a product of two large primes) is very important for efficient implementations 
of most public key cryptoaystems (hereafter it is assumed w.1.o.g. that the com- 
putation is performed over ZN and thus multiplication denotes multiplication 
mod AT). A typical method for exponentiation is to use the binary algorithm, 
known as the square-and-multiply method [I]. For 512 bit modulus and expo- 
nent, this method requires 766 multiplications on average and 1022 in the worst 
case. The signed binary algorithm [2-31 can reduce the required number of mul- 
tiplications to around 682 on average and 768 in the worst case. 

On the other hand, using a moderate amount of storage for intermediate 
values, the performance can be considerably improved again. Knuth’s 5-window 
algorithm [1,4] can do exponentiation in about 609 multiplications on average, 
including the on-line precomputation of 16 multiplications. The fastest known 
algorithm for exponentiation is the windowing method based on addition chains, 
where we can use bigger windows such as 10 [4] and need more storage for 
intermediate values 151. Though finding the shortest addition chain is an NP- 
complete problem [6], it is reported [4] that, by applying heuristics, an addition 
chain of length around 605 can be computed. 

These general methods can be used for any cryptosystems requiring expo- 
nentiation such as RSA [7] and ElGamal [8]. However, in many cryptographic 

. protocols based on the discrete logarithm problem, we need to compute gR for 
a fixed base g but for a randomly chosen exponent R. Thanks to  the fixed base 
element, a precomputation table can be used to reduce the number of multipli- 
cations required, of course at the expense of storage for precomputed values. 

At Eurocrypt’92, Brickell et al. [9] proposed such a method for speeding 
up the computation of gR (called the BGMW method, for the convenience of 

Y.G. Desmedt (Ed.): Advances in Cryptology - CRYPT0 ’94, LNCS 839, pp. 95-107, 1994. 
0 Spnnger-Verlag Berlin Heidelberg 1994 



96 

reference). Their basic strategy is to represent an exponent R in base b, that is, 
R = dt-lb*-' + -.. + d l b  + do where 0 5 d; < b (0 5 i < t), and precompute 
all powers gi = gbi.  Then g R  can be computed by nf,; g? = nii:(&i=, gi),. 
Using a basic digit set for base b, they extended the basic scheme so that the 
computation time can be further decreased while the storage required is increased 
accordingly. 

In this paper, we propose another precomputation method for fast exponen- 
tiation. Our method is a generalization of the simple observation that if an *bit 
exponent R is divided into two equal blocks (i.e., R = R1 x 2nfa + RQ) and 
g1 = g is precomputed, then g R  can be evaluated in a half of the time re- 
quired by the binary method in the worst caae (& on average) by computing 
gf'gRo. It will be seen that the proposed method is more efficient, especially 
when the storage available is very small or quite large, and also more flexible, 
giving a wide range of time-memory tradeoffs, than the BGMW method. The 
case of using a small amount of storage is of great importance for an application 
to  smart cards having limited storage and computing power, but the BGMW 
method is not so efficient for this case. 

Another advantage of the proposed method is its eficiency in computing 
g R y E ,  where y is not fixed and the she of E is much less than that of R, which 
is needed for the verification of Schnorr's identification and signature scheme 
[lo] or its variants, e.g., Brickell-McCurley's scheme [ll] and Okamoto's scheme 
[12]. Note that, for this kind of computation, representing exponents in non- 
binary power base may considerably increase the on-line computational load 
(see section 4). Finally we show that the proposed method is also well-suited for 
parallel processing. 

Throughout this paper, we will use g as a fixed element of ZN and R as an 
n-bit random exponent over [0,2"). We denote by IS1 the bit-length of S for an 
integer S or the cardinality of S for a set S. We also denote by r.1 the smallest 
integer not less than 2 and by 1.1 the greatest integer not greater than 2. 

p n l a  

2 Review of Previous Work : BGMW Method 

In this section, we briefly review the BGMW method, the precomputation method 
proposed by Brickell, Gordon, McCurley and Wilson at Eurocrypt'92. For more 
details, see the original paper [9]. 

A set of integers D is called a basic digit set for base b if any integer can 
be represented in base b using digits from the set D [13]. Suppose that we can 
choose a set M of multipliers and a parameter h for which 

D(M,h) = (rnklrn E M,O 5 k: 5 h} (1) 
is a basic digit set for base b. Then an n-bit exponent R can be represented BB 



97 

With this representation of R, gR can be computed by 

t -1  h h 

i = O  k = l  k;=k k = l  

Therefore, if we precompute and store powers gmbi for all i < t and m E M, 
then gR can be computed in at most t + h - 2 multiplications using ahout tlMl 
precomputed values by the following algorithm. 

v := u; 
for w := h - 1 to 1 step -1 

gmi b' . u := u * nkiZru 1 

v := v * u; 
return(v); 

It ie easily seen that the number of multiplications performed by the above 
algorithm is t + h - 2 in the worst case (t - h multiplications for computing 
products of the form n,,,,, gmib' for w = 1, - - - , h and 2h - 2 multiplications 
for completing the for-loop) and yt + h- 2 on average (For a randomly chosen 
exponent, 5 digits are' expected to be zero.). 

The most obvious example for D is the base b number system (M = {l}, 
h = b - 1, t = pogb (2" - 1)1). For a 512 bit exponent, the choice of b = 26 
minimisee the expected number of multiplications. This basic scheme requires 
127.8 multiplications on average, 132 in the worst case, and storage for 109 
precomputed values. More convenient choice of base will be b = 32, since then 
the digits for the exponent R can he computed without radii conversion by 
extracting 5 bits at a time. With this base, the required number of multiplications 
is increased only by one for the average case and remains unchanged for the 
worst case. Though the basic scheme is the obvious choice in the case where 
the storage available is small, its performance is considerably degraded as the 
number of storage ie going down below 109. This means that the BGMW method 
does not provide an efficient way to perform the computation when the storage 
available is very small. 

Brickell et al. also presented several schemes using other number systems to 
decrease the number of multiplications required, of course using more storage 
for precomputed values. One of the extreme examples is to choose the set M as 
Ma = {mil _< rn < b,wa(m) = 0 mod 2}, where wp(m) is the highest power of 
p dividing m. Then, for 1 5 4 < b, we have d; = m or 2 m  for some m E Ma 
(i.e., h = 2). Thus gR can be computed in t multiplications on average and vt 
multiplications in the worst case, with the storage to (IK3lrlogb (2n - l)] values. 
For example, taking b = 256 (t = 64, lMal = 170), we can achieve an average of 
63.75 multiplications with 10880 precomputed values. Two tables that Brickell 
et al. presented in [9] are given in the appendix A for the purpose of comparison 
with our results. 



98

3 The Proposed Method

We now present our method for fast evaluation of gR using a precomputation
table. Let R be an nAAt exponent for which we want to compute fffl. We firet
divide the exponent R into h blocks Ri, for 0 < t < h - 1, of size a = f £] and
then subdivide each Ri into v smaller blocks Rij, for 0 < j < v — 1, of size
b = ["*] as follows (see figure 1):

R =
h-1

«=0
v - l

j-0
*

Ri,v-L

. . .

. . .

Bid

...

...

Rifl

(4)

a = I" J l bits

Figure 1 : Division and arrangement of an n-bit exponent R

Let g0 = g and define gi as g< = g ^ = g3" for 0 < i < h. Then, using the
equations (4), we can express gR as

h-i V-lJl-l

(ft1 ) • 00
i=0 j=0 i=0

If we let Ri = CiiO_i •• -e^ie^o be the binary representation of Ri (0 < t < h),
then Rij (0 < j < v) is represented in binary as

•Ktj = eijb+b-l • • ' Cijb+k • • • etj4+letji!.-

Therefore the expression (5) can be rewritten as follows :

(6)



99 

Next suppose that the following values are precomputed and stored for all 
1 < i < 2 h a n d 0 5  j < u .  

=h-l +.-a r.1 co G[o][i] = g h - l  gh-2 "'91 90 I 

G[j][i] = (G[j - 1][i])2b = (G[O][i])2'b. (7) 

Here the index i is equal to  the decimal value of eh-1.. . eleo. Then, using the 
precomputed values of (7), we can rewrite the expression (6) as 

where Ij,k = e h - l , b j + k  - -  ' e l ,b j+kI?O,) j+k  (0 5 j < b), which corresponds to the k- 
t h  bit column of the j-th block column in the figure 1. Now it is straightforward 
to  compute gR using the expression (8) by the ordinary square-and-multiply 
method as follows : 

z := 1; 
for k := b - 1 to 0 step -1 

2 := z * 2; 
for j := v - 1 to 0 step -1 

2 := 2 * G [ j ] [ l j , h ] ;  
return(2); 

We next count the number of multiplications required by the above algorithm. 
Here we have to  note that the (u - 1)-th blocks in the figure 1 may not be full 
of b bits. In fact, they are of bv - a bit sire. Thus the number of terms to  be 
multiplied together in the inner for-loop is tl + 1 for the first bv - a rounds 
and v + 2 for the remaining b - bv + a rounds. Therefore, the total number 
of multiplications required is at most v(bv-a)+(v+l)(b-bv+a)-2 = a+b-2 in the 
worst case. Since we may assume that the probability of lj,k being zero is 6 and 
there are a occurrences of l j , k  in the above algorithm, the expected number of 
multiplications is given by *a+  b- 2. Of course, this performance is achieved 
with storage for (zh - 1). precomputed values. 

In the above, we assumed that the exponent R is partitioned into hu blocks 
of almost equal size and that these hv blocks are arranged in a h x v rectangular 
ahape. In most cases, such partitions and arrangements yield better performance 
than others for a given amount of storage, but sometimes this may not be the 
case. For example, consider two configurations shown in the figure 2 below, where 
a 512-bit exponent is partitioned and arranged in two different ways. The first 
configuration corresponds to the case we analyzed in the above and results in 
the performance of 118.78 multiplications on average (122 in the worst case) 
with storage for 155 values. On the other hand, with the second configuration, 
we can do the exponentiation in 117.13 multiplications on average (119 in the 



100 

worst cue )  using storage for 157 values. This shows that we had better choose 
the second configuration. 

5 x 5 configuration 5 x 116 x 2 configuration 

Figure 2 : Two different configurations with almost 
the same storage requirement 

For the configuration of type hl x vl(h2 x where hl < ha, we can easily 
derive general formulae for the worst/average-case performance. Let bl and h 
be the sise of partitioned blocks in hl x v l  and ha x ua respectively. For better 
performance, ba must be greater than or equal to bl and can be obtained in 
the same way as b in the h x v configuration. Thus we get b2 = rh1V13,,PUP] 

and b1 = h:v: ‘1. Now the worst-case number of multiplications required 
for this configuration can be directly obtained from the formula for the h x v 
configuration. by replacing a by hlvi + hsun and b by ba respectively, This results 
in blv l+  bl(v2 + 1)  - 2 multiplications in the worst case. Similarly, the expected 
number of multiplications can be shown to be w b l v l + -  *biua + ba - 2. 
This performance can be achieved with the storage for (2hl - l)wl+ (2hP - l)~2 
precomputed values. We can easily see that no configurations other than the two 
types, h x u and hi x vllh.2 x ~ l ( h 2  = h.1 + I), yield better performance for a 
given amount of storage. 

The number of multiplications and storage requirements for a 512 bit mod- 
ulus are summarized in tables B.l and B.2 in the appendix B, for a 160-bit 
and 512-bit exponent respectively. Note that not only is the proposed method 
simpler, but it also achieves better performance than the BGMW method. In 
particular, due to its effectiveness over a wide range of storage, our method is 
flexibly applicable to various computing environments according to the amount 
of storage available. For example, to speed up the computation by smart cards, 
we may choose the configuration of 4 x 2. Then for 512 bit modulus and exponent 
the computation of g R  can be done in 182 multiplications on average with 1920 
bytes of storage. On the other hand, when a relatively large amount of storage 
is available, we can choose, for example, the configuration of 7 x 4, achieving 
90.42 multiplications on average with about 32 Kbytes of storage. 

n-8 h v 



101 

4 Speeding up Identification and Signature Verifications 

Based on the discrete logarithm problem, a lot of identification and digital sig- 
nature schemes have been developed (e.g., [lO-l2]). In all these schemes, along 
with a few modular multiplications the prover (or the signer) needs to  compute 
gR for a random €2, which can be efficiently performed by the method described 
in section 3. On the other hand, to validate the prover's identity or the signature, 
the verifier needs to perform the computation of the form gRy" where y corre- 
sponds to the public key of the prover (or the signer) and thus varies in each run 
of the protocol. The sise of E typically lies between 20 and 40 in identification 
schemes and around 80 in the corresponding signature schemes. Thie section 
investigates the performance of the proposed method for computing gRyE. 

Let t be the sise of E. It is clear that i f t  5 b, then gRyE can be computed 
in a + b + t - 2 multiplications in the worst case and wa + b + 0.5t - 2 on 
average. In case o f t  > b, we can either proceed as above or do the computation 
after partitioning E into smaller blocks, The first case yields the performance 
of a + Zt - 2 multiplications in the worst case and %a + 1.5t - 2 on average. 
However, if t is much larger than b, the performance can be further improved by 
dividing E into smaller blocks. 

Thus, for more general formulae, suppose that E is partitioned into u blocks 
of almost equal size (Consider the whole configuration for computing gRp as 
1~ x l ( h  x u). Let c be the bit-length of the partitioned blocks (i.e., c = [:I). 
Then, we first have to compute y2" for le = 1 , 2 , .  - .  , u - 1, and each product 
of their possible combinations, which all together requires (u - 1)" + 2" - u - 1 
multiplications. For the range of t we are interested in, i.e., up to  t = 80, u 
takes on at most 3. Now, if c 5 b, then at most c additional multiplications are 
sufficient in the worst case ( p c  on average). Therefore the total number of 
multiplications required in this case is a + b + uc + 2" - u - 3 in the worst case 
and *a + b + w c  + 2" - u - 3 on average. Similarly, for the case of c > b 
we can easily show that the number of multiplications is a + (u + l)c + 2" - u - 3 
in the worst case and %a + w c  + 2" - u - 3 on average. 

With the proposed method, the Schnorr-like identification and/or signature 
schemes can be made more practical for smart card implementations. For ex- 
ample, with a 512-bit modulus, 160-bit exponents and t = 30, the verification 
condition can be checked in 80.5 multiplications on average, if 1920 bytes of 
storage are available (4 x 2 configuration). Similarly, a signature with t = 80 
can be verified in 144.13 multiplications on average using the same amount of 
storage. This is a considerable speedup only with a very small amount of storage, 
compared with the binary method requiring 246.5 multiplications €or t = 30 and 
259.0 multiplications for t = 80 on average. Moreover, identification or signature 
verifications are usually performed in much more powerful terminals capable of 
being equipped with a large amount of memory. In such an environment, we 
may adopt the 8 x 2 configuration and thus can perform, on average, identity 
verifications in 60.2 multiplications for t = 30 and signature verifications in 126.6 
multiplications for t = 80, using about 32 Kbytee of storage. 



102 

schemes n / t 
Schnorr 160 / 80 
DSS 160 / 160 
BM 512 / 80 

Further improvement with additional communication : Small additional 
communication can considerably reduce the number of multiplications for com- 
puting g R y E  again. That is, the verifier can save the on-line computational load 
for preparing yk = ya for k = 1,2,  - - . , u- 1, if they are precomputed and stored 
by the signer (or the prover), since y is a fixed number to him, and then trans- 
mitted together with other data. For example, for the signature scheme Zith t 
= 80, if the signer sends 2 additional 512 bit blocks y1,y1 where yl = y' and 
ya = y,la', together with a signature for message, then the signature verification 
can be done in 90.13 multiplications on average with the 4 x 2 configuration. 
Therefore, 54 multiplications can be saved only with the increase of 128 bytes 
of communication. Thirr corresponds to about a 3-fold speedup on average over 
the binary method which requires 259 multiplications on average. 

For comparison, it is worth mentioning that the BGMW method is less effi- 
cient for the computation of the form gRyE in either case we considered above. 
In case of no additional communication, if the exponents are represented in non- 
binary power base, more computations are needed in performing the on-line pre- 
computation required for #. When addtional communication is allowed, more 
precomputed values must be transmitted due to the use of small base. 

The above method of combining precomputation and additional communi- 
cation can be used to  speed up the verification of the digital signature standard 
(DSS) [14] as well. In DSS, we have to perform the computation of the type gRyB 
with IRI = ]El = 160 and thus without additional communication we can gain 
no advantage with precomputation. However, if the signer sends 3 additional 
blocks (yl, ya, y3) where yi = for i = I,  2 ,3  and if the verifier adopts the 
4 x 2 configuration, then the signature can be verified in 124 multiplications on 
average. This is more than a 2-fold improvement over the binary method which 
requires 279 multiplications on average, only with 1920 bytes of storage and 192 
bytes of additional communication (for a 512 bit modulus). 

hc 

binary 4 x 2  a x 2  
318 / 238 58 / 55.5 28 / 27.9 
318 / 238 58 / 55.5 28 / 27.9 

1022 / 766 190 / 182.0 94 / 93.8 

schemes 
Schnorr 
DSS 
BM 

n / t binary 4 x 2  8 x 2  
160 / 80 319 / 259 89 / 85.3 69 / 67.7 
160 / 160 319 / 279 129 / 124.0 109 / 106.4 
512 / 80 1023 / 787 221 / 211.8 125 / 123.5 

The table 1 shows the number of multiplications required for signature gen- 
eration and verification in three signature schemes (Schnorr [lo], DSS [14] and 



103 

Brickell-McCurley 11 l]), under the assumption that the signer sends additionally 
3 precomputed values for his public key together with a signature, BB mentioned 
above. Here we only take into account the number of multiplications for exponen- 
tiation operations, neglecting some other necessary operations such as reduction 
mod g and multiplicative inverse mod q where q is a prime of about 160 bit 
size. Two configurations of 4 x 2 and 8 x 2 are taken as examples, since the 
former ie suitable for smart card applications and the latter for more general 
applications with a relatively large amount of storage available. For comparison, 
the performance of the binary method is also presented. 

5 Parallel Processing 

With multiple processors, the proposed method can be parallelized, much more 
efficiently than the BGMW method, by assigning the j-th processor to the j-th 
column of the h x u configuration (see figure 1). That ia, if v processors aze 
available, then the j-th processor can be assigned to compute 

h- 1 

in the expression of 

u-1 b - 1  

j = O  k=O 

where we assume that each processor stores in its local memory 2" - 1 precom- 
puted values. The computation of each processor can be completed in at most 
2(b - 1) multiplications. After then, we need rlog2ul multiplications in addition 
to produce the final result. Therefore, the total number of multiplications is 

Table B.3 in the appendix B shows the required number of multiplications for 
160/512 bit exponents, according to the number of processors and the storage 
needed per processor. Note that only with a small number of processors the 
performance can be greatly improved. For example, for 512-bit modulus and 
exponent, we can compute g R  in 32 multiplications , when 4 processors are 
available and each processor has a local storage for 255 precomputed values 
(about 16 Kbytes). With more processors, say 16, the exponentiation can be 
done in 10 multiplications with the same storage requirement. 

The described parallel computation can be more efficiently implemented by 
a special-purpose hardware. For example, with 8 pairs of multiply and squar- 
ing circuits together with read-only memory for 120 precomputed values (4 x 8 
configuration), we can compute g R  with IRI = 512 in 18 multiplications and 15 
squarings. If we use storage for 2040 values (8 x 8 configuration) with the same 
circuits, then the computation can be done in 10 multiplications and 7 squaringa. 

2(b - 1) + rioglul.  



104 

6 Conclusion 

We have proposed a new method for fast exponentiation with precomputation. 
The proposed method is very simple but achieves better performance than the 
BGMW method [9]. Our method is also preferable since it is flexibly applicable to 
various computing environments due to its wide range of time-storage tradeoffs. 
In particular, using the proposed method, we can substantially speed up the 
computation by smart cards with only a very small amount of storage. We also 
showed that the proposed method can also speed up the computation of the 
form g R f l  with y variable. This can make much more practical the Schnorr- 
type identification and signature scheme, since the verifier aa well as the prover 
(signer) can gain great computational advantage with a moderate amount of 
storage. Finally we presented how the proposed algorithm can be parallelized. 
Such parallel processing may be useful in high performance server machines with 
multiple processors. 

References 

1. D.E.Knuth, The art of computer programming, Vol.2 : Seminumerical algorithms, 
second Edition, Addison-Wesley (1981). 

2. J.Jedwab and C.J.Mitchel1, “Minimum weight modified signed-digit representa- 
tions and fast exponentiation,” Elect. Let. 25 (17), 1171-1172 (1989). 

3. C.N.Zhang, “An improved binary algorithm for RSA,” Computers Math. A p p k .  
25 (6), 15-24 (1993). 

4. J.Bos and M.Coster, ‘Addition chain heuristics,” In Advances in Cryptoloy- 
Crypto’89, Lecture Notesin Computer Science 435, (edited by G.Brassard), pp.400- 
407, Springer-Verlag (1990). 

5. J.Saucrbrey and A.Diete1, “Resource requirements for the application of addition 
chains modulo exponentiation,” In Proc. Eurocrypt’92, Balatonfured, Hungary 
(1992). 

6. P.Downey, B.Leony and R.Sethi, “Computing sequences with addition cha.hs,” 
Siam J. Comput. 9, 838-698 (1981). 

7. R.L.&vest, A,Shamir and L.Adleman, ‘A method for obtaining digital signatures 
and public-key cryptosystems,” Commun. ACAf, 21 (2) 120-126 (1978). 

8. T.ElGrnal, “A public key cryptosystem and a signature scheme baaed on the die 
mete logarithm,” IEEE B a n s .  Jkform. Theory 31 (4), 469-473 (1986). 

9. E.F.Brickell, D.M.Gordon, K.S.McCurley and D.Wilaon, “Fast exponentiation 
with precomputation,” In Proc. Eurocrypt’92, Balatonfured, Hungary (1992). 

10. C.P.Schnorr, ‘Efficient signature generation by smart cards,” J .  Cryptology 4 (3), 

11. E.F.Brickell and K.S.McCurley, “An interactive identification scheme based on 

12. T.Okamoto, “Provably secure and practical identification schemes and correspond- 

13. D.W.Matula, ’Baaic digit sets for radix representation,” J.ACM 29, 1131-1143 

14. A proposed Federal information processing standard for digital signature standard 

181-174 (1991). 

discrete logarithms and factoring,” J. Cryptology 5 (1) 29-39, (1992). 

ing signature Bchemes,” In Proc. Crypto’92, Santa Barbara, CA (1992). 

(1962). 

(DSS), Federal Register 56 (169)) 42980-42982 (1991). 



105

A The Performance of the BGMW Method

Table A.I : Selected parameters for a 160-bit exponent

b

13
19
29
36
36
64
128
256

M

{1}
{±1}

{±1,±2}
{±1,9, ±14, ±17}

M3

M3

M3

M2

h || Btorage

12

9
9
7
3

2
3
2

45
76

134
219
620

1134
1748
2751

worst / average

54 / 50.25
45 / 43.00
41 / 39.83
37/36.11
32 /31.14
27 / 26.58
24 / 23.82
21 / 20.92

Table A.2 : Selected parameters for a 512-bit exponent

b

26
45
53
67
64
122
256

M
{1}

{±1}
{±1,±2}

{±1,±2,±23}
M3

M3

M3

h || storage

25
22
17
16
3
3
2

109
188
362
512
3096
5402
10880

worst / average

132 / 127.81
114 / 111.91
106 / 104.28
100 / 98.72
87 / 85.66
75 / 74.39
64 / 63.75



106

B The Performance of the Proposed Method

Table B.I : Selected parameters for a 160 bit exponent

configuration || storage

2 x 2

2x l|3x 1
3 x 1

3 x 1|4 x 1
4 x 2
4 x 2
5 x 2

4 x I | 5 x 2
5 x
5 x 3

5 x 1|6 x 2
6 x 3
6 x 4

6 x l |7x 2
7 x 3
7 x 3
7x4
8 x 4

8 x 4
8 x 1|9 x 4

6
10
14
22
30
45
62

77
93

124
157
189

252
317
381
508
762

1020
1785
2299

worst / average
118 / 98.00
94 / 82.00
79 / 82.00
67 / 72.25
58 / 55.50
58 j 55.50
46 1 49.50
44 / 42.63
44 1 42.63
38 ) 40.00
38 / 37.00
36 1 35.44
32 / 31.58
32 / 31.58
29 / 29.75
29 / 28.82
27 1 26.82
25 ) 24.82
23 / 22.92
21 / 20.92

Table B.3 : Performance on parallel processing (\R\ = 160/512)

np \ sp|| 15

2

4
6
8

16
32

39 / 127
20 / 64
15 /45
11 /33
8/18
7/11

31

31 /103
16 / 53
13 / 37
9 /27
6 /16

5 / -

63

27 / 85
14/ 44
11 / 31
- / 23
- / 1 4
- / 9

127

2 3 / 73
12 / 38
9 / 2 7
7 / 2 1
- / 1 2

- / -

255

19 / 63
10/ 32
- /23
- / 1 7
- / 1 0

- n

511 | 1023 |

17/ 57
- /30
7/21

- / -

- / -
- / -

15/51
8/26
-/19
5/15
4 / -
- / -

* np = no. of processors (v), sp = storage / processor (2h — 1)



107

Table B.2 : Selected parameters for a 512 bit exponent

configuration || storage

2 x 2

2 x 1|3 x 1
3 x 2

3 x 1|4 x 1
4 x 2
4 x 3
5 x 2
5 x 3

5x 2|6 x 1
5 x 1|6 X 2

6 x 3
6 x 4

6x 1|7 X 2
7 x 3
7 x 4
7 x 5

7 x 1|8 x 3
8 x 4
8 x 5

8 x 6
8 x 8

9 x 5
9 x 6

9x 6|10 x 1
9x l|10 x5

9x ljlO x7
10 X 2|11 x 4
10 x 2 | l l x 6

6
10
14
22

30
45
62

93
125

157
189
252
317
381
508

635
892

1020
1275
1530
2040
2555
3066
4089
5626
7672
10234
13305

worst / average

382 / 318.00
306 / 267.63
255 / 233.63
218 / 204.38
190 / 182.00
169 / 161.00
153 / 149.78
136 / 132.78
126 / 123.50
106 / 104.66
113 / 111.66
106 / 104.66
101 / 100.20
97 / 96.42
91 / 90.42
87 / 86.42
81 / 80.68
78 / 77.75
75 / 74.75
73 / 72.75
70 / 69.75
67 / 66.89
65 / 64.89
62 / 61.90
59 / 58.94
57 / 56.95
54 / 53.97
52 / 51.98


	Introduction
	Review of Previous Work : BGMW Method
	The Proposed Method
	Speeding up Identification and Signature Verifications
	Parallel Processing
	Conclusion
	References

