
A Proof of Correctness of a Processor

Implementing Tomasulo’s Algorithm
without a Reorder Buffer�

Ravi Hosabettu1, Ganesh Gopalakrishnan1, and Mandayam Srivas2

1 Department of Computer Science, University of Utah, Salt Lake City, UT 84112
{hosabett,ganesh}@cs.utah.edu

2 Computer Science Laboratory, SRI International, Menlo Park, CA 94025
srivas@csl.sri.com

Abstract. The Completion Functions Approach was proposed
in [HSG98] as a systematic way to decompose the proof of correctness of
pipelined microprocessors. The central idea is to construct the abstrac-
tion function using completion functions, one per unfinished instruction,
each of which specifies the effect (on the observables) of completing the
instruction. However, its applicability depends on the fact that the im-
plementation “commits” the unfinished instructions in the pipeline in
program order. In this paper, we extend the completion functions ap-
proach when this is not true and demonstrate it on an implementation
of Tomasulo’s algorithm without a reorder buffer. The approach leads
to an elegant decomposition of the proof of the correctness criterion,
does not involve the construction of an explicit intermediate abstrac-
tion, makes heavy use of an automatic case-analysis strategy based on
decision procedures and rewriting, and addresses both safety and liveness
issues.

1 Introduction

For formal verification to be successful in practice, not only is it important to
raise the level of automation but is also essential to develop methodologies that
scale verification to large state-of-the-art designs. One of the reasons for the rela-
tive popularity of model checking in industry is that it is automatic when readily
applicable. A technology originating from the theorem proving domain that can
potentially provide a similarly high degree of automation in verification is one
that makes heavy use of decision procedures for the combined theory of boolean
expressions with uninterpreted functions and linear arithmetic [CRSS94,BDL96].
Just as model checking suffers from a state-explosion problem, a verification
strategy based on decision procedures suffers from a “case-explosion” problem.
That is, when applied naively, the sizes of the terms generated and the number of
� The first and second authors were supported in part by NSF through Grant no. CCR-

9800928. The third author was supported in part by NASA contract NAS1-20334
and ARPA contract NASA-NAG-2-891 (ARPA Order A721).

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 8–22, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 9

examined cases during validity checking explodes. Just as compositional model
checking provides a way of decomposing the overall proof and reducing the ef-
fort for an individual model checker run, a practical methodology for decision
procedure-centered verification must prescribe a systematic way to decompose
the correctness assertion into smaller problems that the decision procedures can
handle.
In [HSG98], we proposed such a methodology for pipelined processor verifi-

cation called the Completion Functions Approach. The central idea behind this
approach is to define the abstraction function1 as a composition of a sequence
of completion functions, one for every unfinished instruction, in their program
order. A completion function specifies how a partially executed instruction is to
be completed in an atomic fashion, that is, the desired effect on the observables
of completing that instruction, assuming those ahead of it in the program order
are completed. Given such a definition of the abstraction function in terms of
completion functions, the methodology prescribes a way of organizing the verifi-
cation into proving a hierarchy of verification conditions. The methodology has
the following attributes:

• The verification proceeds incrementally making debugging and error tracing
easier.

• The verification conditions and most of the supporting lemmas (such as
the lemma on the correctness of the feedback logic) needed to support the
incremental methodology can be generated systematically.

• Every generated verification condition and lemma can be proved, often au-
tomatically, using a strategy based on decision procedures and rewriting.

• The verification avoids the construction of an explicit intermediate abstrac-
tion as well as the large amount of manual effort required to construct it.

In summary, the completion functions approach strikes a balance between
full automation that (if at all possible) can potentially overwhelm the decision
procedures, and a potentially tedious manual proof. This methodology is imple-
mented using PVS [ORSvH95] and was applied (in [HSG98]) to three processor
examples: DLX [HP90], dual-issue DLX, and a processor that exhibited limited
out-of-order execution capability. The proof decomposition that this method
achieves and the verification conditions generated in the DLX example is illus-
trated in Figure 1.
Later, we extended the methodology to verify a truly out-of-order execution

processor with a reorder buffer [HSG99]. We observed that regardless of how
many instructions are pending in the reorder buffer, the instructions can only
be in one of a few (small finite number) distinct states and exploited this fact
to provide a single compact parameterized completion function applicable to all
the pending instructions in the reorder buffer. The proof was decomposed on the
basis of how an instruction makes a transition from its present state to the next
state.
1 Our correctness criteria is based on using an abstraction function, as most others.

10 Ravi Hosabettu et al.

C_MEM_WB C_EX_MEM C_ID_EX C_IF_ID

C_IF_IDC_ID_EXC_EX_MEMC_MEM_WB

I_step P2P1 VC4_r VC5_r

VC6_r

VC2_r VC3_rVC1_r A_step’

Next state

Present
state q

Fig. 1. The proof decomposition in the DLX example using the completion func-
tions approach (C ... are the completion functions for the various unfinished
instructions).

However, the applicability of the completion functions approach depends on
the fact that the implementation “commits” the unfinished instructions in the
pipeline in program order. The abstraction function is defined by composing the
completion functions of the unfinished instructions in the program order too.
Because of this, it is possible to relate the effect of completing instructions one
at a time in the present and the next states and incrementally build the proof
of the commutative diagram (See Figure 1). Also, one can provide for every
unfinished instruction, an “abstract” state where the instructions ahead of it are
completed. This fact is useful in expressing the correctness of the feedback logic.
If instructions were to commit out-of-order, it is not possible to use these ideas.
A processor implementing Tomasulo’s algorithm without a reorder buffer

executes instructions in the data-flow order, possibly committing them to the
register file in an out-of-order manner. Hence, the basic premise of the completion
functions approach—that instructions commit in the program order—is not true
in this case. The implementation maintains the identity of the latest instruction
writing a particular register. Those instructions issued earlier and not the latest
ones to write their respective destinations, on completing their execution, only
forward the results to other waiting instructions but do not update the register
file. Observe that it is difficult to support branches or exceptions in such an
implementation. (In an implementation supporting branches or exceptions, the
latest instruction writing a register can not be easily determined.)
In this paper, we extend the completion functions approach to be applicable

in such a scenario. Instead of defining the completion function to directly update
the observables, we define it to return the value an instruction computes in
the various states. The completion function for a given instruction recursively
completes the instructions it is dependent on to obtain its source values. The
abstraction function is defined to assign to a register the value computed by the
latest instruction writing that register. We show that this modified approach
leads to a decomposition of the overall proof of correctness, and we make heavy
use of an automatic case-analysis strategy in discharging the different obligations
in the decomposition. The proof does not involve the construction of an explicit
intermediate abstraction. Finally, we address the proof of liveness properties too.

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 11

The rest of the paper is organized as follows: In Section 2, we describe our
processor model. Section 3 describes our correctness criteria. This is followed
by the proof of correctness in Section 4. We compare our work with others in
Section 5 and finally provide the conclusions.

2 Processor Model

Instruction
Memory

pc

Unit 1 Unit m
ExecutionExecution

Reservation stations

Translation
Register

File
Register
Table &

Scheduler Feedback logic

Dispatch_slot

Execute?

Write_back?

Dispatch?

New_slot

no_op input

New instruction

Fig. 2. The block diagram model of our implementation

Figure 2 shows the model of an out-of-order execution processor implement-
ing Tomasulo’s algorithm without a reorder buffer used in this paper. The model
has z reservation stations where instructions wait before being sent to the execu-
tion units. There are m execution units represented by an uninterpreted function.
(z and m are parameters to our implementation model.) A register translation
table (RTT) maintains the identity of the latest pending instruction writing a
particular register (the identity is a “tag”—in this case, the reservation station
index). A scheduler controls the movement of the instructions through the ex-
ecution pipeline (such as being dispatched, executed etc) and its behavior is
modeled in the form of axioms (instead of a concrete implementation). Instruc-
tions are fetched from the instruction memory (using a program counter which
then is incremented); and the implementation also takes a no op input, which
suppresses an instruction fetch when asserted.
An instruction is issued by allocating a free reservation station for it

(New slot). No instruction is issued if all the reservation stations are occupied

12 Ravi Hosabettu et al.

or if no op is asserted. The RTT entry corresponding to destination of the in-
struction is updated to reflect the fact that the instruction being issued is the
latest one to write that register. If the source operands are not being written
by previously issued pending instructions (checked using the RTT) then their
values are obtained from the register file, otherwise the tags of the instructions
providing the source operands is maintained in the reservation station allocated
to the instruction. An issued instruction monitors the execution units to see if
they produce the values it is waiting for, by comparing the tags it is waiting
on with the tags of the instructions producing the result. An instruction can be
dispatched when its source operands are ready and the corresponding execution
unit is free. Dispatch? and Dispatch slot outputs from the scheduler (each a
m-wide vector) determine whether or not to dispatch an instruction to a partic-
ular execution unit and the reservation station index from where to dispatch.
Dispatched instructions get executed after a non-deterministic amount of time
as determined by the scheduler output Execute?. At a time determined by the
Write back? output of the scheduler, an execution unit writes back its result
which will be forwarded to other waiting instructions. A register updates its
value with this result only if its RTT entry matches the tag of the instruction
producing the result and then clears its RTT entry. Finally, when an instruction
is written back, its reservation station is freed.
At the specification level, the state is represented by a register file, a program

counter and an instruction memory. Instructions are fetched from the instruc-
tion memory, executed, result written back to the register file and the program
counter incremented in one clock cycle.

3 Our Correctness Criteria

Intuitively, a pipelined processor is correct if the behavior of the processor start-
ing in a flushed state (i.e., no partially executed instructions), executing a pro-
gram and terminating in a flushed state is emulated by an ISA level specifica-
tion machine whose starting and terminating states are in direct correspondence
through projection. This criterion is shown in Figure 3(a) where I step is the
implementation transition function, A step is the specification transition func-
tion and projection extracts those implementation state components visible
to the specification (i.e., observables). This criterion can be proved by an easy
induction on n once the commutative diagram condition (due to Hoare [Hoa72])
shown in Figure 3(b) is proved on a single implementation machine transition
(and a certain other condition discussed in the next paragraph holds).
The criterion in Figure 3(b) states that if the implementation machine starts

in an arbitrary reachable state impl state and the specification machine starts
in a corresponding specification state (given by an abstraction function ABS),
then after executing a transition their new states correspond. Further ABS must
be chosen so that for all flushed states fs the projection condition ABS(fs) =
projection(fs) holds. The commutative diagram uses a modified transition
function A step’, which denotes zero or more applications of A step, because

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 13

flushed

flushed

impl_state

projection

projection

n I_step m A_step

(a)

impl_state

I_step

ABS

ABS

A_step’

(b)

impl_state

Fig. 3. Pipelined microprocessor correctness criteria

an implementation transition from an arbitrary state might correspond to exe-
cuting in the specification machine zero instruction (e.g., if the implementation
machine stalls without fetching an instruction) or more than one instruction
(e.g., if multiple instructions are fetched in a cycle). The number of instructions
executed by the specification machine is provided by a user-defined synchroniza-
tion function on implementation states. One of the crucial proof obligations is to
show that this function does not always return zero (No indefinite stutter obliga-
tion). One also needs to prove that the implementation machine will eventually
reach a flushed state if no more instructions are inserted into the machine, to
make sure that the correctness criterion in Figure 3(a) is not vacuous (Even-
tual flush obligation). In addition, the user may need to discover invariants to
restrict the set of impl state considered in the proof of Figure 3(b) and prove
that it is closed under I step.

4 Proof of Correctness

We introduce some notations which will be used throughout this section: q rep-
resents the implementation state, s the scheduler output, i the processor input,
rf(q) the register file contents in state q and next(q,s,i) the “next state”
after an implementation transition. “Primed” variables will be used to refer to
the value of a given variable in the next state. Also, we identify an instruction
in the processor by its reservation station index (i.e., instruction rsi means in-
struction at reservation station index rsi). When the instruction in question is
clear from the context (say rsi), we use just rs op to refer to its opcode instead
of rs op(q)(rsi). (rs op′ will refer to rs op(next(q,s,i))(rsi)). The PVS
specifications and the proof scripts can be found at [Hos99].

4.1 Specifying the Completion Functions

An instruction in the processor can be in one of the three following possible
states inside the processor—issued, dispatched or executed. (Once written back,

14 Ravi Hosabettu et al.

it is no longer present in the processor). We formulate predicates describing an
instruction in each of these states and specify the value an instruction computes
in each of these states. The definition of the completion function is shown in 1 .

1% state_I : implementation state type; rsindex : reservation station

% index type; value : type of the data computed by an instruction.

Complete_instr(q:state_I,rsi:rsindex): RECURSIVE value =

IF executed_pred(q,rsi) THEN Value_executed(q,rsi)

ELSIF dispatched_pred(q,rsi) THEN Value_dispatched(q,rsi)

ELSIF issued_pred(q,rsi) THEN

% Value_issued(q,rsi) expanded to highlight the recursive call.

% alu is an uninterpreted function. ‘‘rs_op’’ is the opcode.

alu(rs_op(q)(rsi),

IF rs_src_ptr1(q)(rsi) = 0 THEN

rs_src_value1(q)(rsi)

ELSE Complete_instr(q,rs_src_ptr1(q)(rsi)) ENDIF,

‘‘Second operand -- similar definition’’)

ELSE default_value ENDIF

MEASURE rs_instr_num(q)(rsi)

In this implementation, when an instruction is in the executed state, the result
value is available in eu result field of the execution unit, so Value executed
returns this value. We specify Value dispatched along the same lines. When an
instruction is in the issued state, it may be waiting for its source operands to get
ready. In determining the value computed by such an instruction, we need the
source operands which we specify as follows: When rs src ptr1 is zero, the first
source operand is ready and its value is available in rs src value1, otherwise
its value is obtained by completing the instruction it is waiting on (rs src ptr1
points to that instruction). Similarly the second source operand is specified.
To specify the completion function, we added three auxiliary variables. The

first one maintains the index of the execution unit an instruction is dispatched
to. Since the completion function definition is recursive, one needs to provide a
measure function to show that the function is well-defined ; the other two auxil-
iary variables are for this purpose. We should prove that instructions producing
the source values for a given instruction rsi have a lower measure than rsi. So
we assign a number rs instr num to every instruction that records the order in
which it is issued and this is used as the measure function. (The counter that is
used in assigning this number is the third auxiliary variable).

4.2 Constructing the Abstraction Function

The register translation table maintains the identity of the latest pending in-
struction writing a particular register. The abstraction function is constructed
by updating every register with the value obtained by completing the appropri-
ate pending instruction, as shown in 2 . The synchronization function returns
zero if no op input is asserted or if there is no free reservation station to issue
an instruction, otherwise returns one.

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 15

I D E
Dispatch_trans? Execute_trans? Writeback_trans?

NOT Execute_trans?NOT Dispatch_trans? NOT Writeback_trans?

Entry Exit

Fig. 4. The various states an instruction can be in and transitions between them,
I: issued, D: dispatched, E: executed

2% If the ‘‘rtt’’ field for a given register is zero, then it is

% not updated, otherwise complete the instruction pointed to by

% ‘‘rtt’’ and update the register with that value.

Complete_all(q:state_I): state_I =

q WITH [(rf) := LAMBDA(r:reg):

IF rtt(q)(r) = 0 THEN rf(q)(r)

ELSE Complete_instr(q,rtt(q)(r)) ENDIF]

% state_A is the specification state type.

ABS(q:state_I): state_A = projection(Complete_all(q))

4.3 Proof Decomposition

We first prove a lemma that characterizes the value an instruction computes
and then use it in the proof of the commutative diagram. Consider an arbitrary
instruction rsi. We claim that the value an instruction computes (as given by
Complete instr) is the same whether in state q or in state next(q,s,i), as
long as the instruction is valid in these states. (Intuitively, an instruction is
valid as long as it has not computed and written back its result.) This is shown
as lemma same result in 3 . We prove this by induction on rsi (induction with
a measure function as explained later).

3% rs_valid means the instruction is valid.

same_result: LEMMA

FORALL(rsi:rsindex):

(rs_valid(q)(rsi) AND rs_valid(next(q,s,i))(rsi))

IMPLIES

Complete_instr(q,rsi) = Complete_instr(next(q,s,i),rsi)

We generate the different cases of the induction argument (as will be detailed
shortly) based on how an instruction makes a transition from its present state
to its next state. This is shown in Figure 4 where we have identified the condi-
tions under which an instruction changes its state. For example, we identify the
predicate Dispatch trans?(q,s,i,rsi) which takes the instruction rsi from
issued state to dispatched state. In this implementation, this predicate is true
when there is an execution unit for which Dispatch? output from the scheduler
is true and the Dispatch slot output is equal to rsi. Similarly other “trans”
predicates are defined.
Having defined these predicates, we prove that they indeed cause instructions

to take the transitions shown. Consider a valid instruction rsi in the issued state

16 Ravi Hosabettu et al.

i.e., issued pred(q,rsi) holds. We prove that if Dispatch trans?(q,s,i,rsi)
is true, then after an implementation transition, rsi will be in dispatched state
(i.e., dispatched pred(next(q,s,i),rsi) is true) and remains valid. (This is
shown as a lemma in 4 .) Otherwise (if Dispatch trans?(q,s,i,rsi) is false),
we prove that rsi remains in the issued state in next(q,s,i) and remains valid.
There are three other similar lemmas for the other transitions. The sixth lemma
is for the case when an instruction rsi in the executed state is written back. It
states that rsi is no longer valid in next(q,s,i).

4issued_to_dispatched: LEMMA

FORALL(rsi:rsindex):

(rs_valid(q)(rsi) AND issued_pred(q,rsi) AND

Dispatch_trans?(q,s,i,rsi))

IMPLIES

(dispatched_pred(next(q,s,i),rsi) AND rs_valid(next(q,s,i),rsi))

Now we come back to the details of the same result lemma. In proving this
lemma for an instruction rsi, one needs to assume that the lemma holds for the
two instructions producing the source values for rsi (Details will be presented
later). So we do an induction on rsi with rs instr num as the measure function.
As explained earlier in Section 4.1, instructions producing the source values
(rs src ptr1 and rs src ptr2 when non-zero) have a lower measure than rsi.
The induction argument is based on a case analysis on the possible state rsi
is in, and whether or not it makes a transition to its next state. Assume the
instruction rsi is in issued state. We prove the induction claim in the two cases—
Dispatch trans?(q,s,i,rsi) is true or false—separately. (The proof obligation
for the first case is shown in 5 .) We have similar proof obligations for rsi being
in other states. In all, the proof decomposes into six proof obligations.

5% One of the six cases in the induction argument.

issued_to_dispatched_induction: LEMMA

FORALL(rsi:rsindex):

(rs_valid(q)(rsi) AND issued_pred(q,rsi) AND

Dispatch_trans?(q,s,i,rsi) AND Induction_hypothesis(q,s,i,rsi))

IMPLIES

Complete_instr(q,rsi) = Complete_instr(next(q,s,i),rsi)

We sketch the proof of issued to dispatched induction lemma. We refer
to the goal that we are proving–Complete instr(. . .) =
Complete instr(. . .)–as the consequent. We expand the definition of the
completion function corresponding to rsi on both sides of the consequent. In q,
rsi is in the issued state and in next(q,s,i), it is the dispatched state—this fol-
lows from the issued to dispatched lemma. After some rewriting and simplifi-
cations in PVS, the left hand side of the consequent simplifies to
Value issued(q,rsi) and the right hand side simplifies to
Value dispatched(next(q,s,i),rsi). (The proofs of all the obligations are
similar till this point. After this point, it depends on the particular obliga-
tion being proved since different invariants are needed for the different obli-
gations.) Proof now proceeds by expanding the definitions of Value issued
and Value dispatched, using the necessary invariants and simplifying. We use

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 17

the PVS strategy apply (then* (repeat (lift-if)) (bddsimp) (ground)
(assert)) to do the simplifications by automatic case-analysis (many times,
simply assert will do).
We illustrate the proof of another lemma issued remains induction (shown

in 6) in greater detail pointing out how the feedback logic gets verified. As
above, the proof obligation reduces to showing that Value issued(q,rsi) and
Value issued(next(q,s,i),rsi) are the same. (The definition of
Value issued is shown in 1 .) This can be easily proved once we show that
the source values of rsi as defined by op val1 (and a similar op val2) remain
same, whether in q or in next(q,s,i). Proving this lemma op val1 same (and
a similar op val2 same) establishes the correctness of the feedback logic.

6% Value of the first operand.

op_val1(q:state_I,rsi:rsindex): value =

IF rs_src_ptr1(q)(rsi) = 0 THEN rs_src_value1(q)(rsi)

ELSE Complete_instr(q,rs_src_ptr1(q)(rsi)) ENDIF

op_val1_same: LEMMA

FORALL(rsi:rsindex):

(rs_valid(q)(rsi) AND issued_pred(q,rsi) AND

NOT Dispatch_trans?(q,s,i,rsi) AND Induction_hypothesis(q,s,i,rsi))

IMPLIES

op_val1(q,rsi) = op_val1(next(q,s,i),rsi)

issued_remains_induction: LEMMA

FORALL(rsi:rsindex):

(rs_valid(q)(rsi) AND issued_pred(q,rsi) AND

NOT Dispatch_trans?(q,s,i,rsi) AND Induction_hypothesis(q,s,i,rsi))

IMPLIES

Complete_instr(q,rsi) = Complete_instr(next(q,s,i),rsi)

In proving op val1 same lemma, there are three cases. Consider the case when
rs src ptr1 is zero. We then show that rs src ptr1′ is zero and rs src value1
is the same as rs src value1′. Consider the case when rs src ptr1 is non-zero.
rs src ptr1′ may or may not be zero. If rs src ptr1′ is zero, then it implies that
in the current cycle, the instruction pointed to by rs src ptr1 completes its ex-
ecution and forwards its result to rsi. So it is easy to prove rs src value1′ (the
value actually written back in the implementation) is the same as the expected
value Complete instr(q,rs src ptr1(q)(rsi)). If rs src ptr1′ is non-zero,
then one can conclude from the induction hypothesis that rs src ptr1 com-
putes the same value in q and in next(q,s,i).

Proving the Commutative Diagram Consider the case when no new in-
struction is issued in the current cycle, that is, the synchronization function
returns zero. The commutative diagram obligation in this case is shown in 7 .

18 Ravi Hosabettu et al.

7% sch_rs_slot (i.e., scheduler output New_slot) is valid means no

% free reservation stations.

commutes_no_issue: LEMMA

(no_op?(i) OR rs_valid(q)(sch_rs_slot(s)))

IMPLIES

rf(ABS(q)) = rf(ABS(next(q,s,i)))

We expand the definition of ABS (shown in 2) and consider a particular reg-
ister r. This again leads to three cases as in the correctness of op val1 same.
Consider the case when rtt (i.e., rtt(q)(r)) is zero. We then show that rtt′ is
zero too and the values of register r match in q and next(q,s,i). Consider the
case when rtt is non-zero. rtt′ may or may not be zero. If rtt′ is zero, then
it implies that in the current cycle, the instruction pointed to by rtt completes
its execution and writes its result to r. It is easy to show that this value written
into r is the same as the expected value Complete instr(q,rtt(q)(r)). If rtt′

is non-zero, then we use same result lemma to conclude that the same value is
written into r in q and next(q,s,i).
The case when a new instruction is issued is similar to the above except

when r is the destination register of the instruction being issued. We show that
in state next(q,s,i), the new instruction is in issued state, its operands as
given by op val1 and op val2 equal the ones given by the specification machine
and the value written into r by the implementation machine equals the value
given by specification machine.
The program counter pc is incremented whenever an instruction is fetched.

This is the only way pc is modified. So proving the commutative diagram for pc
is simple. The commutative diagram proof for the instruction memory is trivial
since it is not modified at all.

The Invariants Needed We describe in this section all the seven invariants
needed by our proof. We do not have a uniform strategy for proving all these
invariants but we use the automatic case-analysis strategy shown earlier to do
the simplifications during the proofs.

• Two of invariants are related to rs instr num and instr counter, the aux-
iliary variables introduced for defining a measure for every instruction. The
first invariant states that the measure of any instruction (rs instr num) is
less than the running counter (instr counter). The second one states that
for any instruction, if the source operands are not ready, then the measure of
the instructions producing the source values is less than the measure of the
instruction. The need for these was realized when we decided to introduce
the two auxiliary variables mentioned above.

• Two other invariants are related to rs exec ptr, the auxiliary variable that
maintains the execution unit index an instruction is dispatched to. The first
invariant states that, if rs exec ptr is non-zero, then that execution unit
is busy and its tag (which records the instruction executing in the unit)
points to the instruction itself. The second invariant states that, whenever an

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 19

execution unit is busy, the instruction pointed to by its tag is valid and that
instruction’s rs exec ptr points to the execution unit itself. These invariants
are very similar to ones we needed in an earlier verification effort [HSG99].

• Two other invariants characterize when an instruction is valid. The first one
states that for any register, the instruction pointed to by rtt is valid. The
second one states that for any given instruction, the instructions pointed to
by rs src ptr1 and rs src ptr2 are valid. The final invariant we needed
was that rs exec ptr for any instruction is non-zero if and only if rs disp?
(a boolean variable that says whether or not an instruction is dispatched)
is true. The need for these three invariants was realized during the proofs of
other lemmas/invariants.

PVS proof timings: The proofs of all the lemmas and the invariants discussed
so far takes about 500 seconds on a 167 MHz Ultra Sparc machine. 2

4.4 Other Obligations - Liveness Properties

We provide a sketch of the proof that the processor eventually gets flushed if
no more instructions are inserted into it. The proof that the synchronization
function eventually returns a nonzero value is similar. The proofs involve a set
of obligations on the implementation machine, a set of fairness assumptions on
the inputs to the implementation and a high level argument using these to prove
the two liveness properties. All the obligations on the implementation machine
are proved in PVS. In fact, most of them are related to the “instruction state”
transitions shown in Figure 4 and the additional obligations needed (not proved
earlier) takes only about 15 seconds on a 167 MHz Ultra Sparc machine. We now
provide a sketch of the high level argument which is being formalized in PVS.
Proof sketch: The processor is flushed if for all registers r, rtt(q)(r) = 0.

• First, we show that “any valid instruction in the dispatched state eventually
goes to the executed state and be valid” and “any valid instruction in the
executed state eventually gets written back and its reservation station will be
freed”. Consider a valid instruction rsi in the dispatched state. If in state q,
Execute trans?(q,s,i,rsi) is true, then rsi goes to the executed state in
next(q,s,i) and remains valid (refer to Figure 4). Otherwise it continues to
be in the dispatched state and remains valid. We observe that when rsi is in
the dispatched state, the scheduler inputs that determine when an instruc-
tion should be executed are enabled and these remain enabled as long as rsi
is in the dispatched state. By a fairness assumption on the scheduler, it even-
tually decides to execute the instruction (i.e., Execute trans?(q,s,i,rsi)
will be true) and in next(q,s,i), the instruction will be in the executed
state and be valid. By a similar argument, it eventually gets written back
and the reservation station gets freed.

2 The manual effort involved in doing the proofs was one person week. The authors
had verified a processor with a reorder buffer earlier [HSG99] and most of the
ideas/proofs carried over to this example.

20 Ravi Hosabettu et al.

• Second, we show that “every busy execution unit eventually becomes free
and stays free until an instruction is dispatched on it”. This follows from
the observation that whenever an execution unit is busy, the instruction
occupying it is in the dispatched/executed state and that such an instruction
eventually gets written back (first observation above).

• Third, we show that “a valid instruction in the issued state will eventually go
to the dispatched state and be valid”. Here, the proof is by induction (with
rs instr num as the measure) since an arbitrary instruction rsi could be
waiting for two previously issued instructions to produce its source values.
Consider a valid instruction rsi in the issued state. If the source operands
of rsi are ready, then we observe that the scheduler inputs that determine
dispatching remain asserted as long as rsi is not dispatched. Busy execution
units eventually get free and remain free until an instruction is dispatched on
it (second observation above). So by a fairness assumption on the scheduler,
rsi eventually gets dispatched. If a source operand is not ready, then the
instruction producing it has a lower measure. By the induction hypothesis,
it eventually goes to the dispatched state, eventually gets written back (first
observation) forwarding the result to rsi. By a similar argument as above,
rsi eventually gets dispatched.

• Finally, we show that “the processor eventually gets flushed”. We observe
that every valid instruction in the processor eventually gets written back
freeing its reservation stations (third and first observations). Since no new
instructions are being inserted, free reservation stations remain free. When-
ever rtt(q)(r) is non-zero, it points to an occupied reservation station.
Since, eventually all reservation stations get free, all rtt entries become zero
and the processor is flushed.

5 Related Work

The problem of verifying the control logic of out-of-order execution processors
has received considerable attention in the last couple of years using both theo-
rem proving and model checking approaches. In particular, prior to our work,
one theorem prover based and three model checking based verifications of a sim-
ilar example—processor implementing Tomasulo’s algorithm without a reorder
buffer—have been carried out.
The theorem prover based verification reported in [AP98] is based on refine-

ment and the use of “predicted value”. They introduce this “predicted value” as
an auxiliary variable to help in comparing the implementation against its spec-
ification without constructing an intermediate abstraction. However there is no
systematic way to generate the invariants and the obligations needed in their
approach. And they do not address liveness issues needed to complete the proof.
A model checking based verification of Tomasulo’s algorithm is carried out

in [McM98]. He uses compositional model checking and aggressive symmetry
reductions to manually decompose the proof into smaller correctness obligations
via refinement maps. Setting up the refinement maps requires information similar

Proof of Correctness of a Processor Implementing Tomasulo’s Algorithm 21

to that provided by the completion functions in addition to some details of the
design. However the proof is dependent on the configuration of the processor
(number of reservation stations etc) and also on the actual arithmetic operators.
Another verification of Tomasulo’s algorithm is reported in [BBCZ98] where

they combine symbolic model checking with uninterpreted functions. They in-
troduce a data structure called reference file for representing the contents of the
register file. While they abstract away from the data path, the verification is for
a fixed configuration of the processor and they is no decomposition of the proof.
Yet another verification based on assume-guarantee reasoning and refinement

checking is presented in [HQR98]. The proof is decomposed by providing the
definitions of suitable “abstract” modules and “witness” modules. However the
proof can be carried out for a fixed small configuration of the processor only.
Finally, verification of a processor model implementing Tomasulo’s algo-

rithm with a reorder buffer, exceptions and speculative execution is carried out
in [SH98]. Their approach relies on constructing an explicit intermediate ab-
straction (called MAETT) and expressing invariant properties over this. Our
approach avoids the construction of an intermediate abstraction and hence re-
quires significantly less manual effort.

6 Conclusion

We have showed in this paper how to extend the completion functions approach
to be applicable in a scenario where the instructions are committed out-of-order
and illustrated it on a processor implementation of Tomasulo’s algorithm without
a reorder buffer. Our approach lead to an elegant decomposition of the proof
based on the “instruction state” transitions and did not involve the construction
of an intermediate abstraction. The proofs made heavy use of an automatic
case-analysis strategy and addressed both safety and liveness issues.
We are currently developing a PVS theory of the “eventually” temporal op-

erator to mechanize the liveness proofs presented here. We are also working on
extending the completion functions approach further to verify a detailed out-of-
order execution processor (with a reorder buffer) involving branches, exceptions
and speculative execution.

References

AP98. T. Arons and A. Pnueli. Verifying Tomasulo’s algorithm by refinement. Tech-
nical report, Weizmann Institute, 1998. 20

BBCZ98. Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zu. Combin-
ing symbolic model checking with uninterpreted functions for out-of-order proces-
sor verification. In Ganesh Gopalakrishnan and Phillip Windley, editors, Formal
Methods in Computer-Aided Design, FMCAD ’98, volume 1522 of Lecture Notes in
Computer Science, pages 369–386, Palo Alto, CA, USA, November 1998. Springer-
Verlag. 21

22 Ravi Hosabettu et al.

BDL96. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combina-
tions of theories with equality. In Mandayam Srivas and Albert Camilleri, editors,
Formal Methods in Computer-Aided Design, FMCAD ’96, volume 1166 of Lec-
ture Notes in Computer Science, pages 187–201, Palo Alto, CA, November 1996.
Springer-Verlag. 8

CRSS94. D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem
proving for hardware verification. In Ramayya Kumar and Thomas Kropf, edi-
tors, Theorem Provers in Circuit Design, TPCD ’94, volume 910 of Lecture Notes
in Computer Science, pages 203–222, Bad Herrenalb, Germany, September 1994.
Springer-Verlag. 8

Hoa72. C.A.R. Hoare. Proof of correctness of data representations. In Acta Informat-
ica, volume 1, pages 271–281, 1972. 12

Hos99. Ravi Hosabettu. The Completion Functions Approach homepage, 1999. At
address http://www.cs.utah.edu/˜hosabett/cfa.html. 13

HP90. John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, San Mateo, CA, 1990. 9

HQR98. Thomas Henzinger, Shaz Qadeer, and Sriram Rajamani. You assume, we
guarantee: Methodology and case studies. In Hu and Vardi [HV98], pages 440–
451. 21

HSG98. Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Decompos-
ing the proof of correctness of pipelined microprocessors. In Hu and Vardi [HV98],
pages 122–134. 8, 9

HSG99. Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the completion functions ap-
proach. 1999. Accepted for publication in the Conference on Computer Aided
Verification, Trento, Italy. 9, 19

HV98. Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification, CAV
’98, volume 1427 of Lecture Notes in Computer Science, Vancouver, BC, Canada,
June/July 1998. Springer-Verlag. 22

McM98. Ken McMillan. Verification of an implementation of Tomasulo’s algorithm
by compositional model checking. In Hu and Vardi [HV98], pages 110–121. 20

ORSvH95. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.
9

SH98. J. Sawada and W. A. Hunt, Jr. Processor verification with precise exceptions
and speculative execution. In Hu and Vardi [HV98], pages 135–146. 21

	Introduction
	Processor Model
	Our Correctness Criteria
	Proof of Correctness
	Specifying the Completion Functions
	Constructing the Abstraction Function
	Proof Decomposition
	Proving the Commutative Diagram
	The Invariants Needed

	Other Obligations - Liveness Properties

	Related Work
	Conclusion

