
Superscalar Processor Verification Using Efficient
Reductions of the Logic of Equality with Uninterpreted

Functions to Propositional Logic1

Abstract. We present a collection of ideas that allows the pipeline verification
method pioneered by Burch and Dill [5] to scale very efficiently to dual-issue super-
scalar processors. We achieve a significant speedup in the verification of such proces-
sors, compared to the result by Burch [6], while using an entirely automatic tool.
Instrumental to our success are exploiting the properties of positive equality [3][4]
and the simplification capabilities of BDDs.

1 Introduction

The properties of positive equality [3][4] were proposed as a way to increase the com-
putational efficiency of a decision procedure for the logic of Equality with Uninter-
preted Functions and Memories (EUFM). EUFM was introduced by Burch and Dill [5]
for verifying of pipelined processors. In collaboration with German [3][4], we recently
showed that by extending the syntax of EUFM and by applying certain abstractions, it
is possible to use distinct values for all the instruction addresses and data operands.
The result is a significantly increased computational efficiency of EUFM.

The main contribution of this paper is in presenting an entirely automatic tool that
works on term-level models and is able to handle complex processors, including a
dual-issue superscalar DLX [10] with two complete pipelines. We employ a variety of
techniques that enhance the performance at each level, including an automatic detec-
tion of positive equality comparisons, the encoding method of Goel et al. [8] modified
to account for positive equality, and an automatic BDD variable ordering. By compari-
son, in our previous work on positive equality [3][4][20], we only demonstrated the
potential of the logic by verifying efficiently single-issue DLX processors imple-
mented at the bit-level. Furthermore, the user was required to define the initial pipeline
state and to give hints for the BDD variable ordering.

Our earlier work [18] showed the overhead for verifying bit-level processors with
functional units (FUs) implemented at the gate level to be prohibitive for a BDD-based
tool, due to the complexity of the generated formulas. The major sources of complex-
ity were the symbolic modeling of all the bits of data in the data path and the feedback
loops, created by the forwarding logic. We then employed abstraction and an efficient
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encoding technique for representing word-level values [19]. While that allowed us to
verify more complex designs, we ran into BDD blow-up, due to contradictory BDD
variable ordering requirements. Using positive equality and exploiting techniques that
make the FUs different for each executed instruction, we succeeded in verifying pipe-
lined processors with very large instructions set architectures [20]. Yet, later we were
not successful in scaling these techniques for verifying dual-issue superscalar proces-
sors. In this paper we examine abstract term-level models of processors, as has most of
the work in this field [5][6][8][12][13]. An area for future research will be to prove that
the correctness of an abstract term-level model implies the correctness of the original
bit-level design.

The correctness criterion of Burch and Dill’s method is presented in Fig. 1. The
implementation with transition function FImpl is verified by comparison against a spec-
ification with transition function FSpec. On each clock cycle the implementation ini-
tiates the execution of between 0 and m instructions, where m is bounded by the issue
rate of the processor. In each transition, the specification executes 1 instruction. We use
F m

Spec to denote m applications of function FSpec. It is assumed that the implementa-
tion and the specification start from a pair of matching initial states - QImpl and QSpec,
respectively - where the match is determined according to an abstraction function Abs.
The correctness criterion is that the two transition functions should yield a pair of
matching final states - Q′Impl and Q′Spec, respectively - where the match is determined
by the same abstraction function. In other words, the abstraction function should make
the diagram commute. This correctness criterion is due to Hoare [8] who used it (in a
version where m = 1) for verifying computations on abstract data types in software.

Fig. 1.  Commutative diagram for the correctness criterion

The correctness criterion, as formulated by Burch [6], is expressed by:

∀QImpl ∃m [Abs(FImpl(QImpl))  = F m
Spec(Abs(QImpl))]. (1)

Burch and Dill’s contribution [5] is a conceptually elegant way to automatically
compute the abstraction function Abs that maps the pipeline state of a processor to its
matching state in the specification by symbolic simulation of the hardware design.
Namely, starting from a general symbolic initial state QImpl they simulate a flush of the
pipeline by feeding it with bubbles for a sufficient number of cycles to allow all par-
tially executed instructions to complete. Then, they consider the resulting state of the
user-visible memories (e.g., the register file and the program counter) to be the match-
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ing state QSpec. Experiments by Isles et al. [13] to verify a single-issue pipelined DLX,
without using flushing as an abstraction function, ran out of memory, given 1 GB was
available.

Burch [6] has extended the method to superscalar processor verification by pro-
posing a flushing mechanism suitable for multi-issue processors and by decomposing
the commutative diagram into three commutative diagrams which are easier to verify.
A correctness proof of this decomposition is presented in [21]. The weakness of his
work is that it requires extensive manual intervention in both decomposing the com-
mutative diagram and in identifying case-splitting expressions, used to speed up the
validity checking of the correctness criterion formulas.

Pnueli et al. [15] also exploit the positive and negative equality structure in order
to reduce the complexity of the decision procedure. Their and our method are not
directly comparable, since they do the analysis after eliminating function applications
by Ackermann’s method [1]. That typically introduces both positive and negative
equalities for domain variables, which would only appear as positive equalities in our
scheme. Hence, they will not exploit the benefits of positive equality as efficiently as
we do by using distinct values for a large number of domain variables.

In the remainder of the paper, Sect. 2 reviews the logic of EUFM. Sect. 3 summa-
rizes the benefits of exploiting positive equality. Sect. 4 presents our algorithm for
transforming an EUFM formula into a propositional formula, whose validity implies
the validity of the original EUFM formula. Sect. 5 explains our manipulation of the
EUFM DAG during the transformation. Experimental results are presented in Sect. 6.

2 Logic of Equality with Uninterpreted Functions and Memories

The logic of Equality with Uninterpreted Functions and Memories (EUFM) presented
by Burch and Dill [5] can be expressed by the following syntax:

term ::= ITE(formula, term, term)

 function-symbol(term, . . . , term)

 read(memory, term)

memory ::= memory-symbol

 write(memory, term, term)

 ITE(formula, memory, memory)

formula ::= true  false  (term = term)  (memory = memory)

 (formula ∧ formula)   (formula ∨ formula)  ¬formula

 read(memory, term)  predicate-symbol(term, . . . , term)

In this logic, formulas have truth values while terms have values from some arbi-
trary domain. Memories can be viewed as mappings from domain values, representing
addresses, to domain or Boolean values (as determined by the type of the memory),
representing data. Terms are formed by applications of uninterpreted function sym-
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bols, and by applications of ITE (for “if-then-else”) and read operators. The ITE oper-
ator chooses between two terms based on a Boolean control value, i.e., ITE(true, x1,
x2) yields x1  while ITE(false, x1, x2) yields x2. The read operator takes two argu-
ments, the first of which is a memory, and the second one a term that serves as an
address. This operator returns a term for the value of the given memory at the location
specified by the address term. A memory can be a memory symbol, representing an ini-
tial memory state. It can also be the result of an ITE operator that selects between two
memories. This can be used to express conditional writes to a memory. Finally, a mem-
ory can be a write operator that takes three arguments, the first of which is a memory,
the second is a term that represents a memory address to be updated with the third - a
term, representing the new data value for that address. Semantically, read(write(mem-
ory, waddr, wdata), raddr) is equivalent to ITE(raddr = waddr, wdata, read(memory,
raddr)), i.e., a read that follows a write to a memory returns the value of the write
when the read and write addresses are equal, and the value of the memory at the read
address otherwise. The base case for the read operator is to read from the initial state
of a memory, represented by a memory symbol m, in which case there are no writes to
account for, so that the read operator can be represented as an uninterpreted function
fm that is specific for memory symbol m.

Formulas are formed by comparing two terms for equality, by comparing two
memories for equality, by applying the read operator to return the contents of the argu-
ment memory at the address specified by the argument term, by applying an uninter-
preted predicate symbol to a list of terms, and by combining formulas using Boolean
connectives. A formula expressing equality between two terms or two memories is
called an equation. Equations with memory arguments are allowed to occur only in the
top-level verification condition to express the equivalence of memory states in the
implementation and the specification. The rules for eliminationg reads from memories
of type formula are analogous to those for reads from memories of type term, as
defined in the previous paragraph, except that reads from initial memory state are rep-
resented as uninterpreted predicates.

Every function symbol f has an associated order, denoted ord(f), indicating the
number of terms it takes as arguments. Function symbols of order zero are referred to
as domain variables. We use the shortened form v, rather than v() to denote an instance
of a domain variable. Similarly, every predicate p has an associated order ord(p). Pred-
icates of order zero are referred to as propositional variables.

The truth of a formula is defined relative to a domain D of values and an interpre-
tation I of the function, predicate, and memory symbols. An interpretation I assigns to
each function symbol of order k a function from Dk to D, to each predicate symbol of
order k a function from Dk to {true, false}, and to each memory symbol a function
from D to D or from D to {true, false}, depending on the type of the memory. Given
an interpretation I of the function and predicate symbols and an expression E, we can
define the valuation of E under I, denoted I[E], according to its syntactic structure. I[E]
will be an element of the domain when E is a term, and a truth value when E is a for-
mula.

A formula F is said to be true under interpretation I when I[F] equals true. It is
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said to be valid over domain D when it is true for all interpretations over domain D. F
is said to be universally valid when it is valid over all domains. It can be shown that if
a formula is valid over some suitably large domain, then it is universally valid [1]. In
particular, it suffices to have a domain as large as the number of syntactically distinct
function application terms occurring in F.

3 Positive Equality

In collaboration with German, we have recently shown [3][4] that major improvements
can be obtained by exploiting the polarity of the equations in the original formula F
before replacing any function applications with domain variables. Let us introduce
some notation regarding the polarity of equations and their dependent function sym-
bols. For a formula F of the form T1 = T2, we say that this equation is a positive equa-
tion of F. For formula F of the form ¬F1, any positive equation of F1 is a negative
equation of F, and any negative equation of F1 is a positive equation of F. For formula
F of the form F1 ∧ F2 or F1 ∨ F2, any positive (respectively, negative) equation of
either F1 or F2 is a positive (respectively, negative) equation of F as well. Note that all
equations of a formula that controls an ITE operator will be both positive and negative
equations of a formula containing the ITE, since such equations are implicitly negated
when selecting the “else-expression” of an ITE. We call equations which are both pos-
itive and negative in a formula F, general equations of F. Equations of the form
m1 = m2, where m1 and m2 are memories, are allowed to occur only as positive equa-
tions.

For term T of the form f(T1, . . . , Tk), function symbol f is said to be a data symbol
of T. For term T of the form ITE(F, T1, T2), any function symbol that is a data symbol
of either T1 or T2 is also a data symbol of T.

A function symbol f is said to be a “p-function” (positive function) symbol of a
formula F if there are no negative or general equations in F for which f is a data sym-
bol of one of the equation arguments. All other function symbols are said to be “g-
function” (general function) symbols of F. Using appropriate abstractions, we can rep-
resent all processor operations involving instruction addresses and data operands with
p-function symbols, leaving only register identifiers as g-function symbols.

We can exploit the presence of p-function symbols to greatly reduce the number
of interpretations that must be considered to determine the universal validity of the
original formula. Let Σ denote a subset of the function symbols occurring in F. We say
that interpretation I is diverse with respect to Σ for F when for any function application
term f(S1, . . . , Sk) where f ∈ Σ and any other function application term g(U1, . . . , Ul)
we have I[f(S1, . . . , Sk)] = I[g(U1, . . . , Ul)] iff f = g and I[Si] = I[Ui] for 1 ≤ i ≤ k. Inter-
pretation I is said to be “maximally diverse” if it is diverse with respect to the set of all
p-function symbols in F. The following result is from [3][4]:

Theorem 1. A formula F is universally valid iff it is true in all interpretations that
are maximally diverse for F.

The essential idea behind this theorem is that a maximally diverse interpretation
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forms a worst case as far as determining the validity of a formula is concerned. For any
less diverse interpretation I, we can systematically derive a maximally diverse interpre-
tation I′ such that among the equations, only the positive ones can change their valua-
tions under I′, and these can only change from true to false. Therefore, the valuation
of F under the two interpretations must either be equal or satisfy I[F] = true and
I′[F] = false. The proof of the above theorem is presented in [3][4].

4  Transforming an EUFM Formula to a Propositional Formula

We proceed through a series of transformations, starting from the initial EUFM for-
mula, expressing the correctness criterion, and ending with a propositional formula
whose validity implies the validity of the original one. At each step we apply various
optimizations and simplifications, with the major steps being ordered as:

1. Replace equations of the form m1 = m2, where m1 and m2 are memories, by the
equation read(m1, a) = read(m2, a), where a is a new domain variable. As defined
earlier, such equations can appear only as positive equations in the top-level for-
mula when checking that the two sides of the commutative diagram updated the
initial state of a memory in exactly the same way. Since the new domain variable
represents an arbitrary address, it is easy to see that if the two sides of the commu-
tative diagram modified that address identically, then they would have modified
all addresses identically.

2. Eliminate all read operators from updated memory state, as explained in Sect. 2.
In our tool we perform this step dynamically as we parse the expressions of the
EUFM formula. The result will be that the original read will be replaced by a
nested ITE expression with a read from the initial state of the memory as a leaf of
the expression.

3. Identify the p-function symbols and general function symbols (see Sect. 3).

4. Eliminate UFs and reads from initial memory state (see Sect. 4.1).

5. Translate the reduced EUFM formula to a propositional formula (see Sect. 4.2).

6. Check that the resulting propositional formula is a tautology.

4.1 Elimination of Reads from Initial Memory State and of UFs

Reads from initial memory state and applications of UFs are eliminated in a depth-first
way, after all their argument expressions have their reads from initial memory state and
UFs eliminated. Specifically, UFs are eliminated by our method of using nested ITEs
for imposing consistency of the function outputs [19]. Given an UF symbol, say ALU,
which takes two arguments, with the first eliminated application of this UF being
ALU(T11, T12), where T11 and T12 are terms, that UF application is replaced by a new
domain variable v1. Then, the second eliminated application of the same UF, ALU(T21,
T22), is replaced by ITE((T21 = T11) ∧ (T22 = T12), v1, v2), where v2 is a new domain
variable introduced for the case where the new pair of arguments does not equal the
previous pair of arguments. Similarly, the third eliminated application of the same UF,
ALU(T31, T32), is replaced by ITE((T31 = T11) ∧ (T32 = T12), v1, ITE((T31 = T21) ∧
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(T32 = T22), v2, v3)), where v3 is a new domain variable introduced for the case where
the new pair of arguments does not equal any of the previous pairs of arguments. One
can see that the above scheme achieves consistency of the UF’s outputs:  when
T21 = T11  and T22 = T12, the second application of the UF ALU will evaluate to the
value of the first application of ALU - the domain variable v1. The same technique can
be used to eliminate applications of an uninterpreted predicate, using new proposi-
tional variables instead of domain variables. This transformation is defined formally in
[4].

Although a read from initial memory state is semantically equivalent to an unin-
terpreted function, we handle the translation differently. If the memory is addressed by
p-function symbols only, the reads from its initial state are eliminated as applications
of an uninterpreted function. However, if a memory is addressed by a g-function sym-
bol, then the reads from its initial state are eliminated by pushing every such read to
the leaves of the nested ITE address term, i.e., until reaching a domain variable, and
introducing a new domain variable for the initial state of the memory at that address.
For example, read(RegFile, ITE(F, reg1, reg2)), where reg1 and reg2 are two domain
variables, is transformed to ITE(F, read(RegFile, reg1), read(RegFile, reg2)) after
pushing the read to the leaves of the address term, and read(RegFile, reg1) is replaced
by the new domain variable data1, while read(RegFile, reg2) is replaced by the new
domain variable data2, so that the resulting expression is ITE(F, data1, data2). This
can be viewed as initializing the memory for every distinct domain variable that can be
selected to be an address term. Note that this technique does not result in equations
between two domain variables used as addresses; it is also a conservative approxima-
tion since it does not enforce the constraint that the equality of two addresses implies
the equality of their initial states. This is one of the keys to the efficiency of our tool.
The same scheme can be applied to eliminating uninterpreted function applications as
well.

4.2 Translation of the Reduced EUFM Formula to a Propositional Formula

Let F* be the translation of the original EUFM formula F, resulting after the elimina-
tion of read and write operators, as well as function and predicate applications. Then
F* contains only logic connectives, equations, and ITEs, as well as domain and propo-
sitional variables.

Our method [3][4] can exploit positive equality by considering only distinct inter-
pretations of the domain variables that are generated when eliminating the p-function
symbols. Let Vp be the union of the set of domain variables occurring in F that are p-
function symbols, and the set of all new domain variables generated when eliminating
the applications of each p-function symbol f. Similarly, let Vg be the union of the set of
domain variables occurring in F that are g-function symbols, and the set of all new
domain variables generated when eliminating the applications of each g-function sym-
bol h. Let V denote the set of all domain variables in F*. The following theorem was
developed in [3][4]:

Theorem 2. EUFM formula F is universally valid iff its translation F* is true
under all interpretation I* that are diverse over Vp.
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The algorithm that we present next is a modification of the one proposed by Goel
et al. [8], extended to account for positive equality by considering a variable in Vp to
be equal only to itself.

Let Dep(T), the dependency set of term T, be the set of domain variables that T
may evaluate to. For example, if T = ITE(b1, v1, ITE(b2, v2, v3)), where v1, v2, and v3
are domain variables, then Dep(T) is {v1, v2, v3}. For each term T and each variable
v ∈ Dep(T), we generate the formula E(T, v) that represents the conditions under which
T would evaluate to v.

For each formula G, we generate a formula Ĝ which is a propositional translation
of G. In the base case for E(T, v), when T is the domain variable v, E(T, v) is true. For a
term T of the form ITE(G, T1, T2), the formula E(T, v) is defined as
Ĝ ∧ E(T1, v) ∨ ¬Ĝ ∧ E(T2, v). The method of translating G into Ĝ is as follows:

1. if G is ¬G1  then Ĝ =̇ ¬Ĝ1;

2. if G is G1 • G2  then Ĝ =̇ Ĝ1 • Ĝ2,  where •  is either ∧  or ∨;

3. if G is T1 = T2  then

where eij is a propositional variable introduced to express the equality relation between
the g-function domain variables vi and vj. Note that we introduce an eij variable only
when vi and vj are syntactically distinct variables in Vg. Also, we exploit positive
equality by considering variables in Vp to be equal only to themselves -- they are used
only in the left disjunct of the above formula.

Our propositional formulas do not enforce the transitivity constraints
eik ∧ ekj ⇒ eij, and none of our correct models needed such constraints in verifying
them. Note that if a formula F evaluates to true without transitivity constraints, it will
also evaluate to true when such constraints are imposed, e.g., by implication:
(eik ∧ ekj ⇒ eij) ⇒ F  where F is already true. However, when using BDDs for evalua-
tion of the final propositional formula, we employ the strategy by Goel et al. [8] in
order to check that a counterexample is not due to a violation of the transitivity con-
straints. Namely, when the final BDD is not true, it is negated in order to express all
counterexamples. Given an implicant in the resulting BDD, our tool automatically
checks that for each negated variable eij, there is no sequence eik1

, ek1k2
, ..., eknj of pos-

itive variables that would imply that the negated variable eij should evaluate to true,
thus canceling the implicant. The first implicant that is not canceled is printed as a
counterexample.

Note that our way of eliminating reads from initial memory state by pushing the
reads to the leaves of the address term expressions does not create equations between
register identifier domain variables used as address terms in reads from the register file
of a processor. This would not be the case if the consistency of the initial memory state

Ĝ =̇ E(T1, v) ∧ E(T2, v)
v ∈ Dep(T1) ∩ Dep(T2)

∨ E(T1, vi) ∧ E(T2, vj) ∧ emin(i,j),max(i,j)
vi ∈ Dep(T1) ∩ Vg,
vj ∈ Dep(T2) ∩ Vg,
i  =/ j
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was imposed by Ackermann constraints [1], read_addr1 = read_addr2 ⇒ init_state1
= init_state2, as done in [8][15], or by our scheme of using nested ITEs [19], where
ITE(read_addr1 = read_addr2, init_state1, init_state2) is returned as the initial state
of address read_addr2 given that init_state1 was already introduced as the initial state
of address read_addr1. The result is a reduced number of eij variables encoding equal-
ity relations between domain variables used as register identifiers, which translates
into an increased efficiency when evaluating the final propositional formula.

Observe that we are using a conservative approximation by not enforcing consis-
tency of the initial memory state. This makes the verification results sound, but not
complete, i.e., false positives would not occur, although false negatives are possible.
However, by employing a conservative approximation in our verification, we simplify
considerably the propositional formula that has to be checked for being a tautology
and, hence, we gain efficiency. We can informally argue that this optimization is com-
plete when verifying our processor models (see Sect. 6) since they do not have direct
comparisons of source registers in their control logic. Then, the only way for two
source registers to be equal is for them to be simultaneously equal to the same destina-
tion register. However, the forwarding logic will then select the result associated with
that destination register and would prevent the initial state of the register file from
being used. Hence, the consistency of the register file initial state will not matter.

As an implementation note, we can view the set of formulas E(T, v) for all v ∈ V,
as a very sparse set, i.e., it will simply be false for many entries. The usual way to rep-
resent such sets is as a list maintained in some canonical order with respect to the
domain variables. Then the various operations described above can be implemented by
processing these lists to generate either a new list or a single formula.

5 Manipulating the EUFM DAG

When building and transforming the EUFM DAG, we impose several simple structural
restrictions in order to achieve maximal sharing of identical expressions. Similar to
BDDs [2], we create only one node equal to the constant true value and only one node
equal to the constant false value. We allow only the logic connectives ∧ and ∨, from
the possible multi-input connectives. Their inputs are sorted in some canonical order,
with duplicates and non-controlling values (true for ∧, and false for ∨) removed.
Expressions of the form c = a ∧ b, where b = d ∧ e, are rewritten as c = a ∧ d ∧ e, in
order to increase the sharing of logically identical expressions. Similar rewritings are
done for expressions with the logic connective ∨. The presence of a controlling value
(false for ∧, and true for ∨), or the presence of both a and ¬a as inputs, results in
returning the controlling value. Otherwise, the list of sorted inputs, together with the
type of the connective, forms a key, which is used to search an Operations Hash table
for the same expression created previously. If such an expression is not found, it is cre-
ated and inserted into the Operations Hash table with the formed key.

Other types of expressions -- ITEs, equations, uninterpreted function applications,
and uninterpreted predicate applications, as well as the read and write  operators --
also have a key formed in some canonical way in order to access the Operations Hash
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table. When creating an expression that is the negation of another expression, e.g.,
b = ¬a, where a is not a constant Boolean value, such that the key ¬a is not in the
Operations Hash table, we insert two keys in that table: ¬a pointing to expression b,
and ¬b pointing to expression a. In this way we ensure that if an expression c = ¬b is
created later, it will be identified as expression a. Standard simplifications of ITE
expressions are also employed, which we omit due to lack of space.

6 Experimental Results

We started with a 5-stage single-issue pipelined DLX [10] model, 1×DLX-C, capable
of fetching up to 1 new instruction every clock cycle and implementing the 6 instruc-
tion types considered by Burch and Dill [5][6]: register-register, register-immediate,
load, store, branch, and jump. The 5 pipeline stages are Fetch, Decode, Execute, Mem-
ory, and Write-Back. The pipelined model and its non-pipelined specification were
described in our own HDL that uses the primitives of EUFM. Namely, it has support
for basic logic gates, multiplexors (ITEs), equality comparators, memories, latches,
uninterpreted functions, and uninterpreted predicates. The implementation and the
specification were simulated with our term-level simulator in order to form an EUFM
formula for the correctness criterion. This formula was generated in the SVC script
format [16].

The instruction memory of both the implementation and the specification was
modeled to produce abstract instructions, consisting of 2 source register identifier
terms, 1 destination register identifier term, an immediate datum term, an operation-
code term, and 3 Boolean variables used to determine the instruction type. The 3 Bool-
ean variables were decoded by a gate-level PLA to produce the pipeline control signals
for the different stages of the pipeline, such that each instruction type gets encoded
with a unique binary pattern of the 3 variables (e.g., the register-register instructions
are encoded with the pattern 000, the register-immediate with 001, and so on). There-
fore, the fetched instructions were restricted to be of only one instruction type,
although no assumptions were made about the sequences of executed instructions.

We did not impose any restrictions on the initial state of the pipeline latches, as
we did in our previous work with bit-level models [18][20]. Hence, we allow the
instruction that is initially in a given pipeline latch to be of all the instruction types
simultaneously. Furthermore, we consider initial pipeline states that can never arise in
actual operation assuming the pipeline interlocks are correct. By not placing any con-
straints on the initial state, we cover a larger set of states than is required, but also
avoid the need to prove any invariants about the state. Note that if a processor is veri-
fied without imposing any restrictions on the instructions in flight, it will also be cor-
rect when such restrictions are enforced, e.g., by using the restrictive condition to
imply the formula for the correctness criterion, where the formula is already valid. The
reason why the processors were verified to be correct without imposing invariants for
their initial state is twofold. First, the control logic of our models was not designed to
depend on any invariant property of the pipeline state. Second, the pipeline latches that
are affected by the interlocks, namely the latches before the Execute, Memory, and
Write-Back pipeline stages, get their state reflected on the user-visible memory ele-

46 Miroslav N. Velev  and Randal E. Bryant



ments identically along the two sides of the commutative diagram. Note that these
latches cannot be stalled and only transfer their data forward. Hence, the identical ini-
tial state of the user-visible memory elements, that the two sides of the commutative
diagram start from, is modified in the same way by the state of these three pipeline
latches, resulting in new identical state of the user-visible memory elements. There-
fore, imposing the invariant properties that hold for a correct pipelined processor was
not necessary for the verification of our models.

The operation-code term, produced by the instruction memory for each instruc-
tion, was used to identify the instruction sub-type to functional units by being used as
an input to functional units, just as some control bits are in actual pipelined processors.
Specifically, it was carried though the pipeline stages and used as an input to the ALU
in the execution stage (e.g., to discriminate an add from a subtract instruction) and to
the uninterpreted predicate determining the condition for a branch to be taken based on
the comparison of two data operands (e.g., to discriminate a branch on less than from a
branch on greater than). Since the operation-code is not used as an argument to inter-
preted equality comparators, it gets identified as a p-function symbol by our translation
algorithm. Hence, functional units taking the operation-code as an argument get trans-
formed into distinct functional units for each executed instruction after the UF elimina-
tion by means of nested ITEs. This was observed in our previous work [20], where the
same effect was achieved by using the sequential PC (equal to PC + 4) which is also a
p-function symbol that uniquely identifies each executed instruction. The result is an
increased efficiency of the computation, since the functional consistency of ALUs can
be imposed with nested ITEs of a few levels of nesting for each executed instruction.
Therefore, the overall DAG for the correctness criterion ends up being much simpler,
compared to the one where the consistency is maintained by nested ITEs for the entire
executed instruction sequence.

The data memory was modeled as a Finite State Machine with a latch for storing
the present state, as explained in [3]. The result fetched by load instructions was pro-
duced by an uninterpreted function, DMem_Read, that takes as arguments the present
data memory state, the load address, and the operation-code term of the instruction (in
this way we modeled byte-level memory accesses). The next data memory state was
produced by an uninterpreted function, DMem_Update, taking the same three argu-
ments in addition to the data operand which is to be written to the data memory by a
store instruction. The next data memory state gets written to the FSM latch under the
condition that the instruction is a store instruction that was not squashed by taken
branches or jumps. The reason to model the data memory in this way is to prevent the
outputs of the ALU from being classified as g-terms, due to their role as addresses of
the data memory.

Later, we designed a set of dual-issue superscalar DLX models with in-order exe-
cution, having 2 pipelines of 5 stages each:

2×DLX-AA has two arithmetic pipelines (implementing register-register and register-
immediate instructions), such that either 1 or 2 new instructions are fetched every
clock cycle, conditional on the second instruction in the Decode stage having (or not) a
data dependency on the first instruction in that stage;
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2×DLX-SA can execute arithmetic and store instructions by the first pipeline and
arithmetic instructions by the second pipeline, so that in addition to the case of the
above data dependency, 1 instruction will be fetched also when the second instruction
in the Decode stage is a store (i.e., there is a structural hazard);

2×DLX-LA can execute arithmetic, store, and load instructions by the first pipeline
and arithmetic instructions by the second pipeline, so that 2 load interlocks come into
play now (between the instruction in Execute in the first pipeline and the two instruc-
tions in Decode) and 0, 1, or 2 new instructions can be fetched each cycle;

2×DLX-CA has a complete first pipeline, capable of executing the 6 instruction types,
and an arithmetic second pipeline, such that 0, 1, or 2 new instructions can be fetched
each cycle - equivalent to Burch’s processor [6];

2×DLX-CS has a complete first pipeline, and a second pipeline that can execute arith-
metic and store instructions, such that 0, 1, or 2 new instructions can be fetched each
cycle;

2×DLX-CL has a complete first pipeline, and a second pipeline that can execute arith-
metic, store, and load instructions, such that 0, 1, or 2 new instructions can be fetched
each cycle, conditional on 4 possible load interlocks (between a load in Execute in
either pipeline and an instruction in Decode in either pipeline) and the resolution of the
structural hazard of branches and jumps in Decode of pipeline two, which need to wait
for pipeline one;

2×DLX-CC has two complete pipelines, 4 possible load interlocks, but no structural
hazards, such that 0, 1, or 2 new instructions can be fetched each cycle.

Our results are presented in Tables 1, 2, and 3. The experiments were performed
on a Sun4 with 10 UltraSPARC-II processors of 336 MHz, having 6 GB of physical
memory, and running Solaris 2.6, although we used the computer in a single processor
mode. The tautology checking of the final propositional logic formula was done with
the Colorado University BDD package [7]. We applied a very simple BDD-variable
ordering heuristic. The nodes in the final propositional logic DAG are sorted in
decreasing order of their fanout counts, such that if a node is the complement of a
Boolean variable, then the fanout count of that node is added to the fanout count of the
variable. Note that this merging of fanout counts is done only for Boolean variables.
The nodes get their BDDs built according to the sorted order in a depth-first way until
either a node with a computed BDD is encountered, or a Boolean variable is reached,
which gets declared last in the BDD variable order. Furthermore, the recursive BDD
computations for the inputs of an AND (OR) node was discontinued as soon as an
input’s BDD was evaluated to be 0 (1). In the case of an ITE node, the BDD of the con-
trolling input was computed first, such that if it evaluated to a constant 0 or 1 BDD,
only the BDD for the corresponding selected input was computed. Also, we freed
BDDs for internal nodes as soon as the BDDs were no longer needed, i.e., as soon as a
usage count became equal to the fanout count of the node.

Generating the EUFM formula for the correctness criterion by using our term-
level simulator, required less than 1.1 MB of memory and 0.1 seconds of CPU time for
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all the processors. We used Burch’s controlled flushing [6], where auxiliary inputs are
introduced and used only during the flushing of the implementation in order to prevent
the pipeline interlocks from introducing uncertainty in the instruction flow during
flushing. The controlled flushing significantly reduces the complexity of the expres-
sions for the state of the user-visible memory elements. We found the reduction to be
as much as 10 times, in terms of both memory and CPU time, while the effort to add
the auxiliary control inputs was negligible, given a familiarity with the designs.

Processor

DAG Node Counts Topological
Levels in

Final
Propositional
Logic DAG

Initial
EUFM DAG

After
eliminating

reads and UFs

Final
propositional

logic DAG

1×DLX-C 299 1,198 334 35

2×DLX-AA 517 2,168 490 21

2×DLX-SA 560 2,534 601 27

2×DLX-LA 623 3,641 1,029 32

2×DLX-CA 759 4,856 1,383 60

2×DLX-CS 779 5,077 1,469 60

2×DLX-CL 796 5,657 1,608 60

2×DLX-CC 850 5,998 1,732 67

Table 1.  Statistics from different stages of the translation to a propositional formula. The
topological levels in the final propositional logic DAG are computed by assigning a level of 1 to
the Boolean variables (the leaves of the DAG). The nodes in the final propositional logic DAG
are of types ¬, ∧, ∨, and ITE.

Processor

Final Domain
Variables

Final Vg Propositional Variables

Vp Vg Source
Registers

Destination
 Registers

eij Other

1×DLX-C 52 13 7 6 27 36

2×DLX-AA 41 19 9 10 66 16

2×DLX-SA 53 19 9 10 66 20

2×DLX-LA 65 19 9 10 72 25

2×DLX-CA 87 25 13 12 116 46

2×DLX-CS 92 25 13 12 116 48

2×DLX-CL 96 25 13 12 116 51

2×DLX-CC 102 25 13 12 120 57

Table 2.  Variable statistics during the translation of the EUFM DAG to a propositional
formula. The final p-function domain variable set Vp and the final g-function domain variable
set Vg were obtained after eliminating the reads and the UFs from the EUFM DAG.
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The best results were obtained after applying an optimization for eliminating
common subexpressions in the top-level equations. Given an equation T1 = T2, where
T1 is a term of the form ITE(f11, T11, ITE(f12, T12, ... ITE(f1k, T1k, T3))), T2 is a term of
the form ITE(f21, T21, ITE(f22, T22, ... ITE(f2l, T2l, T3))), and T3 is a term of nested
ITEs -- ITE(f31, T31, ITE(f32, T32, ... )) -- that is shared by both T1 and T2, then T3 is
replaced by a new domain variable if Dep(T3) ∉ Dep(T1i) for i = 1, ..., k and
Dep(T3) ∉ Dep(T2j) for j = 1, ..., l. It can be proved that this optimization is both sound
and complete.

As Table 3 shows, our verification times range from less than a second for the
single-issue case, up to 35 seconds for the dual-issue superscalar cases. The memory
requirement (often the limiting factor for BDD-based applications) ranges from 5.8 to
18.2 MB. The number of propositional variables ranges from 63 to 177, with between
27 and 120 comprising the eij variables encoding the equality relations between regis-
ter identifiers. The number of domain variables, identified as p-function domain vari-
ables, is between 2 and 4 times greater than that of the g-function domain variables, as
illustrated in Table 2.

It should be pointed out that our design 2×DLX-CA is comparable to that used by
Burch [6], who could verify his model only after devising 3 different commutative dia-
grams, providing 28 manual case splits, and using around 30 minutes of CPU time on
a SUN4. Therefore, we achieved a speedup of two orders of magnitude. And what is
most important of all, we achieve this speedup by an entirely automatic tool.

In order to compare our results to those by Goel et al. [8], who proposed the eij
encoding, we ran experiments for verifying the CMU-Pipe, also used by Burch and
Dill [5]. CMU-Pipe is a 3-stage pipelined data path, which implements only register-
register instructions with 2 source registers and 1 destination register. It has 3 pipeline
stages, and 1 level of multiplexors in the forwarding logic. Our tool required less than
1.1 MB of memory and 0.02 seconds of CPU time to verify this benchmark, including
the time to simulate it and generate the EUFM formula for the correctness criterion.

Processor
BDD

variables
Max. BDD

Nodes
Memory

[MB]
CPU Time

[s]

1×DLX-C 63 2,121 5.8 0.25

2×DLX-AA 82 8,979 6.9 0.46

2×DLX-SA 86 8,319 7.2 0.49

2×DLX-LA 97 11,393 8.3 1

2×DLX-CA 162 163,782 15.4 9

2×DLX-CS 164 188,557 16.3 9

2×DLX-CL 167 236,770 15.9 18

2×DLX-CC 177 433,658 18.2 35

Table 3.  Checking the final propositional logic DAG for being a tautology by using BDDs.
The BDD variables count is the sum of the counts of eij and other propositional variables from
Table 2.
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We did not use Burch’s controlled flushing, which is not applicable since the design
does not have interlocks. Furthermore, the correctness criterion formula was evaluated
to be valid as soon as our tool was done parsing it, due to our strategy of automatically
eliminating reads from updated memory state and using a maximally shared EUFM
DAG. The two terms which represent the state of the register file after exercising the
implementation and the specification, respectively, simply happen to have exactly the
same structure. Using the Operations Hash table helps identify them as exactly the
same term, so that when the final equation expression is parsed and its two argument
terms are found to be exactly the same expression, the equation is automatically evalu-
ated to be true. Hence, BDDs were not used at all. Also, we did not have to exploit
positive equality. Goel et al. [8] reported CPU time of 0.5 seconds and needed over
130,00 BDD nodes. They used extensive manual intervention in order to impose the
constraints for: 1) consistency of the ALU outputs, 2) consistency of the register file
initial state, and 3) reflecting a sequence of writes on the initial state of memories.
They do not present results from other benchmarks.

Modeling the data memory as a Finite State Machine, as explained earlier in this
section, was crucial to the efficiency of our methodology. An alternative way for rep-
resenting the data memory is to use an uninterpreted function that will serve as a
“translation box,” accepting the output of the ALU as an input and producing an out-
put that is used to address a regular memory, representing the state of the data mem-
ory. In this way, the output of the ALU will still be automatically classified as a p-
term, while it will be mapped to a g-term, via the translation box, that will address the
memory. Byte-level memory accesses can be modeled by a read-modify-write strat-
egy, by using an uninterpreted function to change the present state of the address.
However, when verifying such versions of 2×DLX-CA and 2×DLX-CC, the BDD
package ran out of memory after 8 and 5 hours, respectively.

In order to assess the performance of BDDs when verifying incorrect designs, we
created 100 versions of 2×DLX-CC, each with a different error. They were all detected
by usually using up to twice the CPU time, memory, and BDD nodes required for the
verification of the correct processor. However, in the worst case, one of these models
did need 1,600 seconds of CPU time, 168 MB of memory, and 8,100,000 BDD nodes.

We also ran experiments using the Stanford Validity Checker (SVC) [17] to eval-
uate the validity of the EUFM formula for 1×DLX-C. SVC did not finish within 24
hours. Computing the automatically generated correctness criterion (1) using a non-
BDD-based validity checker for the logic of EUFM results in a considerable increase
in complexity, due to the prohibitive number of case splits that are required even for a
simple 5-stage DLX processor. In our BDD-based tool, evaluating the Boolean expres-
sion for (1) is made trivial by the simplification capabilities of the BDD package.

Using the SAT-checker GRASP [9][14] as a tautology checker instead of BDDs,
resulted in 2 seconds of CPU time for verifying 1×DLX-C, 70 seconds for verifying
2×DLX-AA, and 224 seconds for verifying 2×DLX-SA, and 1:50 hours for verifying
2×DLX-LA. Prover, a commercial SAT/tautology-checker based on Stålmarck’s
method [16], required 10 seconds of CPU time for verifying 1×DLX-C, 60 seconds for
verifying 2×DLX-AA, 5.5 hours for verifying 2×DLX-SA, and more than 24 hours
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(the run time limit) for verifying 2×DLX-LA. None of the SAT-checkers was able to
verify 2×DLX-CC within 24 hours. Then, we applied these tools to verifying an incor-
rect version of our last model, 2×DLX-CC. SVC, Prover, and GRASP could not pro-
duce a counterexample within 24 hours, while using BDDs for checking the formula of
the same incorrect design resulted in generating a counterexample in 37 seconds, con-
suming 18 MB of memory. Experiments with another SAT-checkers -- SATO [22] --
showed that it was not more successful than GRASP and Prover. Therefore, BDDs
were the most efficient means to verify both correct and erroneous processors.

7 Conclusions

We have achieved considerable speedup in the verification of dual-issue superscalar
DLX processors, compared to the result by Burch [6]. Furthermore, our tool is entirely
automatic and does not require manual intervention, compared to previous work based
on the logic of Equality with Uninterpreted Functions and Memories (EUFM)
[5][6][8]. The keys to our success were: 1) exploiting the properties of positive equal-
ity [3][4], which allow domain variables used in non-negated equality comparisons to
be treated as distinct from any other domain variable; 2) using eij Boolean variables [8]
to represent the outcome of those domain variable equality comparisons, which are
used both negated and non-negated in the formula, when translating the EUFM for-
mula to a propositional formula; 3) eliminating the reads from the initial state of mem-
ories in a way that does not create equality comparisons between two read addresses;
4) defining the ALUs in the abstract models in a way that will turn them into distinct
functional units for each executed instruction, based on the properties of positive
equality; 5) manipulating the EUFM DAG in a way that results in a maximal sharing of
nodes; and, 6) using BDDs to evaluate the resulting Boolean formula, by applying an
efficient BDD variable ordering heuristic.

We also showed BDDs to be unmatched by SVC [17], applied to the original
EUFM formula, and by Prover [16], SATO [22], and GRASP [9][14], used as alterna-
tive tautology checkers of the propositional logic formulas generated by our tool. In
contrast to these four methods based on combinatorial search, BDDs capture the full
structure of a problem as a single data structure, rather than repeatedly enumerating
and disproving possible counterexamples.
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