
The Algebraic Path Problem Revisited

Sanjay Rajopadhye1, Claude Tadonki2, and Tanguy Risset1

1 IRISA, Rennes, France, http://www.irisa.fr/cosi/Rajopadhye
2 University of Yaounde, Cameroon, cmtado@uycdc.uninet.cm

Abstract. We derive an efficient linear simd architecture for the al-
gebraic path problem (app). For a graph with n nodes, our array has
n processors, each with 3n memory cells, and computes the result in
3n2 − 2n steps. Our array is ideally suited for vlsi, since the controls
is simple and the memory can be implemented as fifos. i/o is straight-
forward, since the array is linear. It can be trivially adapted to run in
multiple passes, and moreover, this version improves the work efficiency.
For any constant α, the running time on n

α
processors is no more than

(α+2)n2. The work is no more than (1+ 2
α
)n3 and can be made as close

to n3 as desired by increasing α.
Keywords: transitive closure, shortest path, matrix inversion, Warshall-
Floyd & Gauss-Jordan elimination, systolic synthesis, scheduling, space-
time mapping, recurrence equations.

1 Introduction

The algebraic path problem (app) unifies a number of well-known problems into
a single algorithm schema. It may be stated as follows. We are given a weighted
graph G = 〈V, E, w〉 with vertices V = {1, 2, . . . n}, edges E ⊆ V × V and
a weight function w : E → S, where S is a closed semiring 〈S,⊕,⊗, ∗,0,1〉
(closed in the sense that ∗ is a unary “closure” operator, defined as the infinite
sum x∗ = x ⊕ (x ⊗ x) ⊕ (x ⊗ x ⊗ x) ⊕ A path in G is a (possibly infinite)
sequence of nodes p = v1 . . . vk and the weight of a path is defined as the product
w(p) = w(v1, v2)⊗w(v2, v3)⊗ . . .⊗w(vk, vk−2). Let P (i, j) denote the (possibly
infinite) set of all paths from i to j. The app is the problem of computing, for
all pairs i, j, such that 0 < i, j ≤ n, the value d(i, j) defined as follows (

⊕
is a

“summation” operator for S)

d(i, j) =
⊕

p∈P (i,j)

w(p)

Warshall’s transitive closure (tc) algorithm, Floyd’s shortest path (sp) algo-
rithm and the Gauss-Jordan matrix inversion (mi) algorithm are but instances
of a single, generic algorithm for the app (henceforth called the wfgj algorithm),
the only difference being the semiring involved. It’s sequential complexity (and
hence the work) is n3 semiring operations.

There has been considerable research on implementing the app (or particular
instances thereof) on systolic arrays (see Table 1). Most of the early work was ad

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 698–707, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

The Algebraic Path Problem Revisited 699

Authors Application Area Time

Guibas et al. [5] tc n2 6n
Nash-Hansen [9] mi 3n2/2 5n
Robert-Tchuent [13] mi n2 5n
Kung-Lo [6] tc n2 7n
Rote [15] app n2 7n
Robert-Trystam [14] app n2 5n
Kung-Lo-Lewis [7] tc & sp n2 5n
Benaini et al. [1] app n2/2 5n
Benaini-Robert [2] app n2/3 5n
Scheiman-Cappello [16] app n2/3 5n
Clauss-Mongenet-Perrin [4] app n2/3 5n

Takaoka-Umehara [17] sp n2 4n
Rajopadhye [11] app n2 4n
Risset-Robert [12] app n2 4n
Chang-Tsay [3] app n2 4n
Djamegni et al. [18] app n2/3 4n

Linear arrays (systolic and otherwise)

Kumar-Tsay [10] app n2 7n2

Kumar-Tsay [10] app n2 7n2

Myoupo-Fabret [8] app n2/α (3 + 4
α
)n2

Table 1. Systolic implementations for the wfgj algorithm and its instances
(sp, tc and mi respectively denote shortest path, transitive closure and matrix
inversion). The table is not exhaustive but in rough chronological order.

hoc, while later work used systematic design methods. All the implementations
take Θ(n) time on Θ(n2) processors. In the early 90’s a new localization that
reduced the running time from 5n to 4n was proposed independently by a number
of authors [3, 11, 12, 17]. The techniques of Scheiman-Cappello and Benaini-
Robert [2, 16] can be used to reduce the number of processors in these fast
arrays to n2/3, as shown by Djamegni et al. [18]. However, all the arrays to date
sacrifice work efficiency by a constant factor.

In practice this is an important limitation. A direct implementation of any
of these architectures by partitioning to run on a dedicated vlsi array will not
improve the work complexity.

In this paper, we seek an simd vlsi architecture that does not suffer from
this problem. We formally derive an architecture with only Θ(n) processors and
Θ(n2) time and also improve the work efficiency. Specifically, the array has n
processors, and computes the result in 3n2 − 2n time steps. The array can be
easily adapted to run in multiple passes on p < n processors, without sacrificing
but rather, with a gain in work efficiency. With α passes (on n

α processors)
the running time is no more than n2(α + 2), and hence, the work is at most
(1+ 2

α)n3. Thus by increasing the number of passes we can approach as close to a
work optimal implementation as desired. Finally, on a fixed number of processors

700 Sanjay Rajopadhye, Claude Tadonki, and Tanguy Risset

(i.e., where α = n/p is not constant but proportional to n) our implementation
is work optimal.

Our architecture is not “purely” systolic because there are three shift registers
of length n in each processor. Note however, that since a shift register is simply
a linear array of registers, one can argue that our architecture is really a two
dimensional n × n systolic array where only the boundary processors do the
actual computation—internal “processors” are just registers. Pragmatically, the
array is very modular and ideally suited for vlsi implementation.

The remainder of this paper is organized as follows. The following section
describes the notation and necessary background. Section 3 presents and intuitive
description of our linear simd array. Next, Sect. 4 presents its formal derivation
and analysis of its performance. We conclude in Sect. 5.

2 Notation and Background

We now recall the Warshall-Floyd-Gauss-Jordan algorithm for the app and de-
scribe some of its important properties. The algorithm is based on the following
sre, where D0 = {i, j, k | 0 < i, j ≤ n; 0 ≤ k ≤ n} is the domain of F .

d(i, j) = {i, j | 0 < i, j ≤ n} : F (i, j, n) (1)

F (i, j, k) =

D0 ∩ {i, j, k | k = 0} : ai,j

D0 ∩ {i, j, k | i = j = k} : F (i, j, k − 1)∗
D0 ∩ {i, j, k | i = k �= j} : F (k, k, k) ⊗ F (i, j, k − 1)
D0 ∩ {i, j, k | j = k �= i} : F (i, j, k − 1) ⊗ F (k.k.k)
D0 ∩ {i, j, k | i �= k; j �= k} : F (i, j, k − 1)⊕

(F (i, k, k) ⊗ F (k, j, k − 1))

(2)

Apart from the initialization plane, k = 0 the domain of F is an n × n × n
cube. For a given value of k, we will call the point [k, k, k] on the line i = j = k
as the pivot, and points on the respective planes i = k �= j and j = k �= i (i.e.,
points of the form [k, j, k] and [i, k, k], respectively) as the pivot row and pivot
column. The remainder of the points are called the interior points. Observe that
the four main (apart from the initialization) clauses of (2) correspond to the
pivot, the pivot row, the pivot column and the interior points, respectively. We
also call the point [k + 1, k + 1, k] for j �= k, as the first interior point of the k-th
plane, and the points [k + 1, j, k] as the first interior row.

Observe that for any plane k = const, we have the following computation
order (assuming an unbounded number of processors). First, the pivot [k, k, k] is
computed, since it depends on a value from the “preceding” plane. Next, the rest
of the pivot column, namely the points [i, k, k] for i �= k (respectively, the pivot
row—points [k, j, k] for j �= k) are computed, since they depend directly on the
pivot. Finally, the interior points are computed since they all depend directly on
the pivot column. Also note that the pivot of plane k+1 depends directly on the
first interior point, and hence no computation in the next plane can start before
it. In other words, there is a critical path of length three between two successive

The Algebraic Path Problem Revisited 701

pivots, namely [k, k, k] → [k + 1, k, k] → [k + 1, k + 1, k] → [k + 1, k + 1, k + 1].
Hence the fastest running time of the algorithm is 3n. Indeed, it is well known
[11] that the optimal parallel schedule for the sre is as follows.

tf (i, j, k) =

D0 ∩ {i, j, k | k = 0} : 0
D0 ∩ {i, j, k | i = j = k} : 3k − 2
D0 ∩ {i, j, k | i = k �= j} : 3k − 1
D0 ∩ {i, j, k | j = k �= i} : 3k − 1
D0 ∩ {i, j, k | i �= k; j �= k} : 3k

(3)

This schedule assumes an unbounded number of processors, Θ(n2), to be
precise, with global communication: in particular, broadcasts of the pivot (and
the pivot column) are necessary. Table 1 illustrates that the locality of commu-
nication required for a systolic implementation imposes a slowdown from 3n to
4n or more.

Before we proceed further, let us derive a modified version of the sre (1-2),
which we shall use in the remainder of this paper. For notational convenience, we
define the operator +̇ by i+̇j = (i+ j) mod n. Now we apply the transformation
(i, j, k → (i − k) mod n, (j − k) mod n, k) to all points in the (sub) domain
{i, j, k | 0 < i, j, k ≤ n} of D0. By applying the standard transformation rules
for recurrence equations, we obtain the following sre, where the new domain of
F is D1 = {i, j, k | 0 ≤ i, j < n; 0 < k ≤ n} ∪ {i, j, k | k = 0 < i, j ≤ n}.

d(i, j) =

{i, j | 0 < i, j < n} : F (i, j, n)
{i, j | 0 < i < n; j = n} : F (i, 0, n)
{i, j | i = n; 0 < j < n} : F (0, j, n)
{i, j | i = j = n} : F (0, 0, n)

(4)

F (i, j, k) =

D1 ∩ {i, j, k | k = 0} : ai,j

D1 ∩ {i, j, k | i = j = 0} : F (i+̇1, j+̇1, k − 1)∗
D1 ∩ {i, j, k | i = 0 < j} : F (i+̇1, j+̇1, k − 1) ⊗ F (0, 0, k)
D1 ∩ {i, j, k | i > 0 = j} : F (0, 0, k) ⊗ F (i+̇1, j+̇1, k − 1)
D1 ∩ {i, j, k | i, j > 0} : F (i+̇1, j+̇1, k − 1)⊕

(F (i, 0, k) ⊗ F (1, j+̇1, k − 1))

(5)

What we have just applied is the well known reindexation transformation of
Kung Lo and Lewis [7]. It effectively brings the pivot to the vertical line i = j = 0
and the pivot rows and columns to the sides (i = 0 and j = 0) of the domain
D1. It may be visualized as a toroidal shift of each plane relative to the previous
(this also explains why the old F (i, j, k− 1) argument is systematically replaced
by F (i+̇1, j+̇1, k − 1)).

3 A Linear Systolic Array: Intuitive Description

We now present the main intuition behind our array. Specifically, we describe
the order in which computations are performed by each processor (the local
schedule) without entering into details of whether and why it is valid.

702 Sanjay Rajopadhye, Claude Tadonki, and Tanguy Risset

In our architecture, the k-th plane is executed by processor k. Thus each
processor computes a n × n matrix as defined by the sre (4-5). However, the
order in which the processor computes its values is rather special. The elements
are computed “principal submatrix” by “principal submatrix” as follows.

– The pivot element F (0, 0, k) is computed first. This is the base case.
– After the (i−1)-th principal submatrix has been computed, the i-th row and

column of the i-th principal submatrix are calculated in an alternating man-
ner: F (i, 0, k), F (0, i, k), F (i, 1, k), F (1, i, k), . . . F (i, i − 1, k), F (i − 1, i, k).
Finally the i-th diagonal element, F (i, i, k) is computed. This completes the
computation of the i-th principal submatrix.

We emphasize that this specifies the relative order of computations performed
on a given processor, and that there may be intervening idle cycles. Figure 1-a
illustrates this schedule for the first processor (for which there are no idle cycles).

Also note that this is merely the order in which the elements of the k-th slice
are computed. They are not sent to the next processor in this order (this is what
causes idle cycles). Rather, the processor first performs a toroidal shift and then
sends the elements (of this shifted matrix) in the same “principal submatrix”
order described above. The reason for this is the (i+̇1, j+̇1, k−1) dependency—
every computation depends (at least) on the element that would be “just below
it” if toroidally shifted. Thus the first interior point is the first value sent, and
the pivot is the last. In the penultimate 2n− 2 steps, the pivot row and column
are sent.

Let us now look at the implications of this on the schedule of processor 2
(Fig. 1.b). Since the first element that it can compute is its own pivot, and
this depends on F (1, 1, 1) which is itself computed at t = 4, processor 2 starts
only at t = 5. However, for the next two steps, it is idle, because (i) the values
computed by processor 1 are not sent, and moreover (ii) the next computation
that processor 2 can perform is F (1, 0, 2), which depends on F (2, 1, 1), and that
value is computed only at t = 7. From here on, the 2 × 2 principal submatrix is
finished as per the above schedule. At the start of the third principal submatrix,
there are again two idle cycles. This repeats at the start of each row (as indicated
by the 2 in Fig. 1.b). However, there are no idle cycles at the start of the last
row because this corresponds to the previous processor’s pivot row and column,
which were computed well in advance.

A close look at the schedule of processor 3 (Fig. 1.c) will now make the
pattern clear. We see that there are now two additional idle cycles at the start
of each row (processor 2 imposes and additional latency of two cycles on each
row). However, we also see that in the penultimate row, the processor can now
catch up (there are only 2 idle cycles instead of 4). This is because there were
no idle cycles in the last row of the previous processor. As always, the schedule
in the order of the “principal submatrix” and every point F (i, j, k) is computed
immediately after the point F (i+̇1, j+̇1, k−1) is sent by the previous processor.

We leave blank the table for processor 4 (Fig. 1.d), as an exercise for the
reader. Please fill it up before proceeding further, study it carefully, and in
particular, try to determine a closed form formula that gives the value of the

The Algebraic Path Problem Revisited 703

1 3 6 11 18 27 38 51

2 4 8 13 20 29 40 53

5 7 9 15 22 31 42 55

10 12 14 16 24 33 44 57

17 19 21 23 25 35 46 59

26 28 30 32 34 36 48 61

37 39 41 43 45 47 49 63

50 52 54 56 58 60 62 64

(a) k = 1

5 9 14 21 30 41 54 67

2 8 10 16 23 32 43 56 69

2 13 15 17 25 34 45 58 71

2 20 22 24 26 36 47 60 73

2 29 31 33 35 37 49 62 75

2 40 42 44 46 48 50 64 77

2 53 55 57 59 61 63 65 79

66 68 70 72 74 76 78 80

(b) k = 2

11 17 24 33 44 57 70 83

4 16 18 26 35 46 59 72 85

4 23 25 27 37 48 61 74 87

4 32 34 36 38 50 63 76 89

4 43 45 47 49 51 65 78 91

4 56 58 60 62 64 66 80 93

2 69 71 73 75 77 79 81 95

82 84 86 88 90 92 94 96

(c) k = 3

(d) k = 4

71 85 98 111 124 137 150 163

12 84 86 100 113 126 139 152 165

10 97 99 101 115 128 141 154 167

8 110 112 114 116 130 143 156 169

6 123 125 127 129 131 145 158 171

4 136 138 140 142 144 146 160 173

2 149 151 153 155 157 159 161 175

162 164 166 168 170 172 174 176

(d) k = 8

Fig. 1. Illustration of the schedule for n = 8. Each table shows the time instants
at which the elements of F (i, j, k) are computed by processor k (for k = 1 . . . 4,
and k = 8 the final step). The x ’s denote x idle ticks during which the processor
does nothing. The table for k = 4 is left blank as an exercise for the reader.

time instant as a function of i, j and k (hint: first concentrate only on points on
the diagonals of each plane, and remember that i and j range from 0 to n − 1).

The following remark can now be easily (after the little exercise) verified.

Remark 1. The closed form of the function described in Fig. 1 is given as follows.

t(i, j, k) =

if k = 0 then 0
if i ≥ j then td(i, k) − 2(i − j)
if i < j then td(j, k) − 2(j − i) + 1

(6)

where

td(i, k) =
{

if i + k ≥ n then n2 + 2n(i + k − n) + n − i − 1
if i + k ≤ n then (i + k)2 + k − 1 (7)

Observe that td(i, k) is the value of t(i, j, k) on the diagonal (i.e., where i = j).

704 Sanjay Rajopadhye, Claude Tadonki, and Tanguy Risset

4 Formal Derivation of the Array

We have so far seen the processor allocation and an intuitive explanation of the
schedule of our architecture. However, we do not have a proof of correctness of
its validity. We now resolve this question.

Theorem 1. The function t(i, j, k) defined by (6-7) is a valid schedule for the
variable F in the sre (4-5).

Outline of Proof: We need to show that whenever a point (i, j, k) ∈ D1

depends on another (i′, j′, k′) ∈ D1, then t(i, j, k) > t(i′, j′, k′). Since the
dependency function (and even the number of dependencies) is different
in different subdomains of D1, the proof must follow the structure of
sre (4-5). In fact, the schedule is valid iff we show that the (boolean)
recurrence (8) can be reduced to a tautology. By substituting from (6)
this reduces to showing a number of implications, each of the form that a
set of affine constraints (bounds of a subdomain) imply that a polynomial
is strictly positive. This is tedious but simple. Indeed, it can even be done
automatically with a mechanical theorem prover.

X(i, j, k) =

D1 ∩ {i, j, k | i = j = 0} : t(i, j, k) > t(i+̇1, j+̇1, k − 1)
D1 ∩ {i, j, k | i = 0 < j} : t(i, j, k) > max(

t(i+̇1, j+̇1, k − 1), t(0, 0, k))
D1 ∩ {i, j, k | i > 0 = j} : t(i, j, k) > max(

t(0, 0, k), t(i+̇1, j+̇1, k − 1))
D1 ∩ {i, j, k | i, j > 0} : t(i, j, k) > max(t(i+̇1, j+̇1, k − 1),

t(i, 0, k), t(1, j, k − 1))
(8)

Recall that the processor allocation function is defined as follows.

∀(i, j, k) ∈ D1, p(i, j, k) = k (9)

Now, we must show that the schedule and allocation function are not in
conflict, i.e., no two distinct points in D1 are mapped the the same processor at
the same time. The proof follows directly from Remark 2 below, which itself can
be easily verified.

Remark 2. t(i, j, k) = t(i′, j′, k) ⇒ i = i′ and j = j′.

Remark 3. The running time of the array is given by t(n−1, n−1, n) = 3n2−2n
and hence its work efficiency is 1

3 .

The algorithm can be implemented on only p < n processors by using multi-
ple passes. However, the analysis of the running time is a little involved. In the
single pass array, the k-th processor starts the first pass at ts(k) = t(0, 0, k) =
k2 + k − 1 and is active until tf (k) = t(n − 1, n − 1, k) = n2 + 2n(k − 1). It is
thus active for precisely ta(k) = tf (k)− ts(k) + 1 = n2 + 2n(k−1)− (k2 +k) + 2,

The Algebraic Path Problem Revisited 705

and since n ≥ k this increases with k. Indeed, this should be obvious since each
processor has exactly n2 computations to perform, but as k increases, the pro-
cessor has more and more idle cycles. Hence if we start the next pass as soon as
the first processor is free (i.e., at t = n2 + 1), there will be conflicts.

Ideally, we desire that the last processor, p, start its next pass exactly at
tf (p) + 1 so that there will be no wasted time on this processor. Since there are
exactly ts(p) cycles from the start of a pass (on the first processor) to the time
at which the last processor starts the pass, we can achieve our goal if the first
processor starts its second pass at tf (p)+1−ts(p), i.e., at ta(p)+1. Since the first
processor is active on the first pass for the first n2 of these cycles, the number
of idle cycles for the first processor between the first two passes is 2n(p− 1) + 2,
which is of the same order as the total memory (registers) in the array.

The argument holds between any two passes, and since there are n
p passes,

we have the following.

Theorem 2. The total running time on p processors is given by

Tp =
n3

p
+ 2n2 p − 1

p
− (n − p)(p + 1) +

2n

p
− 2 (10)

Corollary 1. For any (positive integer) constant α, the total running time on
p = n

α processors is as given below, assuming that n ≈ n + α ≈ n − α, and
ignoring constant terms.

Tp ≈ n2

(
α + 2 − α − 1

α2

)
≤ n2(α + 2) (11)

The work of the multiple pass array on n
α processors is n3(1+ 2

α−α−1
α3). Hence,

we can improve the work efficiency simply by increasing α, i.e., by sacrificing
running time by a constant factor with a corresponding decrease in the number
of processors. It is important to note that the savings arise because the first
processor is never idle during any pass (see Fig. 2), though it emulates a processor
which would have idle cycles in the single pass array. A formal proof of correcness
of the multiple pass implementation is omited due to space constraints.

The above analysis assumes that α is a constant, i.e., we always use Θ(n)
processors, scaling the architecture with the problem size. On the other hand,
it is also clear from (10) that with only a fixed number of processors, we have a
work optimal implementation, with a running time dominated by the n3

p term.

5 Conclusion

We have presented an simd architecture for the app, which unifies unifies many
well-known problems into a single algorithm schema. Unlike most previous work
which proposed arrays with Θ(n2) processors and Θ(n) time, all entailing a loss
of work optimality, our architecture is a linear array of n processors and a running

706 Sanjay Rajopadhye, Claude Tadonki, and Tanguy Risset

P

30 • .::::::::::::::—

25

20

15

10

., t
1000 2000 3000 4000 5000 6000

Fig. 2. Illustration of the "space-time" behavior of two arrays (for n = 32), one
for a single pass which finishes at t = 3008, and one with 8 processors performing
4 identical passes finishing at T = 5678. A processor is active during the solid
line and idle during the gaps. Observe how the first processor has no idle time
during any pass.

time of 3n2 (thus performing three times the work of the sequential algorithm).
However, a simple multipass version of the array on — processors achieves a
running time that is as close to a work optimal as desired. The architecture
is derived using the well known systolic synthesis methods but with extensions
involving polynomial schedules. Each processor in the array has 3 fifos of re-
registers, and the architecture is well suited for direct VLSI implementation.
We also note that a simple extension is a "block" version of the architecture,
which would be more suitable for implementation on a general purpose parallel
machine. For such an implementation, and interesting problem is the choice of the
block size that optimizes the total running time, a problem we treat elsewhere.

Acknowledgments C. Tadonki was partially supported by the Microprocessors
and Informatics Program of the United Nations University, Tokyo, Japan, and
the French agency Aire Dveloppement through the project Calcul Parallle.

References

[1] A. Benaini, P. Quinton, Y. Robert, Y. Saouter, and B. Tourancheau. Synthesis of
a new systolic architecture for the algebraic path problem. Science of Computer
Programming, 15:135-158, 1990.

The Algebraic Path Problem Revisited 707

[2] A. Benaini and Y. Robert. Space-time minimal systolic arrays for gaussian elimi-
nation and the algebraic path problem. In ASAP 90: International Conference on
Application Specific Array Processors, pages 746–757, Princeton, NJ, September
1990. IEEE Press.

[3] P. Y. Chang and J. C. Tsay. A family of efficient regular arrays for the algebraic
path problem. IEEE Transactions on Computers, 43(7):769–777, July 1994.

[4] P. Clauss, C. Mongenet, and G-R. Perrin. Synthesis of size-optimal toroidal arrays
for the algebraic path problem: A new contribution. Parallel Computing, 18:185–
194, 1992.

[5] L. Guibas, H. T. Kung, and Clark D. Thompson. Direct VLSI implementation of
combinatorial algorithms. In Proc. Conference on Very Large Scale Integration:
Architecture, Design and Fabrication, pages 509–525, January 1979.

[6] S. Y. Kung and S. C. Lo. A spiral systolic algorithm/architecture for transitive
closure problems. In ICCD 85: International Conference on Circuit Design, pages
622–626, Rye Town, NY, 1985. IEEE.

[7] S. Y. Kung, S. C. Lo, and P. S. Lewis. An optimal systolic design for the transitive
closure and the shortest path problems. IEEE Transactions on Computers, C-
36(5):603–614, May 1987.

[8] J. F. Myoupo and C. Fabret. A modular systolic linearization of the warshall-floyd
algorithm. IEEE Transactions on Parallel and Distributed Systems, 7(5):449–455,
may 1996.

[9] J. G. Nash and S. Hansen. Modified faddeew algorithm for matrix multiplication.
In Proc., SPIE Workshop on Real-Time Signal Processing, pages 39–46. SPIE,
1984.

[10] V. K. Prasanna Kumar and Y-C Tsai. Designing linear systolic arrays. Journal
of Parrallel and Distributed Computing, (7):441–463, may 1989.

[11] S. V. Rajopadhye. An improved systolic algorithm for the algebraic path problem.
INTEGRATION: The VLSI Journal, 14(3):279–296, Feb 1993.

[12] T. Risset and Y. Robert. Synthesis of processors arrays for the algebraic path
problem: Unifying old results and deriving new architectures. Parallel Processing
Letters, 1:19–28, 1991.

[13] Y. Robert and M. Tchuent. Rsolution systolique de systmes linaires denses.
RAIRO Modlisation et Analyse Numrique, Technique et Sciences Informatiques,
19(2):315–326, 1985.

[14] Y. Robert and D. Trystam. Systolic solution of the algebraic path problem. In
W. Moore, A. McCabe, and R. Urquhart, editors, Systolic Arrays, 1, pages 171–
180, Oxford, UK, 1987. Adam Hilger.

[15] Günter Rote. A systolic array algorithm for the algebraic path problem (shortest
paths; matrix inversion). Computing, 34(3):191–219, 1985.

[16] Chris J. Schieman and Peter R. Cappello. A processor-time minimal systolic
array for transitive closure. In International Conference on Application Specific
Array Processors, pages 19–30, Princeton, NJ, September 1990. IEEE Computer
Society, IEEE Computer Society Press.

[17] T. Takaoka and K. Umehara. An efficient VLSI circuit for the all pairs shortest
path problem. Journal of Parallel and Distributed Computing, 16:265–270, 1992.

[18] C. Tayou Djamegni, P. Quinton, S. Rajopadhye, and T. Risset. Derivation of
systolic algorithms for the algebraic path problem by recurrence transformations.
Parallel Computing, To appear, 1999.

	Introduction
	Notation and Background
	A Linear Systolic Array: Intuitive Description
	Formal Derivation of the Array
	Conclusion

